
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 88, 341-347 (1982) 

Routing through a Network with 

Maximum Reliability 

MOHAMMAD ROOSTA 

Department of Electrical Engineering. University of Southern California. 
Los Angeles, Calqornia 90007 

Submitted by R. Bellman 

1. INTRODUCTION 

The problem of finding an optimal path through a network and in 
particular the shortest path in time has been studied by many people during 
the past 25 years. For a thorough review and references, see Dreyfus [ 11. 

In this paper we discuss a stochastic version of this problem in which 
various probabilistic elements are introduced. One of the important 
applications of this problem is in communication networks, where reliability 
is a major requirement. Namely, what happens if one or more link(s) in the 
network fail for some reason. In Section 2, we discuss the failure problem 
and in Section 3 we give a method for finding the most reliable path in the 
network. A work similar to this was first done by Christofides (5 1. In 
Section 4 we consider the same problem under resource constraint and in 
Section 5 we give a method to compute the second, third, etc., most reliable 
paths in the network. Pollack’s algorithm [3] will be discussed in Section 6. 
and finally we have some discussion in the last section. 

2. THE PROBLEM OF FAILURE 

One standard method to obtain the shortest path through a stochastic 
network is to use expected value. 

The basic disadvantage of the expected value model is its inapplicability to 
cases where we have one or more failures of link(s) in the network. 

If we use an expected value model and we have a non-zero probability of 
failure of one link the expected time along that link is infinity. Thus we may 
end up with a disconnected network, while the network is actually connected. 
A simple example of this is shown in a network of 5 nodes below. We 
assume the probability of link (4, 5) failing is 0.2; then by using the expected 
value model we end up with a disconnected network where node 5 is 
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isolated. Hence this is a good motivation to search for another method which 
enables us to handle the failure problem in a network. 

3. A PATH OF MAXIMUM PROBABILITY OF GETTING 
THROUGH THE NETWORK 

Here instead of expected value we use probabilities. We assume we are 
given the probability distribution for time for each link in the network. These 
probability distributions include a probability that a link disappears. We are 
assuming independence. 

Here instead of the time matrix or expected time matrix we have a 
distribution of times for each link. These probability distributions may have 
a finite probability that the time to go along a particular link is infinite; i.e., 
physically the link may not be there at all or there is a probability that the 
link has failed. Our objective is to obtain the maximum probability of going 
from node i to terminal node N for i = 1, 2,..., N - 1. In other words, we are 
looking for the most reliable path to go from i to N. Considering the 
assumptions above, we have the functional equation 

Pi = ,Ff$(Pij ’ Pj) for i= I,2 ,..., N- 1, (1) 

where pi denotes the maximum probability of going from node i to N, and pii 
is the probability of going from i to j along the link connecting i and j. If we 
take the logarithm of both sides of Eq. (1) we have 

log Pi = l”g(,~$~(Pij ’ Pj))* (2) 

Since both log and maximum are monotone functions we have 

log pi=I~~~,('og(Pij * Pj)). 

Since pij . pi < 1 then logp, . pi < 0, and hence we have 

-1Og pizj~~~,(-lOg pij-"g Pj). 

(3) 

(4) 
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Let - log pi = qi and - log pi = qj ; thus, 

qi = jIJl$,(- log Pij + %)* (5) 

This is the same kind of equation as in the deterministic case or in the 
expected value model. 

It is worthwhile to note that the most reliable path and the minimum 
expected time path are necessarily the same. Let us consider a simple 
example of a network with five nodes and six links as shown in the scheme 
below. For simplicity we assume for each link only two probabilities for the 

time being, 0.1 and 0.9. A pair (p, t) on a link denotes that we can traverse a 
particular link with probability p in time t. t is a random variable for which 
we have the probability distribution function. We applied both methods, the 
expected value model and the most reliable path. We also consider only the 
paths from node 1 to node 5. The table below shows the computational 
results. 

Expected 
time Probability Nodes (path) 

0.68 0.81 I ,4.5 * 
0.87 0.729 1.4.3,s 
0.66 0.729 1,2.3,5 * 
1.25 0.648 I2345 7 , 9 7 

This simple example shows that a path of maximum probability from node 1 
to 5 is the path (1,4,5) with probability 0.81 and a path of minimum 
expected time is the path (1,4,3,5) with expected time 0.66. These two paths 
are shown in the table above by asterisks. 
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This simple result shows that a path of maximum reliability is not 
necessarily a path of minimum time. This result is important in many cases 
in transportation or communication networks when dealing with emergency 
situations, when our primary goal is to make sure a message reaches its 
destination. 

How to handle emergency cases is discussed in a forthcoming paper. 

4. RESOURCE CONSTRAINTS 

Different aspects of finding an optimal path when there are some 
constraints on the resources available to us have been discussed elsewhere. 
Here we consider the case where we have a limited amount of resource, c. 
The method developed in the previous section will be used, and we show how 
we can use the same analytic method as that in the deterministic case [6]. 

Let us assume that the velocity is constant and normalized to be unity. We 
also assume that the way the resource are used up is proportional to distance 
traveled. 

Let us define p,(c) as the most reliable path from node 1 to N given c 
amount of resources. We have the following functional equation; 

Pi(c)=,F$(Pij *PjtcmKKdij)>, Kdij<c for c>O, i= 1, 2 ,..., N- 1. 

(6) 

Let us take the logarithm of both sides: 

logpi = log[,~~~(Pij * Pj(C - Kdij)I* Kd, < c. 

By the same reasoning as that in the previous section we can write 

lOgPi =,~s,[lOg(~ij *~j(c-Kdij)I, Kd, < c, 

which is equivalent to 

-loge, =j~~~j[-lOgPij . -lOgPj(C - Kd,)], Kd, < c. 

Let -log p,(c) = ri(c); thus we have 

Ti(C) = j~~i, [- IOg pij + Tj(C - Kdij)], Kd,<c fori= 1, 2 ,..., N- 1. 

(7) 

This is the same as the equations in the deterministic case. Ways of solving 
this type of equation are discussed in [61. 
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5. THE END, ~RD,..&TH MOST RELIABLE PATH THROUGH THE NETWORK 

It is sometimes important to know the second and third, etc., most reliable 
path of getting through a network. If for any reason the most reliable path is 
not available then alternate routes are desirable. The unavailability of the 
best path can happen in case of one or more failure of the link(s) in a 
network. This problem has many important applications in road traffic. 
telephone, communication networks, etc. 

This problem has been considered in the deterministic case by many 
people; see [ I ] for many references to these algorithms. Dreyfus [ 1 ] has 
modified the Bellman-Kalaba [4] and Hoffman-Pavley [2] procedure and 
discusses the comparison among existing procedures. 

Now let us consider this problem in its stochastic version. We assume 
again that the probability of going from node i to j is pij and these 
probabilities are independent as was assumed in Section 2. 

Let 

pi = the maximum probability of going from node i to N. 

Then, we have pi = maxj,,(pij . pj). Also let 

qj = the probability that the second best path is available 
(second 
most reliable path). 

Then, we have 

qi = max 
i = 1, 2 ,..., N - 1, 

(8) 

9.v = 1 

The term max,(pii . pi) determines the value of the second best path starting 
at node i and deviating from the most reliable path at that node i. In Eq. (8) 
K is the node after i on the most reliable path from i. 

Bellman and Kalaba [4] recommended solution of Eq. (8) by an iterative 
procedure. If the average node has n outgoing links and L is the average 
number of iterations until convergence of the iterative method, considering 
that we have N nodes the method requires on the average MNL additions 
and comparisons. 

To determine the third most reliable path from all nodes to N assume ri 
represents the probability of the third most reliable path from i. Then, 

ri = max 
i = l,..., N - 1. 

TN= 1 



346 MOHAMMAD ROOSTA 

if a single node K follows i along both the most and the second most reliable 
path. But if K is the node following i on the most reliable path and m is the 
node following i on the second most reliable path, then we have 

rN= 1 
(9) 

In general, to obtain the Kth most reliable path we can use the method 
proposed by Dreyfus [ 1 ] in the deterministic case. 

6. POLLACK'S ALGORITHM 

Pollack [3] proposed a solution for obtaining the Kth best routes when K 
is small; that is, the second or third best route. 

This method is good for people who do not know much mathematics and 
is practical in some applications. Here we apply his method to compute the 
second and third most reliable paths. 

Given the most reliable path from i to N, the probability of each link is set 
in turn to one. The most reliable path problem is then solved for each such 
case. The maximum probability of all these cases is then the second most 
reliable path. The reason for this is that the second most reliable path must 
differ in at least one link from the most reliable path. This will be insured by 
setting the probability of one link at a time to one. If there are L links in the 
most reliable path, then in order to obtain the second most reliable path we 
should solve the most reliable path problem L times. Also if the second most 
reliable path has M links which are entirely different from the most reliable 
path then to compute the third most reliable path we have to solve the most 
reliable path problem ML times. The number ML will not usually occur 
because there are some common links between the most and the second most 
reliable paths. 

The advantage of this method is its simplicity and loop-free feature. On 
the other hand, it is not computationally feasible to obtain the Kth most 
reliable path once K becomes larger than three. 

7. DISCUSSION 

In this paper we showed how we can handle the failure problem. Other 
problems involved in a communication network such as the capacity of a 
network [7], queueing problems [S], and any question concerning the 
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maximum flow such as that considered by Ford and Fulkerson [9] have not 
been discussed here. interested readers can find many papers in the literature 
about these subjects. Thus there are many problems concerning networks 
which have not been treated here, nor have we considered any of the 
applications of network theory except to communication theory. 
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