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A B S T R A C T

The investigation on obesity and associated disorders have changed from an scenario in which genome
drove the phenotype to a dynamic setup in which prenatal and early-postnatal conditions are
determinant. However, research in human beings is difficult due to confounding factors (lifestyle and
socioeconomic heterogeneity) plus ethical issues. Hence, there is currently an intensive effort for
developing adequate preclinical models, aiming for an adequate combination of basic studies in rodent
models and specific preclinical studies in large animals. The results of these research strategies may
increase the identification and development of contrasted biomarkers and therapeutic targets.
ã 2016 The Authors. Published by Elsevier B.V. on behalf of European Proteomics Association (EuPA). This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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1. Introduction

Currently, nutrition-related disorders (obesity, metabolic syn-
drome and diabetes) are in the focus of intense research and
debate. First, the appearance of obesity and associated conditions
like diabetes is linked to other non-communicable disorders; e.g.
cardiovascular disease. In fact, 50% of deaths caused by diabetes are
related to cardiovascular disease (primarily heart disease and
stroke; [1]). Second, obesity and associated disorders were
traditionally reported in adult individuals of wealthy populations
from high-income countries. However, in recent years, the global
changes in lifestyle and dietary patterns have modified the
distribution of the diseases and therefore obesity and diabetes
affect both children and adults of different socioeconomic classes
in both developed and developing countries [2]. Hence, obesity
was declared a global pandemic by the World Health Organization
(WHO) in 2005, when the affected population reached 400 million
of adults and at least 2.6 million of people were dying each year as a
result of being overweight or obese. Furthermore, WHO predicted
that around 2.3 billion adults would be overweight and 700 million
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would be obese by 2015 (http://www.who.int/features/factfiles/
obesity/en/index.html). This prediction was not too much inaccu-
rate since in the last year, 2014, around 1.9 billion of adults were
reported to be overweight and 600 million to be obese (http://
www.who.int/mediacentre/factsheets/fs311/en/). These data
mean that 39% of adults are overweight and 13% are obese; of
them, 9% are affected by diabetes. Diabetes caused 1.5 million
deaths in 2012; more than 80% of them occurring in low- and
middle-income countries (http://www.who.int/mediacentre/fact-
sheets/fs312/en/).

Moreover, the problem is aggravated by the causal relationship
among nutrition-related diseases and other non-communicable
diseases (i.e. renal, immune, inflammatory and reproductive
disorders, and cancer [3–7]). Hence, the epidemics is becoming
a major worldwide public health problem since it does not only
affects directly life-quality and wellbeing of individuals but also
constitutes a strong economic challenge to health-care systems
and governmental administrations. Thus, there is an urgent need to
tackle the situation, by both increasing research in the area and
developing adequate strategies for prevention and treatment.

The studies performed in the last decades have changed
substantially the vision of the causal factors of obesity and
associated disorders. We have moved from a gene-centric static
perspective, in which genome drove the phenotype with secondary
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influence of lifestyle and nutrition, to a much more holistic and
dynamic approach in which environmental, parental, prenatal and
early-postnatal conditions are strongly determinants of postnatal
development and homeostasis and therefore health status and
disease risks. In this scenario, the development of proteomics and
other “-omics” during the last years is giving a complimentary tool
that may help to accurately elucidate the condition and identify
therapeutic targets [8–13].

2. The Developmental Origins of Health and Disease (DOHaD)

The DOHaD concept points out that prenatal and early-
postnatal conditions (mainly nutrition and lifestyle) determine
growth, life-time fitness/obesity and the risks for non-communi-
cable diseases via epigenetic changes induced during development
(reviewed in Ref. [14]). In all the mammalian species, foetal
development is dependent on adequate transfer of oxygen and
nutrients from the mother to the foetus via the placenta.
Inadequate maternal conditions (e.g. deficiency or excess in food
intake or hypoxia) and/or metabolic disturbances (e.g. obesity,
metabolic syndrome or diabetes) and insufficient placental
function may affect the supply of oxygen and nutrients to the
foetuses. Hence, such conditions may affect foetal development
and may compromise homeostasis, metabolism and health of the
offspring throughout life, and even may affect subsequent
generations (transgenerational programming [15]).

In case of maternal food-intake excess, obesity and metabolic
disorders, the excess in the supply of nutrients induces an
excessive development of the foetuses. At birth, in situations of
maternal overnutrition, neonates are frequently large-for-gesta-
tional age (LGA) and obese, having high amounts of body fat;
moreover, they can manifest macrosomia with severe enlargement
of heart, liver and spleen [16].

In case of maternal food intake deficiencies or hypoxia and in
case of placental insufficiency, the shortage in the supply of oxygen
and nutrients to the foetuses causes deficiencies in their
development. The neonates are small-for-gestational-age (SGA),
with reduced body-weight at birth as a consequence of a process
known as intrauterine growth restriction (IUGR). In humans, the
incidence of IUGR infants ranges between 7 and 15% depending on
sociodemographic issues [17]. Classically, IUGR has been associat-
ed with maternal malnutrition but, currently, 60% of IUGR
offspring are identified as mainly caused by placental insufficiency
[18,19].

Maternal obesity and metabolic disorders may also cause IUGR
[20–22], mainly due to vascular alterations affecting the placental
development and function and causing foetal hypoxia [23].
Women with alterations in glucose and lipid metabolism may
also develop hypertensive disorders in pregnancy (HDP). HPD
includes a spectrum of disorders varying, according to severity,
from chronic pre-existing hypertension and gestational hyperten-
sion to preeclampsia and eclampsia. Occurrence of HDP usually
induces IUGR and SGA [24].

SGA offspring, depending on the severity of IUGR, may be
predisposed to high neonatal morbidity and mortality rates, with
early death or life-long alterations in their development, health
and welfare [25]. In offspring with extreme IUGR, deficiencies of
development are unavoidable and viability of the neonate is
strongly compromised, causing death. In less-critical IUGR, the
central nervous system functionality is assured but the function-
ality of the other organs can be severely affected. Hence, health and
welfare of these IUGR offspring is compromised by gastrointestinal
(alterations in development and function of the intestine, which
predispose to feeding intolerance and digestive disorders),
metabolic (inadequate liver development, which is essential for
the metabolism of glucose, amino-acids, proteins, lipids and
vitamins), respiratory (abnormalities in the airways and lungs,
causing impaired respiratory function), renal (compromising
homeostasis and causing hypertension) and immune disfunctions
(immune depression and high susceptibility to infection) [26–30].

At adulthood, both LGA and SGA phenotypes are affected by
different health complications, such as obesity, metabolic, and
cardiovascular pathologies [25,31–34].

The profound implications of these disorders in perinatal
survival and lifelong performance and health have boosted
research efforts. The perspective on future research is based on
three pillars: the complete understanding of the underlying
biology of the disease, the availability of contrasted biomarkers
for diagnosis, and the assessment of preventive and curative
treatments. These three keystones would allow the improvement
of both individualised healthcare and wide population strategies
focussed on diagnostic and treatment.

3. The usefulness of animal models for the screening of
adequate biomarker candidates and therapeutic targets

Biomarkers are essential tools for delineating adequacy or
inadequacy of biological processes (for allowing early and accurate
diagnosis) and the spectrum of biological effects of intervention
strategies (for developing optimal dosage and treatment strate-
gies). However, the a priori discovery of biomarker candidates in
patient populations is difficult due to the inherent high variability
of data caused by a plethora of confounding factors (including
genetic, lifestyle and socioeconomic heterogeneity, as well as co-
morbidities and their treatments, to name but a few). In addition,
research in human beings is obviously limited by ethical issues.

Hence, preclinical studies in animal models are an important
source of biomarker candidates for the systematic analysis of
pregnancy disturbances and for the efficacy and safety evaluations
of new treatments. The translation from basic research into
practice is a long, often inefficient and costly process. The choice of
appropriate animal models with adequate features is critical for
the success of translational research.

Models in experimental studies on obesity and metabolic
disorders have been traditionally based on laboratory rodents,
especially rats and mice [35–38]. The rodents need little space, are
relatively inexpensive to maintain, easy to manage, have a short
life cycle, have a sequenced genome and are easily modified by
genetic engineering. However, rodents are the election model for
studies on a concrete mechanism but there are also certain severe
limitations. The main constraints are the marked differences with
humans in cell and tissue biology, metabolic and endocrine routes,
and developmental patterns and physiology of organs and systems
[39,40]. Moreover, placentation of rodents is a very specific
evolutive strategy of these species and show large differences
when compared to humans [41]. Hence, findings in rodents are
very different from those in human patients in many diseases and
developmental areas. Different large animal species overcome
these limitations and offer numerous profitable characteristics for
the discovery and testing of biomarkers.

In brief, housing and management of large animals are well-
developed, behavioural patterns are diurnal and body size allows
application of imaging techniques and serial sampling of large
amounts of blood and tissues. Moreover, pathways regulating
appetite, energy balance and adipogenesis in large animals are
more similar to humans than in rodents. Finally, in the last years,
the genomic analysis is well-advanced and it is possible to obtain
targeted gene mutations for specific models.

The most prominent large animal model for translational
studies in nutritional and metabolic disorders is the pig [42,43]. At
the same time, the mammalian species with the highest rate of
IUGR is the swine with an average incidence of 15–20% [44,45].
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Modern swine production is mainly based on large farms (in
Europe, USA, Brazil, China and other countries in South-East Asia)
generating “value-for-money” products with optimised produc-
tivity and efficiency. Genetic, nutritional and reproductive strate-
gies are main tools in modern pig production. A main approach to
improve profitability consists of increasing the number of piglets
born per litter (prolificacy). Nevertheless, a higher litter size limits
the available uterine space for placental development and, hence,
compromises placental function and causes IUGR in some of the
littermates. In fact, highly-prolific sows are characterised by a high
number of piglets in the litter but also by a high incidence of SGA
piglets, also known as low-birth-weight (LBW) piglets [45,46].
Incidence of IUGR and LBW piglets may be also increased by
maternal nutritional deficiencies [47].

Piglets affected by IUGR have a similar health status to IUGR
infants (mainly characterised by gastrointestinal and metabolic
disfunctions) and are therefore largely used for translational
studies. Proteomics and other “-omic” techniques have been used
in the last years to empower classical studies and get a more
holistic picture of critical points like foetal homeostasis [48], and
liver [49,50] and intestinal function [49,51,52] in neonates.

Moreover studies on incidence and pre- and postnatal
consequences of IUGR and developmental programming are of
highly translational value for biomedical research, but are also
crucial in animal production; results will optimise animal health
and welfare, as well as profitability and sustainability of the
productive systems [53].

4. Processes and biomarkers of maternal and foetal metabolism

Glucose, free fatty acids (FFAs), lipids and amino acids are
essential for adequate foetal development. The foetus obtains
them mostly from maternal supply. Early pregnancy is charac-
terised by hyperphagia and increased lipogenesis, which causes fat
accumulation, whilst late pregnancy is characterised by reduced
intake but accelerated breakdown of the previously accumulated
fat depots (lipolysis; [16]). Maternal lipolysis during the last
trimester of pregnancy is important for foetal development, as it
produces FFA and glycerol, which, in the maternal liver, are
converted into triglycerides, ketone bodies and glucose that are
transferred to the foetus [54]. Hence, common biomarkers of
pregnancy and foetal development are maternal fasting blood
glucose, triglycerides, total cholesterol, VLDL-cholesterol, LDL-
cholesterol, HDL-cholesterol, and pregnancy associated protein-A
(PAPP-A) [55]. Other biomarkers may be focused on placental
transporters mediating the transfer of amino acids, glucose
(GLUTs), and fatty acids (FATPs) [56].

A good example is the foetal uptake of amino acids, which needs
to be performed through two active transporter processes. The
first, known as system A transporter (SNAT1, SNAT2 and SNAT4),
facilitates the uptake of small non-essential neutral amino acids
(e.g. alanine, glycine and serine) against their concentration
gradient by simultaneously transporting sodium into the cell
[57,58]. The second, known as system L transporter (LAT1 and
LAT2), facilitates exchange of non-essential amino acids for
essential amino acids (e.g. leucine and phenylalanine) against
their concentration gradient, independently of sodium [59].

Glucose crosses the placenta via facilitated transport, mainly by
GLU1 [60], and is generally considered to be the main energy
source for developing foetuses [61]. A certain degree of maternal
insulin resistance is a physiological state during pregnancy in order
to facilitate the supply of glucose to the feto-placental unit, which
is necessary for adequate foetal development. However, in case of
women affected by severe insulin resistance and hyperglycaemia
(either by pre-existing diabetes or pre-diabetes or by gestational
diabetes mellitus; GDM), the foetuses are exposed to high
intrauterine concentrations of glucose; their development, as a
consequence, is accelerated and the result is macrosomia. Diabetes
also alters the expression and activity of the human placental
GLUT1 glucose transporter, increasing placental glucose transport
even in the absence of maternal hyperglycaemia and contributing
to macrosomia and other consequences [62].

In the same way, cholesterol and triglycerides increase in
maternal plasma throughout pregnancy. Cholesterol is essential
for cell proliferation, tissue development and endocrine homeo-
stasis of the growing foetus, and triglycerides are a key energy
source for foetal growth and development. The FFAs taken up by
the placenta and transported to the foetus originate predominantly
from maternal non-esterified fatty acids (NEFAs) and from
esterified fatty acids contained in triglycerides (TGs) carried by
lipoproteins; the FFAs, after being oxidised in the maternal liver as
ketone-bodies, represent an alternative fuel source for the foetus.
Maternal TGs have been suggested as the primary source of fatty
acids because of their substantial increase in late gestation
compared to NEFAs [63].

Some essential fatty acids (EFA) must be obtained from food,
since humans and other mammals cannot synthesise them due to
the lack of the required desaturase enzymes. Among the EFA, two
polyunsaturated fatty acid (PUFA) are very important: alpha-
linolenic acid (ALA; with a double bond three carbon atoms, also
called omega-3 fatty acid) and linoleic acid (LA; with a double bond
six carbon atoms, also called omega-6 fatty acid). Some PUFA (LC-
PUFA) of both omega-3 (eicosapentaenoic acid = EPA and docosa-
hexaenoic acid = DHA) and omega-6 type (gamma-linolenic acid =
GLA and arachidonic acid = AA) are conditionally essential; e.g.
during pregnancy (reviewed in [64]). Mammals have a limited
ability to synthesise them and, in case of increased need during
gestation, they have to obtain them from food.

During pregnancy, maternal LC-PUFAs are transferred to the
foetus, either associated to triglycerides or, in a minor proportion,
as FFAs. Selective placental uptake of LC-PUFAs via plasma
membrane fatty acid-binding proteins results in higher LC-PUFA
concentrations in the foetal than in the maternal circulation.
During the last third of pregnancy, AA and DHA are the principal
maternal LC-PUFAs. AA determines adequate foetal growth and
development but also postnatal metabolism, while DHA is
indispensable for the development of the central nervous system
and essential for cognitive and visual functions. Both DHA and EPA
are important for immune functions. Adequate LC-PUFA supply is
also necessary during early postnatal development (i.e. during
lactation, [65]).

In case of pregnancies affected by obesity and/or metabolic
disorders causing hyperlipidaemia, and usually dyslipidaemia, the
foetuses are exposed to high intrauterine concentrations of FFAs
and lipids, which also induce accelerated foetal development.
During recent years, dietary supplementation of obese pregnant
women with PUFAs, mainly omega-3, principally if they develop
any component of metabolic syndrome or its complications, has
increased in popularity [64,66].

However, the benefit-to-risk ratio of increasing PUFAs intake
during pregnancy has not been completely established. It is known
that excessive dietary PUFA may – especially in pregnancies with
metabolic syndrome or diabetes – have inhibitory effects on
desaturase and elongase enzymes, lowering the synthesis of LC-
PUFA. Excess dietary PUFAs may also enhance peroxidation and
may reduce antioxidant capacity, impairing foetal homeostasis
(reviewed in Ref. [66]). Furthermore, the information on the
adaptation in placental LC-PUFA metabolism in response to
metabolic syndrome is limited and contradictory. Nevertheless,
due to the increasing prevalence of nutrition-related diseases
(obesity, metabolic syndrome and diabetes), dietary supplemen-
tation with PUFA is more widely used, although the risks may
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exceed the benefits since the assessment is still scarce. This is
therefore a good example of the need for preclinical studies in
animal models and, in this sense, lipids metabolism in pregnant
females and foetuses are very similar in humans and pigs [67]. The
occurrence of disorders like dyslipidemia strongly modifies
availability and metabolism of lipids at the fetoplacental unit
[68], affecting viability and developmental trajectory of the
conceptuses [69].

5. Processes and biomarkers of feto-placental development and
IUGR

The adequate supply of nutrients and oxygen to the foetus
depends on adequate maternal availability but also on adequate
placental transfer. Hence, foetal development depends on efficient
placental function. Placental efficiency is primarily determined by
its ample development (adequate interdigitation of placenta and
endometrium to increase exchange surface, vascular dilation and
angiogenesis; [45]), which favours blood flow and exchange of
nutrients and oxygen with the conceptus.

Placental insufficiency is currently considered a main factor for
pregnancy complications, as described previously [18]. In case of
impaired placental function, several placental-secreted proteins,
hormones, mRNAs and miRNAs molecules crossing the maternal-
foetal barrier may be used as specific biomarkers since they are
measurable in the maternal circulation [70–72].

In normal pregnancies, vascular dilation and neoangiogenesis
are signalled by proangiogenic factors secreted by the placenta
(placental growth factor, PlGF, and vascular endothelial growth
factor, VEGF). Vasodilatation and angiogenesis are primarily
driven by nitric oxide (NO) and its endothelial constitutive
synthase (eNOS or NOS3) which can be found both at the
trophoblast, the cells that adhere to and penetrate the uterine
endometrium at implantation, and at the extravillous tropho-
blast, inducing vasodilatation and angiogenesis in maternal cells
during the implantation process [73–75]. During the post-
implantation period and early placental development, NO and
NOS3 are hypothesised to be involved in tissue remodelling,
immunosuppression, and vasoregulation [76]. In consequence, a
decreased NO bioavailability is recognised to be involved in the
pathogenesis of IUGR [77]. Concomitantly, imbalances in the
levels of angiogenic regulators, which cause insufficient placental
and foetal blood-flow, compromise the supply of oxygen.
Insufficient supply of oxygen causes hypoxia and oxidative stress
at the feto-placental unit [78]. These facts are also predisposing
for cardiovascular disorders at juvenile and adult stages. Overall,
these considerations highlight the necessity of adequate bio-
markers.

Among the different candidate biomarkers, different authors
are addressing the usefulness of asymmetric dimethylarginine
(ADMA), an endogenous amino acid derived from proteolytic
breakdown of arginine-methylated proteins [79], which by
competition with arginine, the substrate of NOS, antagonises the
production of NO. ADMA is used in adult individuals with
cardiovascular risk and, currently, is being proposed a reliable
marker to identify both SGA and LGA subjects at higher risk of
health disturbances [80].

This knowledge also provides specific therapeutic targets. There
are several amino acids which are precursors of NO; not only
arginine but also ornithine, leucine, glutamine, and proline. These
amino acids also regulate synthesis of polyamines and proteins;
thus, besides favouring placental development and nutrient
transfer, also support conceptus development. The results
obtained under experimental conditions in swine suggest that
amino acids supplementation may be a promising strategy to
reduce the incidence of IUGR offspring [81–84], although some of
the findings have been conflicting and make necessary further
specific studies.

It is well-known that IUGR foetuses are able to modify their
metabolic regulation in order to ensure a better use of the scarce
nutrients that they have. The mechanism is based on displaying
insulin resistance, which allows them to take advantage of the scarce
supplyofglucose thattheyarereceiving.However, ontheotherhand,
high levels of insulin increase the synthesis of NO inhibitors [85],
prejudicing utero-placental blood-flow [86] and reducing the supply
of oxygen and nutrients to the foetuses. In fact, IUGR foetuses have a
state of low-grade inflammation affecting immune cell proliferation
and serum cytokines, as well as an increased susceptibility to
infection [87]. In consequence, the use of markers of systemic
inflammation, like tumour necrosis factor a (TNFa) and interleukin-
6 (IL-6), is also a promising field of study [88].

6. Concluding remarks

The intense research on the causes and mechanisms implicated
in the current epidemics of obesity and associated non-communi-
cable disorders has addressed the substantial role of environmen-
tal, parental, prenatal and early-postnatal conditions in the
development of disease. The individuals, during prenatal and
early postnatal development, undertake epigenetic changes in the
structure and function of some of their organs and systems. These
changes may lead to metabolic disorders at juvenile period and
adulthood and may be transferred to subsequent generations by
transgenerational inheritance.

The perspective on future research is based on three pillars: the
complete understanding of these processes, the availability of
contrasted biomarkers for diagnosis and the assessment of
preventive and curative treatments. Such research makes neces-
sary interventional procedures, either to affect foetal development
and metabolism or to sample the feto-placental unit, which cannot
be conducted in humans because of ethical issues.

Hence, preclinical studies in animal models are an important
source of biomarker candidates that can be useful for the
systematic analysis of pregnancy disturbances and for the efficacy
and safety evaluation of new treatments. However, the results need
to be translational; hence, the studies have to be performed in
adequate animal models. Rodents are the species of election for
basic research, but the translational value of large animal models is
becoming increasingly recognised in the last years. Further work is
however needed to increase the awareness of researchers and
medical doctors on the amenability of large animal models.
Moreover, the use of large animals implies ethical issues and social
repudiation, such that active explanation and promoting of ethical
experimentation to the society need to be undertaken.
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