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Let s,, be the length of a shortest sequence cf positive integers which contains every 
Yc(l,..., d}- as a subsequence of IY 1 consecutive terms. We give the following asymptotic 
estimation* (2/7rnY22” d S . n Q (2/7r)2”. TIC. upper bound is derived constructively. 

The following combinatorial problem has been studied in connection with file 
organization (see. Ghosh [2], Lipski [6]): Given a family %R of subsets of a finite 
set X, find a shortest sequence of elements of X containing every M as a 
subsequence of ]MI consecutive terms (by IlMl we denote the cardinality of M). 
Such a sequence will be called an optimal sequence for m. The general Ixoblem of 
constructing an optimal sequence for an arbitrary family m seems to be very 
difficult. By a result of Kou [S], no efficient (i.e. polynomial running time) 
algorithm for producing an optimal sequence for a given family is likely to exist. 

However, even the case of a restricted form of ‘a3 can be a source of interesting 
combinatorial problems. For instance, let X = (0, 1.)” and let % = {M,, . . . , M,,} 
where Mi = {(b,, . . . , b,) E X : bi = 1). Ehrich and Lipski [l] constructed ij se- 
quence for n, of length lfi = ($n +$)2”-‘--i&-l)“‘, which has then been proven 
optimal by Luccio and Preparata [7]. 

In the present paper we treat the case % = 9(X), the family of all subsets of X. 
Of course, yxle may assume that X is of the form { 1, . . . , n}. A sequ.ence of 

positive integers will be said to have property B, if it contains every Y s { 1, . . . ) n} 

as a subsequence of Iy/ consecutive terms. Any shortest sequence with property 
P,, will be called o@nal (n will usually 5e clear from the con&& and it< length 
will be denoted by s,. The following sequences ea.1 t,aaiiy be verified to have 

properties P,, . . . , &, respectively: 

St 1 
52 12 
s, 1231 
S4 12342413 
ss 623451241524 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82773098?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(3 , 

*which proves the optimaiiqr of S4. By si@ar methods S5 :can. also be proven 
optimal. We leave it to the reader. Thus we have S, = 1, .s2 = 2, s3 = 4, s4 = 8, 
25 = 13. 

Now we pass to the upper bound. We shall need some results on decomposing 
9(X) into chains (% 5 9(X) is called a crtraive if A s B or B’s A for all A, B E %). 
From the classical Sperner’s and Dilworth’s theorems it follows that 9(X) can br, 
partitioned into (t,$2,) chains, where IZ = Ix]. It is also well-known how tc- 
construct such a partition. Beiow we shall briefly describe the construction (see 
e.g. Greene and Kleitman [3]). 

A chain is called symmetn’c if it has t be form 



‘qdtuexa JO~ 

l-Z/U1 

( 1 
=UA 

U 
‘Iua 0. 0 . 

n 7h = (xh6 



- Qi = h, a2, . . . T an12, bR12, bn/2.- l, . l . , b,). 

It is easy to see that every Y s {1, . . . , n} with 1 Yj =G in appears in at least one of 
the permutations pl, . . . , qpI as an iniltiai or final segment. Conscquentlv, eatery 
YE{l,. . . , nj appears as an initial or final segment. This follows from the fact 
that if Y is an initial (final] tigment of CQ then (1, . . . , n}\ Y is a -final ~ (resp. initial) 
segment of vi. Thus pl, . . . , q, is a special collection of permutations of 

11 7 l * l 9 N* 

Now let n be odd. We produce a special collection Q1, , . . ,a+ q = &n’!_$2), of 
permutations of (1, . . . , n - l}, and then we replace every -19~ = (a,, . . . , a,_,) by the 
two permutaticlns (n, Go, . ..) G-J ad (a,,. l .) a,-,, n). Tithe resulting collection 
Vi,***7 ppr is easily seen to be a special collection of permutations of { 1, . . . , n}, 
and 

/ n- 1 r = 2q ,-- \(n _ 1)/Z, 1 

(n-1)/2+4. J n 
=------_---_-.B 

5t t (It- 1)/2+ 1 1 
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Ubvious:y, for it even the value of r $ven by Lemma 
possible. It is not the case for n odd. For Instance, 

1 .l is the minimal 

12345 
235 14 
34215 
13425 
24135 

is a special eohection of permrltations of (1, . . . ,, S), whereas i( 1 + $)(zJ = 6. It 
would be interesting to know whether or not for every n there is a special 
collection of [&$..l)l permutations of { 1, . . . , n}. 

Now we are ready to present a construction of a sequence with property P, 
which has length of order 2”+l/n. For any sequences T1, &,. . . , Tp we shall 
denote their concatenation by T1 T2 - - l T’. We begin with the case yl _ 2 k. Let 

Qnt.9 l 9 Qt be a special collection of permutations of { 1, . . . , k} where 

if k ever 

‘= i(l+-$(,G2,) if k odd 

(3 

Let ql,. . . , t/i, be a special collection of permutations of {k + 1, . . .., 2k) (we may 

put I(li=(a,+k,..., ak+k) for every qi=(al,... uk)). For every J/,= 

(b 1,=-*9 bk), let us denote 

AI = QdJ1Qp2’h l ’ 

&= wb2(P2*3 - - 
. 

. 

. 

)3;i = (bk, b/c--l, - - . 7 6,). First :vf: define the sequences 

* 4hJlt-lwh 

l 4+--1~t(Qt311 

(Strictly speaking, ar:y subscript s shf-cult! b:, under ;‘o(>d as is 1 )frncbtl I) c 1 ) ,+I, I . 

may be thought of as resulting from Ai tjj a cyclic shift ~,f the &‘s to the ieft. I), 



for I 6 i G & where t is given by 15) and cpl, . . . , qt, t/i!, . . . , I,!+ are the same as 
before. We d&ne 

It is 3asi‘ty seen tk\at LZk +l has property Pzk+ z ; the Iirst half contains all subsets 
. not coataining 2k + 1, whereas ail subsets which do t:ontain 2k + 1 appear in the 

second half. Moreover, we have 

s,,,,E,~2k~2:222k=222*+1, 
7r 7r 

Flom (6) xx! 
2 

(7) it follows that 5,, =- 2”. Hence 
V 

2 
s, 5 - 2”. 

7r (8) 

Comparing (2) and (8) IX see that there is still Mach room for improvement of 
(at Past one of) these bounds. 

Apart from the problem of determining t&l: exact order of grovwth of s,, one 
may also %sk for the behavi\>ur of sk defined to be the length of an optimal 
sequence for 9$(X), the family of ail r-Fubsets of X = 11, . . . . n). A plausible 
c:~-Qecture in that s, = sL,“‘“~. 
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