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In considering key events of genomic disorders in the development and progression
of cancer, the correlation between genomic instability and carcinogenesis is cur-
rently under investigation. In this work, we propose an inductive logic program-
ming approach to the problem of modeling evolution patterns for breast cancer.
Using this approach, it is possible to extract fingerprints of stages of the disease
that can be used in order to develop and deliver the most adequate therapies to
patients. Furthermore, such a model can help physicians and biologists in the elu-
cidation of molecular dynamics underlying the aberrations-waterfall model behind
carcinogenesis. By showing results obtained on a real-world dataset, we try to give
some hints about further approach to the knowledge-driven validations of such
hypotheses.
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Introduction

The understanding of key genomic events that are
considered as causal to cancer development and pro-
gression represents the holy grail of current research
in oncology. Cancer remains a quite obscure disease
at the molecular level even if great efforts have been
spent in the last decades in order to defeat it. Sev-
eral studies in this field have focused on the analysis
of gene expression levels in several different contexts
(1 ); however, a comprehensive outlook of the genetic
mechanisms underlying the various types of cancer
still lacks and a coherent model of evolution of cancer
is out of our knowledge. This is a key point both from
the research and clinical standpoints because such a
dynamical model of cancer not only would be a pre-
cious aid for our understanding of cancer biology, but
also may provide direct hints about the optimization
of drug delivery in cancer therapies, which can result
in a significant rising in disease-free survival of pa-
tients. A comprehensive introduction to tumor evolu-
tion investigation can be found in previous studies (2–
4 ). The knowledge of molecular events behind cancer
development and its key stages allows a more accu-
rate classification of patients that does not rely on
approximate evaluation of features like histological
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grading, but considers inner dynamics that are the
real causal events of cancer. On the other hand,
such a precious knowledge of this domain can help
researchers in developing strategies both at the clin-
ical (treatment planning systems) and pharmacologi-
cal levels (compounds) in order to stop or reverse the
aberrant process behind cancer.

In the last decades, researchers have proposed
some models of cancer evolution, among which the
Knudson’s two-hit model (5 ) is probably the most
famous. Knudson describes the deactivation of both
alleles of a tumor suppressor gene as the initiating
step of oncogenesis; however, no further information
can be obtained from this model about following steps
of cancer development. Current opinions in oncology
tend to consider the subsequent progression toward
aggressive malignancy as a multi-step process char-
acterized by a lesser and lesser dependence of cells
on growth signals as well as suppression of apoptotic
pathways. This multi-step process is believed to be
linear in some types of cancer, such as colorectal can-
cer, while to be strongly non-linear in other types like
neuroblastoma or breast cancer (BC). Because of this
strongly non-linear evolution, the investigation of BC
is currently considered a very demanding task.

Due to the multiplicity of actors that cancer de-
velopment requires, it could be argued that the ac-
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tivity of several genes needs to be changed in order
to develop any kind of cancer. This mutation pro-
cess is inherently random and undirected; however, it
is very unlikely that the necessary alterations could
happen simultaneously by chance alone, particularly
when more than a few genes need to be mutated. This
has led Nowell to develop a model called “clonal evo-
lution” (6 ); in Nowell’s view, cancer is guided through
evolution by a random mutation process that selects
alterations providing a growth advantage to cancer
cells. In this paper, we try to extract clonal evolu-
tion hallmarks in the context of BC using a data-
mining approach based on association rule mining.
In particular, we show how a particular approach to
association rule mining can be used in the develop-
ment of a coherent model of cancer evolution through
the use of Tertius, an inductive logic programming
(ILP)-based system proposed by Flach and Lachiche
(7 ). ILP emphasizes the declarative aspect of knowl-
edge representation, focusing on concepts more than
on procedures (8 , 9 ). This aspect can result to be
useful when complex environments (just like cancer-
related ones) should be analyzed in order to extract
knowledge on basic processes while a procedural ap-
proach is too hard when not unfeasible. For this rea-
son, we have developed an evolution model for tumor
progression in BC using Tertius. In this model, af-
ter collecting samples, DNA extraction is carried out,
followed by hybridization and array scanning phases.
A pre-processing stage is used in order to reduce the
dimensionality of the dataset and to reduce computa-
tional time for analyses, that is, data normalization
and filtering tasks are put at the base of this step.
The Tertius algorithm is fed using pre-processed data
and results are displayed in the form of a network of
interactions.

Model

Efforts spent in the last years for the determination of
tumor evolution pathways have been mainly focused
on two approaches: graph building (10 ) and tree con-
struction (11 ). Both paradigms belong to the class of
graph theory based algorithms, but are characterized
by significant differences. Graphs are defined as sets
of nodes and edges connecting nodes. Trees are struc-
tures with a root node and branches that bring to
nodes till the leaves are reached. Trees can be gener-
alized as directed acyclic graphs, that is, graphs with
directed edges and no cycles.

Graph building task can be faced in several
different ways. In the last years, many different al-
gorithms for tree and graph construction have been
proposed. For example, SOTA algorithm has been
used in order to build a tumor progression model for
hepatocellular carcinoma (12 ). In another study, a
branching tree and a distance-based tree were con-
structed for nasopharyngeal carcinoma (11 ).

All of these approaches are based on some kinds
of metrics that establish relationships among cases;
however, none of these approaches can consider ade-
quately higher order relationships between variables
(genes, BACs, and so on). The scientific community
currently agrees in considering the linear relationships
between genomic players’ activity as a quite restric-
tive approximation, especially for human organism.
For these reasons, in order to answer the need for
more powerful tools, we propose an ILP approach
to the problem of tumor evolution model building.
ILP systems develop predicate descriptions from ex-
amples and background knowledge. The examples,
background knowledge, and final descriptions are all
described as logic programs. A unifying theory of ILP
is being built up around lattice-based concepts such as
refinement, least general generalization, inverse reso-
lution, and most specific corrections.

ILP approach

In ILP, several entities can be defined; here we focus
on objects (facts) and concepts (hypotheses). Having
selected description languages for objects and con-
cepts, a procedure is needed to establish if a given
object belongs to a certain concept, that is, if the de-
scription of the object satisfies the description of the
concept. If it is the case, then the concept descrip-
tion covers the object description. An example e for
learning a concept C is a labeled fact, with a label O

if the object is an instance of the concept C, and a
label φ otherwise. The inductive logic learning task
is then configured as:

Given a set � of positive and negative examples
of a concept C, find an hypothesis H, expressed in a
given concept description language L such that:

(1) every positive example ε in �+ is covered by
H;

(2) no negative example ε in �− is covered by H.
Such procedure returns first-order logic rules that

are used to maximize the coverage of the example set.
Hypotheses drawn by these systems can be used to
construct interaction models, frequently put in the
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form of graphs, among variables. Understanding dy-
namics behind these hypotheses can greatly help in
rising the definition of our knowledge about a precise
process like a biological pathway in disease evolution.

Tertius algorithm

Tertius deals with learning first-order logic rules from
the data that lack an explicit classification predi-
cate. Learned rules are not restricted to predicate
definitions as in supervised inductive logic program-
ming. Tertius first performs an optimal search that
tries to find the k most confirmed hypotheses belong-
ing to the set H. The main contribution of Tertius
in the field of ILP algorithms lays in its heuristic
measure of confirmation (trade-off between novelty,
defined as the relative decrease in counter-instances
from expected to observed, and satisfaction, defined
as the fraction of expected but non-observed counter-
instances) for hypotheses and in the non-redundant
refinement operator that avoids duplicates in the
search. During its elaboration, Tertius tries to build
first-order logic rules like the following:

α =′ (x1 − y1)′

⇒ β =′ (x2 − y2)′ or γ =′ (x3 − y3)′ or δ =′ (x4 − y4)′

which puts in evidence the relationships existing be-
tween α, β, γ, and δ variables in the example set that

the algorithm has been fed with. In this case, the rule,
for example, states the situation when variable α in
(x1 − y1) has an impact on β, γ, and δ, specified by
the ranges (xi − yi). It is evident that this paradigm
can be successfully translated in the bioinformatics
field considering variables as biological actors and the
ranges can represent gain/loss of copies or over/under
expression of genes.

Results and Discussion

The Tertius algorithm has been run on the pre-
processed data as described previously. In order to
reduce the computational time needed for rule extrac-
tion, we fed the algorithm with a pre-filtered list of 40
genes. These genes were selected in order to split the
case set in two subgroups based on tumor progression;
this choice was driven by the fact that tumor progres-
sion is, evidently, a good indicator of hallmark events
in tumor evolution model.

The Tertius analysis returned 21 associative rules
(see Supporting Online Material) that were translated
in Figure 1. This graph has been analyzed using the
graph theory in order to individuate interesting actors
in this pseudo-pattern. VEGFC (vascular endothe-
lial growth factor C) and ATE1 (arginyltransferase 1)
genes resulted to be hubs in this graph, that is, points

Fig. 1 Graph representation of the rules extracted by Tertius. Arrows represent control activity of one gene on another

(causal relationships are represented by arrow orientation).
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in which connections are concentrated (in formalisms
we refer to in-degree and out-degree of nodes in order
to define hubs). This is a quite interesting character-
istic under the biological point of view, since both
VEGFC and ATE1 are involved in vascularization
bioprocesses.

VEGFC regulates the process of angiogenesis to-
gether with its two known receptor tyrosine kinases
FLT1 and KDR/FLK1. Its role has been investigated
by Hung et al (13 ); they tried to observe whether
differential expression of VEGFC might explain the
different propensity to lymph node metastasis in thy-
roid cancers. VEGFC’s role in cancer is sustained
by the fact that paired comparison of VEGFC ex-
pression between thyroid cancers and normal thyroid
tissues from the same patients showed a significant in-
crease of VEGFC expression in papillary thyroid can-
cer and a significant decrease of VEGFC expression
in medullary thyroid cancer (13 ).

On the other hand, ATE1 functions as an oxygen
sensor; in fact, through biochemical analyses, Kwon
et al (14 ) demonstrated that the N-terminal cysteine,
in contrast to N-terminal aspartate and glutamate, is
oxidized before its arginylation by R-transferase, sug-
gesting the sensor role of the arginylation branch of
the N-end rule pathway. Recent works demonstrated
that post-translational arginylation is critical for the
survival of an organism, and the knockout of ATE1
results in embryonic lethality in mice. Moreover, it
has been found that the lack of protein arginylation
results in perturbation of angiogenesis, a process that
is critical for tumor growth and metastasis develop-
ment (15 ). Genomic analysis has identified a limited
number of potential arginylation targets involved in
the regulation of oncogenic transformation that have
been hypothesized to play a role in prostate cancer
(16–18 ).

As a matter of fact, these two genes result to be
correlated in terms of function even if they haven’t
been found associated in the same context highlighted
by this analysis. However, the biological snapshot re-
turned by Tertius is clear: disruption in the activ-
ity of specific genes involved in angiogenesis is the
turning point in BC progression. This aspect can be
considered a relevant characteristic of BC for at least
two reasons: Firstly, vascularization is a well-known
mechanism through which tumors acquire energy, and
this fact can explain the fast growing aggressiveness of
some BC cases; Secondly, being abnormalities well lo-
calized from both a functional and a structural point
of view, it could be argued that further studies should

be carried out on approaches (such as drug therapies)
aimed to prevent tumors from losing equilibrium in
the mentioned hotspots.

In this paper, we presented an ILP-based approach
to BC evolution modeling. Although the model has
been demonstrated to be strongly non-linear, we tried
to show how key steps in this process can be retrieved
using first-order logic rules. In particular, the graph
representation we used puts in evidence the complex-
ity of events that underlie tumor progression, account-
ing for a small but interpretable non-linearity of the
actual biological model. It can be argued that this
aspect can result to be a relevant strength point of
similar approaches: while not discarding the model,
this algorithm provides tools to the researcher to draw
a precise idea of the main actors of a certain pathway
and how they interact in order to complete the pro-
cess under investigation. Tertius algorithm, therefore,
results to be a good trade-off between the expressive
power needed for models in oncology and the neces-
sary approximation that rises from the high intrin-
sic complexity of the processes underlying cancer. In
particular, we argued that the roles of copy number
levels of two genes, VEGFC and ATE1, can result to
be critical in BC evolution. Aberrations in copy num-
ber levels in 4q34.1–34.3 and 10q26.13 chromosomal
regions can result in disruption in the regulation of
angiogenesis, which can rise the probability of vascu-
larization of cancer tissues through novel vessels feed-
ing cancer. Several theories explaining the roles of
VEGFC and ATE1 singularly have been proposed in
the last years for other types of cancer; however, to
our knowledge, no interaction network has been illus-
trated as a BC evolution model. The advantages of
such knowledge are quite evident: the complete list
of steps characterizing BC can help researchers devel-
oping strategies to prevent the tumor following the
known path till the degeneration of tissues. This can
be translated in therapies enhancing self-repairing ca-
pabilities of DNA aimed at reducing the probability of
specific-known next-to-come epigenetic events and, in
a second step, at inducing self-repairing of damaged
regions through drugs developed on purpose.

The potentialities of the present approach seem
to be quite interesting. However, issues still remain
in terms of the computational time needed by ILP
algorithms. The computational complexity of these
algorithms is still too high to think at feeding them
with more than few tens of features. This aspect still
limits their employment in the bioinformatics context
that would probably obtain good benefits from their
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use. Future directions for research could be found in
the optimization of the approach used herein in order
to keep computational costs low. Statistical evalua-
tion and other methods described herein can be used
in order to reduce the impact of the complexity issue.
This remains an open question pushing the interest
for further research in this fascinating field.

Materials and Methods

Specimens

In this study, we considered a cohort of 124 BC pa-
tients at different stages. Frozen tumor tissues were
obtained from IRCCS “Giovanni Paolo II” of Bari.
All specimens were collected under approved proto-
cols from IRCCS with patient consent. The speci-
mens’ characteristics are provided in Table 1.

DNA extraction

Nucleic acids were extracted from tumor blocks as
described in previous studies (19 , 20 ). Blocks were
trimmed with a razor blade to remove normal tissues,
and cryo-sections were obtained from either side of
the block to ascertain that tumor cells comprised a
significant part of the specimen. DNA was extracted
using QUIamp tissue kits.

Array comparative genomic hybridiza-

tion

In array comparative genomic hybridization (CGH),
arrays of genomic BAC, P1, cosmid, or cDNA clones
are used as the hybridization target in place of the
metaphase chromosomes (21–23 ). The relative copy
number is then measured at these specific loci by
hybridization of fluorescently labeled test and ref-
erence DNAs as in conventional CGH (19 ). Since
the clones used on the array contain sequence tags,
their positions are accurately known relative to the
genome sequence, and genes mapping within regions
of copy number alteration can be readily identified
using genome databases.

Imaging and analysis

Array CGH, imaging, and data acquisition were car-
ried out using arrays of 2,464 genomic clones (BAC),
each printed in triplicate (Hum Array 1.14 and Hum
Array 2.0).

Data pre-processing

The output of a CGH array scanning has been con-
verted in log2(R1/R2), where R1/R2 indicates the
ratio of the two fluorescent tags; this is a common
pre-processing of the data that tries to overcome the

Table 1 Summary of statistics for the series of data used in this study*

Property All (n=124) ER positive ER negative

Age Young (≤ 45 years) 56 33 23

Old (≥ 70 years) 66 57 9

T status T1 31 24 7

T2 59 39 20

T3 8 8 0

T4 20 16 4

Differentiation G1 15 13 2

G2 57 45 12

G3 35 18 17

Missing 15

PgR status PgR positive 58 37 21

PgR negative 65 53 12

Proliferation MIB negative 18 17 1

MIB positive 105 73 32

*The case set has been divided using common directions in the clinical field. Statistical properties of the discrimi-

nation are shown. ER, estrogen receptor; PgR, progestogen receptor; T1–4, breast cancer stage according to TNM

classification; G1–3, histological grading according to TNM classification; MIB, the monoclonal antibody developed

against the Ki-67 proliferation antigen.
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bias introduced by the fact that lost and normal BACs
are theoretically compressed in the interval [0, 1],
and, on the other hand, amplifications can vary in
the range [1, ∞). At this point, some missing val-
ues exist in the dataset (also indicated as NaN, that
is, Not a Number); a decision about these values and
the BACs they belong are needed. Some approaches
for missing value handling tend to simply eliminate
those features that contain missing values; this, ob-
viously, inevitably leads to some loss of information.
Another kind of approach consists in imputing miss-
ing values using other information; the most simple
method imputes a missing value using the mean (or
median) of the distribution of the single BAC to all
the missing values; it is evident that if a single case
out of all contains a value lost for all of the others,
these methods will impute this single value to all of
the cases leading to a strong bias in data. If the cases
are two and each of the two belongs to one of the
classes under investigation, it is clear that the mean
imputation, in this case, will make powerful gene se-
lection criteria like Wilcoxon test or student’s t-test
to be absolutely inadequate. For these reasons, we
chose a hybrid approach to missing value imputation:
we firstly removed all the BACs that were present in
33% of the cases. Then we used the collateral missing
value estimation algorithm as described in Sehgal et
al (24 ). As the final step, we applied a gene entropy
filter (23 ) to the dataset and obtained a matrix of
124 by 2,218. This set of genes was used as input for
the gene selection algorithm.

Gene selection

The feature selection stage is one of the most del-
icate steps in the whole microarray experimental
pipeline. Many different approaches are documented
in literature; one of the most recent contributions
to this field of optimal feature set finding comes
from Marghny and El-Semman (25 ). Other feasi-
ble approaches include sensitivity analysis by remov-
ing attributes, proportion correct use in rules, ra-
tio of features between-category to within-category
sums of squares, signal-to-noise scores in one-versus-
rest or one-versus-all fashion, Kruskall-Wallis non-
parametric test (ANOVA) and number of appearances
in models (1 , 26 , 27 ). However, the scientific commu-
nity seems to agree that the “optimal feature set” sim-
ply does not exist but, instead, it should be measured
on the single classification approach and, in general,
on the single experiment (28 ). For this reason, we

developed a consensus scheme for attribute selection
that takes advantage of three well established statis-
tical methods, namely the student’s t-test (Lilliefors
test for normality of samples, p < 0.01), receiver op-
erating characteristic, and entropy (Kullback-Liebler
divergence). All of these techniques can be used to
compile a ranking of the features that accounts for the
power of a single attribute to discriminate between the
output classes. All of the 2,464 BAC values for each of
the 124 cases were processed and the outcome being
T-stage (1–2 vs 3–4); using these algorithms, three
rankings have been obtained. A new global ranking
has been compiled using the three positions of each
clone as an indicator of its discriminating power. This
strategy has been employed in order to overcome the
limitations of the single methods and to gain a deeper
insight into the data structure and information distri-
bution. In addition, as reported in Li et al (29 ), it
should be considered that using a single viewpoint for
relevance estimation can result in unbearable bias in
results. Bonferroni adjustment has been employed to
correct the statistics for multiple comparisons. The
first 40 clones were selected for the following analysis
stages.
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