sila di Para

Discrete Mathematics 21 (1978) 253-259. @North-H&and Publishing Company

ON STRINGS CONTAINING ALL SUBSETS AS SUBSTRINGS

Witold LIPSKI, Jr.

dnstimte uf Computer Science, *Polish* Academy of *Sciences, P.O. Box* 22, 00-901 \Varsaw PKiN, Poland

Received 8 March 1977

Let s_n be the length of a shortest sequence of positive integers which contains every $Y \subseteq \{1,\ldots,n\}$ as a subsequence of $|Y|$ consecutive terms. We give the following asymptotic estimation: $(2/\pi n)^{1/2}2^n \leq S_n \leq (2/\pi)2^n$. The upper bound is derived constructively.

0. Introduction

The following combinatorial problem has been studied in connection with file organization (see Ghosh [2], Lipski [6]): Given a family \mathfrak{M} of subsets of a finite set X , find a shortest sequence of elements of X containing every M as a subsequence of $|M|$ consecutive terms (by $|M|$ we denote the cardinality of *M*). Such a sequence will be called an *optimal sequence* for \mathfrak{M} . The general problem of constructing an optimal sequence for an arbitrary family \mathfrak{M} seems to be very difficult. By a result of Kou [5], no efficient (i.e. polynomial running time) algorithm for producing an optimal sequence for a given family is likely to exist. However, even the case of a restricted form of \mathfrak{M} can be a source of interesting combinatorial problems. For instance, let $X = \{0, 1\}^n$ and let $\mathfrak{M} = \{M_1, \ldots, M_n\}$ where $M_i = \{(b_1, \ldots, b_n) \in X : b_i = 1\}$. Ehrich and Lipski [1] constructed a sequence for \mathfrak{M} , of length $l_n = (\frac{2}{3}n + \frac{2}{9})2^{n-1} - \frac{1}{9}(-1)^n$, which has then been proven optimal by Luccio and Preparata [7].

In the present paper we treat the case $\mathfrak{M} = \mathfrak{P}(X)$, the family of all subsets of X. Of course, we may assume that X is of the form $\{1, \ldots, n\}$. A sequence of positive integers will be said to have property P_n if it contains every $Y \subseteq \{1, \ldots, n\}$ as a subsequence of $|Y|$ consecutive terms. Any shortest sequence with property P_n will be called *optimal* (n will usually be clear from the context), and its length will be denoted by s_n . The following sequences can ultimate verified to have properties P_1, \ldots, P_5 , respectively:

Througheut the paper we denote by $\lfloor x \rfloor$ the greatest integer not greater than x, and denote by [x] the least integer not less than x. For any two sequences f_n and g_n , $f_n \approx g_n$ means $\lim_{n\to\infty} (f_n/g_n) = 1$, and $f_n \le g_n$ (or $g_n \ge f_n$) means $\limsup_{n \to \infty} (f_n/g_n) \le 1$.

1. The bounds

残药

We t egin with the lower bound: Consider a sequence with property P_n . As it contains each of the $\lceil \frac{1}{2}n \rceil$ -subsets of $\{1, \ldots, n\}$ as a subsequence of $\lceil \frac{1}{2}n \rceil$ consecutive terms, it must contain at least $\binom{n}{\lfloor n/2 \rfloor}$ terms as beginnings of these subsequences plus the $\frac{1}{2}n$ - 1 terms as the remaining elements of the rightmost subsequence. Hence

$$
s_n \geq {n \choose \lceil n/2 \rceil} + \lceil \frac{1}{2}n \rceil - 1 \tag{1}
$$

Using Stirling's formula $(n! \approx n^n e^{-n} \sqrt{2\pi n})$ we obtain

$$
s_n \ge \sqrt{\frac{2}{\pi n}} 2^n. \tag{2}
$$

Though the above bound was obtained by rather trivial considerations, it is much better than a $2^{n/2}$ bound give. by Waksman and Green [9]. From (1) it follows that the sequences S_1 , S_2 , S_3 are optimal. Now let us notice that every occurrence of an $i \in \{1, \ldots, n\}$ can belong to at most k occurrences of k-subsets containing i. There are $\binom{n-1}{k-1}$ k subsets containing *i*, hence *i* must occur at least

$$
\left\lfloor \binom{n-1}{k-1} / k \right\rfloor = \left\lfloor \binom{n}{k} / n \right\rfloor
$$

times in any sequence with property P_n . Taking $k = \frac{1}{2}n$ we obtain

$$
s_n \ge n \left| \binom{n}{\lfloor n/2 \rfloor} / n \right| \tag{3}
$$

which proves the optimality of S_4 . By similar methods S_5 can. also be proven optimal. We leave it to the reader. Thus we have $s_1 = 1$, $s_2 = 2$, $s_3 = 4$, $s_4 = 8$, $v_5 = 13.$

Now we pass to the upper bound. We shall need some results on decomposing $\mathcal{P}(X)$ into chains ($\mathcal{C} \subseteq \mathcal{P}(X)$ is called a *chain* if $A \subseteq B$ or $B \subseteq A$ for all $A, B \in \mathcal{C}$). From the classical Sperner's and Dilworth's theorems it follows that $\mathcal{P}(X)$ can be partitioned into $\binom{n}{\lfloor n/2 \rfloor}$ chains, where $n = |X|$. It is also well-known how tcconstruct such a partition. Beiow we shall briefly describe the construction (see e.g. Greene and Kleitman [3]).

A chain is called symmetric if it has the form

$$
C_{\lfloor n/2 \rfloor - j} \subset C_{\lfloor n/2 \rfloor - j + 1} \subset \cdots \subset C_{\lfloor n/2 \rfloor + j}
$$

where $|C_i| = i$ for $\left[\frac{1}{2}n\right] - j \le i \le \left[\frac{1}{2}n\right] + j$ $(n = |X|, 0 \le j \le \left[\frac{1}{2}n\right])$. Since every symmetric chain contains exactly one $\frac{1}{2}n$ subset of X, it follows that any partition of $\mathcal{P}(X)$ into symmetric chains is composed of exactly $\binom{n}{\lfloor n/2 \rfloor}$ chains. We construct such a partition inductively. For $n = 1$, $\mathcal{P}(X)$ is itself a symmetric chain. Now assume that we have a partition of $\mathcal{P}(X)$ into symmetric chains, and let $a \notin X$. We replace every chain $A_1 \subset A_2 \subset \cdots \subset A_k$ of our partition by two chains

$$
A_1 \subset A_2 \subset \cdots \subset A_k \subset A_k \cup \{a\}
$$

$$
A_1 \cup \{a\} \subset A_2 \cup \{a\} \subset \cdots \subset A_{k-1} \cup \{a\}
$$

(if $k = 1$ then we take only the first one). It is easy to see that this procedure produces a partition of $\mathcal{P}(X \cup \{a\})$ into symmetric chains.

A symmetric chain of the form

$$
\emptyset = C_0 \subset C_1 \subset \cdots \subset C_n = X \tag{4}
$$

will be called *complete*. Any permutation φ of $\{1, \ldots, n\}$ will be identified with the sequence $\langle \varphi(1), \ldots, \varphi(n) \rangle$. By an *initial* or *final segment* of such permutation we shall mean any set of the form $\{\varphi(1), \varphi(2), \ldots, \varphi(k)\}\,$, $0 \le k \le n$, or $\{\varphi(l)\}$, $\varphi(l+1), \ldots, \varphi(n)$, $1 \le l \le n+1$, respectively. To every permutation there corresponds a complete chain composed of its initial segments, and conversely, any complete chain (4) is the family of initial segments of a unique permutation $\langle a_1, \ldots, a_n \rangle$ where $\{a_i\} = C_i \backslash C_{i-1}$ for $1 \le i \le n$. Now let

$$
\mathcal{P}(X) = \mathcal{C}_1 \cup \cdots \cup \mathcal{C}_m, \qquad m = \binom{n}{\lfloor n/2 \rfloor}
$$

be a partition of $\mathcal{P}(X)$ into symmetric chains. Let us extend every chain \mathcal{C}_i to an arbitrary complete chain $\vec{\mathscr{C}}_i \supseteq \mathscr{C}_i$, and let φ_i be the permutation corresponding to $\bar{\mathcal{C}}_i$. The resulting collection of permutations $\varphi_1, \ldots, \varphi_m$ has the following important property: Every subset of X appears as an initial segment of some φ_i (it is easy to see that $\binom{n}{\lfloor n/2 \rfloor}$ is the minimal possible cardinality of a collection with this property). We note in passing that such collections provide a basis for a method of file organization proposed by Lum [8]. While Lum in his paper does not give any general method to obtain $\varphi_1, \ldots, \varphi_m$, from our considerations it should be clear how to construct this collection by a recursive algorithm mimicking the procedure of partitioning $\mathcal{P}(X)$ into symmetric chains (it is convenient to code a symmetric chain *C* by a permutation $\langle a_1, \ldots, a_n \rangle$ together with a pair $\langle i, j \rangle$, $0 \le i \le j \le n$, such that $\mathscr{C} = \{ \{a_1, a_2, \ldots, a_k\}: i \leq k \leq j \}$. Another method to construct $\varphi_1, \ldots, \varphi_m$ has been sketched by Knuth [4, Exercise 1 on p. 567].

By a special collection of permutations of X we shall mean any collection $\varphi_1, \ldots, \varphi_r$ with the property that every $Y \subseteq X$ appears as an initial or final segment of some φ_i .

For example,

(commas and brackets omitted) is a special collection of permutations of $(1, 2, 3, 4, ...$

Lemma 1.1. For every positive integer n there is a special collection $\varphi_1, \ldots, \varphi_r$ of permutations of $\{1, \ldots, n\}$, where

$$
r = \begin{cases} \frac{1}{2} \binom{n}{n/2} & \text{if } n \text{ even,} \\ \frac{1}{2} \left(1 + \frac{1}{n} \right) \binom{n}{\lfloor n/2 \rfloor} & \text{if } n \text{ odd.} \end{cases}
$$

Proof. Let *n* be even, and let ψ_1, \dots, ψ_m , $m = \binom{n}{m}$, be a collection of permutations of $\{1, \ldots, n\}$ with every $Y \subseteq \{1, \ldots, n\}$ appearing as an initial segment. Since there are $\binom{n}{n/2} \frac{1}{2}n$ -subsets of $\{1, \ldots, n\}$, each surh subset occurs as an initial segment exactly once. For $1 \le i \le m$, let B, denote the $\frac{1}{2}n$ -element initial segment of ψ_i . There are $r = \frac{1}{2}m \frac{1}{2}n$ -sur sets containing 1, so we may assume that each of B_1, \ldots, B_r contains 1. Now let $1 \le i \le r$ and let $\psi_i = \langle a_1, \ldots, a_n \rangle$. There is a unique $j > r$ with $B_j = \{1, ..., n\} \setminus B_i$. Let $\psi_j = \langle b_1, ..., b_n \rangle$. We define

$$
\varphi_i = \langle a_1, a_2, \ldots, a_{n/2}, b_{n/2}, b_{n/2-1}, \ldots, b_1 \rangle
$$

It is easy to see that every $Y \subseteq \{1, \ldots, n\}$ with $|Y| \le \frac{1}{2}n$ appears in at least one of the permutations $\varphi_1, \ldots, \varphi_r$ as an initial or final segment. Consequently, every $Y \subseteq \{1, \ldots, n\}$ appears as an initial or final segment. This follows from the fact that if Y is an initial (final) segment of φ_i then $\{1, \ldots, n\}$ Y is a final (resp. initial) segment of φ_1 . Thus $\varphi_1, \ldots, \varphi_r$ is a special collection of permutations of $\{1, \ldots, n\}.$

Now let *n* be odd. We produce a special collection $\vartheta_1, \ldots, \vartheta_q, q = \frac{1}{2} {n-1 \choose n-1/2}$, of permutations of $\{1, \ldots, n-1\}$, and then we replace every $\vartheta_i = \langle a_1, \ldots, a_{n-1} \rangle$ by the two permutations $\langle n, a_1, \ldots, a_{n-1} \rangle$ and $\langle a_1, \ldots, a_{n-1}, n \rangle$. The resulting collection $\varphi_1, \ldots, \varphi_r$ is easily seen to be a special collection of permutations of $\{ 1, \ldots, n \}$, and

$$
r = 2q = {n-1 \choose (n-1)/2} = \frac{(n-1)/2+1}{n} {n \choose (n-1)/2+1}
$$

$$
= \frac{1}{2} \left(1 + \frac{1}{n} \right) {n \choose \lfloor n/2 \rfloor}.
$$

Obviously, for *n* even the value of r given by Lemma 1.1 is the minimal possible. It is not the case for n odd. For instance,

端山水。

is a special collection of permutations of $\{1, \ldots, 5\}$, whereas $\frac{1}{2}(1+\frac{1}{5})(\frac{5}{2})=6$. It would be interesting to know whether or not for every n there is a special collection of $\left[\frac{1}{2} {n \choose n/2} \right]$ permutations of $\{1, \ldots, n\}$.

Now we are ready to present a construction of a sequence with property P_n which has length of order $2^{n+1}/\pi$. For any sequences T_1, T_2, \ldots, T_p we shall denote their concatenation by $T_1 T_2 \cdots T_p$. We begin with the case $n = 2k$. Let $\varphi_1, \ldots, \varphi_t$ be a special collection of permutations of $\{1, \ldots, k\}$ where

$$
t = \begin{cases} \frac{1}{2} {k \choose k/2} & \text{if } k \text{ ever} \\ \frac{1}{2} {1 + \frac{1}{k}} {k \choose \lfloor k/2 \rfloor} & \text{if } k \text{ odd.} \end{cases}
$$
(5)

Let ψ_1, \ldots, ψ_r be a special collection of permutations of $\{k+1, \ldots, 2k\}$ (we may put $\psi_i = \langle a_1 + k, \dots, a_k + k \rangle$ for every $\varphi_i = \langle a_1, \dots, a_k \rangle$). For every $\psi_i =$ $\langle b_1,\ldots,b_k\rangle$, let us denote $\bar{\psi}_i = \langle b_k, b_{k-1},\ldots,b_1\rangle$. First we define the sequences

$$
A_1 = \varphi_1 \psi_1 \varphi_2 \psi_2 \cdots \varphi_{t-1} \psi_{t-1} \varphi_t \psi_t
$$

\n
$$
A_2 = \varphi_1 \psi_2 \varphi_2 \psi_3 \cdots \varphi_{t-1} \psi_t \varphi_t \psi_1
$$

\n
$$
\vdots
$$

\n
$$
A_i = \varphi_1 \psi_i \varphi_2 \psi_{i+1} \cdots \varphi_{t-1} \psi_{i-2} \varphi_t \psi_{i-1}
$$

\n
$$
\vdots
$$

\n
$$
A_i = \varphi_1 \psi_i \varphi_2 \psi_1 \cdots \varphi_{t-1} \psi_{t-2} \varphi_t \psi_{t-1}
$$

\n
$$
B_1 = \varphi_1 \bar{\psi}_1 \varphi_2 \bar{\psi}_2 \cdots \varphi_{t-1} \bar{\psi}_{t-1} \varphi_t \bar{\psi}_t
$$

\n
$$
\vdots
$$

\n
$$
B_t = \varphi_1 \bar{\psi}_t \varphi_2 \bar{\psi}_1 \cdots \varphi_{t-1} \bar{\psi}_{t-2} \varphi_t \bar{\psi}_t
$$

(Strictly speaking, any subscript s should be under stood as $(s - 1)$ (mod t) + 1.) A_{i+1} may be thought of as resulting from A_i by a cyclic shift of the ψ 's to the left. B_i differs from A, only in that every ψ , is replaced by $\bar{\psi}_v$. We define our sequence as

$$
L_{2k} = A_1 A_2 \cdot A_i B_1 B_2 \cdot B_i \varphi_1.
$$

We shall prove that L_{2k} has property P_{2k} . To this end, let us notice that any $Y \subseteq \{1, ..., 2k\}$ can be written as $Y = P \cup Q$ where $P \subseteq \{1, ..., k\}$ and $Q \subseteq$ $\{k+1,\ldots, 2k\}$. Let us assume that F appears as a final segment of $\varphi_{\rm b}$ and Q as an initial segraent of ψ_i . Then Y occurs as a subsequence of $|Y|$ consecutive terms of A_p where $p = (j - i)(\text{mod } t) + 1$. Indeed, φ_i and ψ_i appear consecutively in A_p. The remaining three cases (P initial, Q final, P final, Q final, P initial, Q final) are similar. We leave them to the reader.

Let \tilde{s}_n denote the length of L_n . We have

$$
\tilde{s}_{2k} = (2t \cdot 2t + 1)k \approx \binom{k}{\lfloor k/2 \rfloor} \binom{k}{\lfloor k/2 \rfloor} k \approx \left(\sqrt{\frac{2}{nk}} 2^k\right)^2 k
$$
\n
$$
= \frac{2}{\pi} 2^{2k}.
$$
\n(6)

1.10 전쟁의 전쟁 : 10 Hg - 10 Hg + 10 Hg + 3 We + 3 Mg

Now consider the case $n = 2k + 1$. To this end, let

$$
A_i^* = \varphi_1 n \psi_i n \varphi_2 n \psi_{i+1} n \cdots n \varphi_i n \psi_{i-1},
$$

$$
B_i^* = \varphi_1 n \overline{\psi_i} n \varphi_2 n \overline{\psi_{i+1}} n \cdots n \varphi_i n \overline{\psi_{i-1}}
$$

for $1 \le i \le t$, where t is given by (5) and $\varphi_1, \ldots, \varphi_t, \psi_1, \ldots, \psi_t$ are the same as before. We define

$$
L_{2k+1} = A_1 A_2 \cdots A_i B_1 B_2 \cdots E_i A_1^* A_2^* \cdots A_i^* B_1^* B_2^* \cdots B_i^* n \varphi_1.
$$

It is easily seen that L_{2k+1} has property P_{2k+1} ; the first half contains all subsets not containing $2k+1$, whereas all subsets which do contain $2k+1$ appear in the second half. Moreover, we have

$$
\tilde{s}_{2k+1} \approx 2\tilde{s}_{2k} \approx 2\frac{2}{\pi}2^{2k} = \frac{2}{\pi}2^{2k+1}.
$$
 (7)

From (6) and (7) it follows that $\tilde{s}_n \approx \frac{2}{\pi} 2^n$. Hence

$$
s_n \leq \frac{2}{\pi} 2^n. \tag{8}
$$

Comparing (2) and (8) we see that there is still m ich room for improvement of (at least one of) these bounds.

Apart from the problem of determining the exact order of growth of s_n , one may also ask for the behaviour of s_n^k defined to be the length of an optimal sequence for $\mathcal{P}_k(X)$, the family of all *k*-subsets of $X = \{1, ..., n\}$. A plausible conjecture is that $s_n \approx s_n^{\lfloor n/2 \rfloor}$.

References

- [1] H.-D. Ehrich and W. Lipski, On the storage space requirement of consecutive retrieval with edundancy. Information Processing Lett. 4 (1976) 101-104.
- [2] S.P. Ghosh, Consecutive storage of relevant records with redundancy Comm. ACM 18 (1975) 464-47 1.
- [3] C. Greene and D. Kleitman, Strong versions of Sperner's theorem, J. Combinatorial Theory Ser. A 20 (1976) 80-88.
- D.E. Knuth, The Art of Computer Programming, Vol. III: Sorting and Searching (4ddison-Wesley, Reading, MA, 1973).
- [5] L.T. Kou, Polynomial complete consecutive information retrieval problems, Technical Repoid TR 74-193, Dept. 0: Computer Science, Cornell University, Ithaca, N.Y. (1974); SAM 3. Comput. (March 1977).
- [6] W. Lipski, Information storage and retrieval mathematical foundations II (Combinatorial problems), Theoret. Comput. Sci. 3 (1976) 183-212.
- F. Luccio and F.P. Preparata, Storage for consecutive retrieval, Information Processing Lett. 5 (1976) 68-7 1.
- [8] V.Y. Lum, Multi-attribute retrieval with combined indexes, Comm. ACM 13 (1970) 660-665.
- A. Waksman ard M.W'. Green, On the consecutive retrieval property in file orgi nization, 1EEE Trans. Comput. 23 (1974) 173-174.