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Abstract

The present study describes an artificial neural network (ANN) system that uses a cell-based biosensor 
based on the Bioelectric Recognition Assay (BERA) methodology, for the detection and classification of 
pesticide residues in food commodities. The insecticidal compounds carbaryl and chlorpyrifos as well as 
the pyrethroid group were used as models for the training of the ANN. The biosensor was based on 
neuroblastoma  N2a  cells,  which  are  targets  of  the  pesticides  due  to  the  inhibition  of  the  enzyme 
acetylcholine esterase by them. The response of the biosensor to different concentrations (samples) of 
either pesticide was recorded as a time-series of potentiometric measurements (in Volts). The feedforward 
methodology was used for the development of the ANN, which was trained with the backpropagation 
training  algorithm.  The  results  of  the  application  of  the  developed  system  indicate  that  the  novel 
classification  methodology  exhibits  promising  performance  as  a  central  component  of  a  rapid,  high 
throughput screening system for pesticide residues.
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1.    Introduction

Food safety control is a major economic activity with a volume of $2 billion and a growth rate of 12 %. 
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There is a considerable demand by the European farming and food industry for technologies, which will 
allow the testing of agricultural products for the presence of pesticide residues at the site of production. 
Therefore, rapid pesticide residue testing is necessary, especially in view of the new EU and international 
regulations for minimal residue concentration in agricultural products.

The Bioelectric Recognition Assay (BERA) refers to a generic biosensor method based on a unique 
combination of  living,  physiologically  active  cells  immobilized  in  a  matrix  with an  electrical  sensor 
system. Cells are selected to specifically interact with the analyte under detection. In this way, when a 
positive  sample  is  added to  the  probe,  a  characteristic,  ‘signature-like’  change in  electrical  potential 
occurs upon contact between the target molecule and the cells in the gel matrix.

A  highly  sensitive  cellular  biosensor  has  been  already  developed  based  on  the  BERA  working 
principle for detecting organophosphate and carbamate pesticide residues in food commodities [1,2]. The 
main drawback of this system is the employment of an empirical way to determine the presence of a 
pesticide in a sample, by examining the biosensor’s response data curve. To overcome this problem, we 
herewith report the development of a computational classifier system able to interact with the biosensors 
as a pesticide classification software, able to learn during use and therefore to improve its classification 
accuracy. 

Artificial neural networks (ANNs) are computational models that try to estimate or approximate a 
function from sample data [3]. In other words, they can be trained with a sufficient number of data to 
“learn” the process that has produced these data. Their popularity in a large number of application areas 
was drastically increased after the development of the Backpropagation training algorithm [4].

Two different  biosensor-based experimental  approaches  were taken,  targeting either  the individual 
pesticides carbaryl and chlorpyrifos or the pyrethroid group.

2.    Experimental Setup

In both experimental approaches, the biosensor was based on neuroblastoma N2a cells, which are targets 
of the pesticides due to the inhibition of the enzyme acetylcholine esterase by them. Under this condition, 
treatment of the cells with the neurotransmitter acetylcholine (ACh) would lead to extensive membrane 
depolarization [1].

2.1. Electrode preparation and cell culture
For the single individual pesticide detection, N2a cells in suspension were mixed with 1,2% (w/v) 

Bactoagar® solution at 37oC and then the mixture was transferred to a specially fabricated 96-well plate 
(ordered in 12 eight-well arrays), where it was left to solidify at room temperature. Each well contained 
0,335ml  actoagar, 100 l (50 x 103) cells and  65 l medium. A pair of carbon electrodes was screen-
printed on the bottom of each well.

For the pesticide group screening N2a cells in suspension were placed on the top of 8X carbon screen-
printed electrodes (DROPSENS DRP-8X110), 50 x 103 cells/single electrode.

N2a cells were routinely cultured as reported previously [1]. After cell detachment from the culture 
were concentrated by centrifugation (2 min, 1200 rpm, 25°C), at a density of 2,5 x 106 ml-1. During each 
assay (see below, 2.2) cells were used at a density of 1000/ l . 

2.2. Electrochemical experiments with cells
The response of the biosensor to different concentration (samples) of either pesticide was recorded as a 

time-series of potentiometric measurements (in Volts). Three different concentrations of either carbaryl or 
chlorpyrifos we  measured:  0  ppm  (Control),  0.005  ppm  and  0.01  ppm.  The  pyrethroid  group  was 
composed  of  a  mixture  of  eight  pyrethroid  pesticides  (acrinathrin,  cyfluthrin,  cyhalothrin-lamda, 
cypermethrin,  deltamethrin,  fenpropathrin,  fenvalerate,  flucythrinate), each  at  the  concentration 
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corresponding to the lowest Minimum Residue Level (0.01 ppm). The sample volume ranged from 5 l 
(pyrethroids) to 20 l ( carbaryl, chlorpyrifos). Ach (10mM) was added at respective volumes.

The 96-well  plate  (“disposable  biosensor  plate”)  was placed on a customized device (Conductive 
Technologies, PA), which comprised the PMD-1608FS A/D card (Measurement Computing, Middleboro, 
MA). Consequently, 12 converters were required in order to simultaneously measure signals from all 96 
wells of the sensor. The software responsible for the recording of the signal and processing of data was 
InstaCal (Measurement Computing). For the screening of pyrethroids group a customized UNISCAN 
(Buxton,  UK)  potensiostat  with  an  8-channel  DROPSENS (Asturias,  Spain)  adaptor  was  used.  The 
duration of each measurement was 180sec and 360 values/sample were recorded.

2.3. ANN design and training
Individual pesticides: Based on the recorded  potentiometric  measurements  of the responses of the 

biosensor, two data sets were created, consisting of 104 and 121 time-series for carbaryl and chlorpyrifos, 
respectively. Each time-series contained 181 data samples. From each time-series, we constructed specific 
meta-data that constituted the inputs of the ANN model. The meta-data that gave the best performance 
were the following:

average and standard deviation of  all data samples (timeseries).
dividing the data samples  into 4 equal length segments and taking the average and standard 

deviation of each segment
minimum value of all data samples
maximum value of all data samples

Thus, these 12 characteristics of each time-series constituted the inputs of the developed ANN. The 
two outputs of the ANN corresponded to each one of the two possible cases (existence of either carbaryl 
or  chlorpyrifos).  The  feedforward  NN methodology  was  chosen,  while  the  backpropagation  training 
algorithm was used for the training of the developed model.

Several experimentations were conducted with the training set, for the discovery of the best ANN 
architecture, focusing on three main aspects of the ANN: i) the design of the network (number of hidden 
nodes of one or two hidden layers), ii) the algorithm used by the backpropagation methodology in the 
error-minimization  process  during  training  (steepest-descent,  quasi-Newton,  Levenberg-Marquardt  or 
conjugate-gradient algorithms) and iii) the type of activation function in the hidden nodes (logistic or 
hyperbolic tangent (tanh) functions). We concluded that the best model was a one-hidden-layer ANN 
with 5 hidden nodes trained with the Levenberg-Marquardt algorithm.

Pyrethroid group:  the time-series contained 360 data samples. The ANN regarding the detection of 
pesticides of the pyrethroid group used two additional inputs: the age of the cells (in days) and their 
generation number (four different generations of clonal propagation). The best neural model consisted of 
one hidden layer with 48 nodes, trained with the Levenberg-Marquardt algorithm.

3. Results

The best combinations of ANN architectures and minimization algorithms for the training process 
were further trained and tuned, leading to the development of the final ANNs. The performance of these 
models was evaluated using new data, different than those used for the training process (namely, the 
testing sets). 

Concerning the ANN for the individual pesticides detection, the results on the first column of Table 1 
show its  performance using the logistic  activation function in  the hidden nodes of  the network.  The 
performance of the model in the detection of carbaryl is significantly high (correct classification on 29 out 
of 30 time-series, a 97% success rate), but the corresponding success rate in the case of chlorpyriphos is 
quite low (27%). By changing the activation function of the ANN from logistic to hyperbolic tangent 
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(tanh), the overall performance of the system was drastically improved. As it can be seen in the second 
column of  Table 1,  with  this  change in the  activation function,  a  substantial  increase in  the  correct 
classification of chlorpyriphos (from 27% to 53%) was achieved, while the decrease of the already quite 
high percentage of correct classification of carbaryl was rather low (from 97% it went down to 90%).

Table 2 shows the percentages of correct detection of pesticides of the pyrethroid group. The correct 
classification of samples with no pesticides was 93.3%, while the success rate was 76.7% in the case of 
samples containing some pesticide, giving an overall correct classification percentage of 85%.

Table 1. Correct classifications for carbaryl and chlorpyriphos (number of samples and corresponding percentages) 

A  with logistic act. fn. ANN with tanh act. fn.

carbaryl 29 / 30  (97%) 27 / 30  (90%)

chlorpyriphos 8 / 30  (27%) 16 / 30  (53%)

Overall 37 / 60  (62%) 43 / 60  (72%)

Table 2. Correct classifications for the pyrethroid group (number of samples and corresponding percentages)

Control (negative) sample set 28/30 (93.3%) 

Positive sample set 23/30 (76.7%) 

Overall 51 / 60  (85%)

4. Conclusions

A novel methodology based on the classification capabilities of artificial neural networks is proposed, 
as a replacement of the empirical way to determine the presence of a pesticide in a sample by examining 
the biosensor’s response data curve. The results of the application of the proposed ANN system indicate 
that the novel classification methodology exhibits promising performance as a central component of a 
rapid, high throughput screening system for pesticide residues. Its performance could be further improved 
by  the  introduction  of  a  sophisticated  decision  support  system (DSS)  that  would  perform the  final 
classification based on the exact output values of the ANN.
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