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Summary

Objective: To describe the topography and to measure thicknesses, surface areas and volumes in the cartilage layers of the ankle.

Methods: Twelve cadaveric ankle joints were disarticulated and the cartilage surfaces of each bone were imaged with a highly accurate
(+2 um) stereophotography system (ATOS™). The cartilage was then dissolved and the subchondral bone imaged. The geometric data
were then used to measure the quantitative parameters in each cartilage layer.

Results: The mean cartilage volume across the 12 specimens ranged from 0.32 & 0.08 ml for the fibula to 2.44 + 0.48 ml for the talus. The
mean thickness of both the talar (1.1 £0.18 mm) and tibial (1.16 +£0.14 mm) cartilage was significantly thicker than the fibula
(0.85 +0.13 mm). The talus had the greatest mean maximum cartilage thickness (2.38 + 0.4 mm).

Conclusions: The reported stereophotographic technique may be used as an independent gold standard for validation of the accuracy of quan-
titative cartilage measurements made using magnetic resonance imaging. The thickness distribution maps show that the thickest articular car-
tilage occurs over the talar shoulders where osteochondral lesions commonly occur and notin the centre of the talar dome as commonly believed.
© 2006 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction A variety of methods have been used to measure the thick-
L . ness of cartilage in different joints both in vitro and in vivo with
Accurate quantitative descriptions of the surface geometry varying accuracy; in vitro methods include: anatomical sec-
of articular joints are essential for validating the accuracy tions®; needle probe measurements’; stereophotographic
of measurements made using advanced 3-D magnetic res- techniques® and A-mode ultrasound®'°. In vivo methods
onance imaging (MRI) techniques and the development of for measuring cartilage thickness include: X-ray measure-
computational models. _ . _ ments'""'2; computer tomography sections'®; and MRI>'4,
In order to characterise the mechanical properties of a di- In vitro techniques require disarticulation of the joint and/or
arthrodial joint, accurate measurements of the articular car- may alter the thickness due to deformation during contact.
tilage thickness and the variation in thickness across the Several of the in vivo techniques use indirect methods to
surface of .the joint are required. It is glso essent'lal to make measurements of cartilage thickness e.g., X-ray and
have baseline measurements of quantitative geometric pa- contrast-enhanced computer tomography (CT).
rameters of cartilage, such as thickness and volume in Early studies in this area were limited to using 2-D tech-
healthy joints, if we are to use non-invasive imaging-based niques such as anatomical sections and plain radiographs,
b!omarke1rs to monitor the progression of degenerative joint failing to account for out-of-plane surface curvature of the
diseases’, such as osteoarthritis. =~ , ) joint. The resulting oblique measurements tend to over-es-
Most previous investigations of articular cartilage thick- timate the thickness of the cartilage layer. More recent stud-
ness have dealt with the knee. There have been relatively ies using advanced 3-D reconstruction techniques allowed
few studies of the ankle and other joints possessing thinner precise thickness measurements to be made perpendicular
articular cartilage layers™ ™. to the joint surface, hence accommodating curvature in all

directions and giving true thickness measurements at an
increased number of points.
Ateshian et al® developed an analytical stereophoto-
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technique was a non-contact method which allowed precise
measurements (+90 um). Unfortunately the process was
slow, labour intensive and allowed only a discrete number
of points to be digitised; furthermore, it was not possible
to reconstruct the entire joint surface from one data set,
as the cameras and specimen were fixed in one position.

MRI is becoming more widely available and offers many
benefits over other methods for measuring articular surface
geometry. Using modern segmentation algorithms and 3-D
reconstruction techniques, MRI can be used to longitudinally
measure changes in parameters such as cartilage thickness
and volume, in vivo. Initial research along these lines has fo-
cused on the knee joint'*~°, which has the thickest cartilage
in the body and is relatively easy to segment, as it does not
have large congruent areas. However, attempts to utilise
MRI for quantitative measurements of the cartilage layers of
the ankle have been limited by the achievable image resolu-
tion and the techniques for detecting cartilage boundaries®°.
With the exception of the efforts of Eckstein and co-workers,
there have been few attempts to establish the accuracy of
MRI measurements of cartilage specifically in thin congruent
cartilage layers® . Moreover, the accuracy of MRI-based
quantitative measurements in thin congruent cartilage
layers has not been validated against an independent gold
standard.

The objectives of this study were first, to describe a high
resolution stereophotographic technique for quantifying the
thin cartilage layers of the ankle joint, providing a method to
validate other techniques; second, to describe the topo-
graphical variation of ankle joint articular cartilage; and
finally, to provide baseline measurements of quantitative
parameters of ankle cartilage in joints with no visual signs
of degeneration or cartilage defects.

Materials and methods

Twelve fresh frozen foot and ankle specimens were har-
vested from 12 male cadavers, with a mean age of 61.5
years (range 51—75 years). All specimens were acquired
in accordance with state and federal laws. Ethical approval
for the study was provided by the University of Virginia Insti-
tutional Review Board and human usage review panel.
From the available medical histories there were no reports
of trauma to the lower limbs or musculoskeletal disease in
the ankle(s) of the subjects.

The specimens were stored at —25°C. Prior to testing,
each specimen was allowed to thaw at room temperature
for 24 h. After thawing, the ankle joints were disarticulated,

and soft tissues were removed from around the tibia—fibula
complex and the talus, leaving the syndesmosis intact.
Each specimen was visually examined by an orthopaedic
surgeon and stained using the India ink technique to assess
for cartilage surface lesions and degeneration. No cartilage
lesions were seen in any of the specimens tested, minor lo-
calised surface fibrillation was seen in two ankles, which is
in keeping with the findings of Meachim?' in autopsy spec-
imens. The bones were then potted in custom potting cups
using a fast-setting resin (R1 Fastcast, Goldenwest
Manufacturing Inc., CA, USA) taking care to ensure that
the articular surface was above the level of the potting ma-
terial (Fig. 1). The talus was elevated above the potting ma-
terial by inserting three screws into the inferior surface of
the talus, leaving part of the screw shafts projecting into
the potting material so that the screws became rigidly em-
bedded into the resin and fixed the talus in position. During
preparation the specimens were kept hydrated with phos-
phate buffered saline containing protease inhibitor (Sig-
ma—Aldrich, USA). The potting cups incorporated a flange
at their rim with photo targets fixed to it, the rigid fixation
of the specimen ensured that there was no motion of the
specimen relative to these targets (Fig. 1).

The Stereophotogrammetric system (Advanced TOpo-
metric System — ATOS Il SO, Capture 3-d, CA, USA)
consists of two high resolution CCD cameras, a fringe
pattern projector and digital image processing software.
The ATOS system has a measurement noise (accuracy)
of +2 pm and a point spacing of 0.03 mm (http://www.gom.-
com/EN/measuring.systems/atos/system/variations). The
system functions by projecting a fringe pattern onto the
specimen and the fixed photo targets; the system then
uses triangulation and digital image post processing to as-
sign 3-D coordinates to each pixel, thereby generating
a dense point cloud. By combining multiple point clouds
taken from different views, a full detailed 3-D model of
each surface can be generated, typically yielding on the or-
der of 70,000 points for each cartilage or bone surface. In
order to improve image contrast and optimise the perfor-
mance of the ATOS system a fine coating of white powder
was sprayed onto the surface being imaged.

Each cartilage surface was imaged, and the point cloud
data were saved to disk. The articular cartilage was then
dissolved by submerging the specimen in a 5% sodium hy-
pochlorite solution for 6—8 h to reveal the intact subchon-
dral bone®. During this process the specimen was not
allowed to move relative to the photo targets due to the rigid
fixation. After removal from the 5% sodium hypochlorite the
specimen was again visually examined by an orthopaedic

Fig. 1. A potted tibia—fibula complex and a talus specimen are shown in this picture. The articular surface of the talus has been prepared with
a fine white power to improve image contrast and optimise the performance of the ATOS system. Black and white photo targets are fixed to the
flange on the potting cup.
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surgeon to ensure that all the cartilage had been removed.
The imaging process was then repeated for the subchon-
dral bone surfaces. Finally, the common photo targets
were defined and used to spatially register the cartilage
and subchondral bone surfaces together using software in-
corporated in the ATOS system which performs a rigid body
rotation and transformation of the cartilage surface onto the
bone.

POST PROCESSING TECHNIQUE

Cartilage thickness was measured by performing an
octree-based search for every point on the cartilage sur-
face to find its nearest neighbour on the corresponding
bone surface. This is a reasonable approximation since
the average distance between adjacent points on any sur-
face is small, typically less than 40 um. However, care had
to be taken at the edges of the surfaces because although
the cartilage and bone surfaces were registered to each
other, their borders did not necessarily match identically,
since the surfaces were imaged independently. If the
boundary of one of the meshes were to extend beyond

the other, as depicted in Fig. 2(a), an incorrectly large
thickness would be reported for the extended part of the
surface. These offending regions were identified by
inspecting a triangle T=(v4,v»,v3) on M and the nearest
neighbours v/ of v; (i=1...3) on M, see Fig. 2(a), (vs is
not shown in this 2-D sketch). If all v/, i=1...8, lie on
the boundary of M, triangle T is discarded, steps 1 and
2 in Fig. 2(a). Additionally, in some specimens small
amounts of periarticular tissue, e.g., fat, joint capsule
and/or ligamentous tissue, which could not be completely
removed caused artefacts, making the cartilage layer ap-
pear thicker along parts of the boundary [Fig. 2(b)]. There-
fore, any extraneous parts at the periphery had to be
identified post hoc and repaired. To alleviate this problem,
we define a maximum thickness d, and shrink both
meshes M and M until the distance between them is not
larger than dy anywhere at the boundary.

The final step was to ‘“stitch” the cartilage and bone
meshes together to form a closed volume. Note that these
corrective procedures had no impact on the more central
portions of the surface models, as they only occur at the

periphery.

(a) different mesh extents

cartilage

Fig. 2. Schematic of the corrective post processing procedure. (a) Different mesh extents. (b) Diverging meshes. Step 1, removal of non-cor-
responding regions; step 2, for each vertex on the cartilage surface the nearest neighbour on the bone surface is found; step 3, the edges of
the meshes are “stitched” together.
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The processed triangulated meshes for each cartilage
layer were used to measure the cartilage surface areas
and the bone cartilage interface (BCI) areas. The cartilage
volumes were determined from the closed polyhedra
formed by the combined cartilage and bone meshes. In ad-
dition, the coefficient of variation was calculated for each
cartilage layer in order to provide a description of the varia-
tion of thickness within a cartilage layer.

Quantitative parameters were statistically analysed for
differences between the talar, tibial and fibula layers using
an ANOVA with a post hoc Tukey test, P < 0.05 was con-
sidered significant.

Results

Precise 3-D geometric models and thickness distribution
maps were generated for each articular cartilage layer, pro-
viding complete geometric data including the highly curved
regions and the peripheries of the surfaces. Representative
examples of the 3-D thickness distribution maps are shown
in Figs. 3—5. The 3-D models faithfully reproduce the sellar
shape of the talus and the concavity of the distal tibial sur-
face, and the thickness distribution maps reveal several
characteristic patterns. The talus maps displayed two dis-
tinct areas over the talar shoulders, one anterior-laterally
and one posterior-medially, where the thickest cartilage oc-
curred (Fig. 3). The tibial cartilage thickness was more
evenly distributed; however, the thickest cartilage typically
occurred in two areas; the central part of the anterior tibial
plafond and the curved region at the transition between
the tibial plafond and the medial malleolus (Fig. 4). The fib-
ula showed a characteristic valgus angulation of the distal
articular surface and had the most homogeneous cartilage
thickness of the ankle cartilage layers (Fig. 5).

The articular cartilage thickness was measured at every
point on the articular cartilage surface; the mean number
of measurements per surface was 73,236. The mean and
standard deviations (across the 12 specimens) of spatial
mean thickness, maximum thickness, cartilage surface
area, BCI area and volume are shown in Table I.

There was no significant difference between the mean ar-
ticular cartilage thickness of talar and tibial cartilage layers.
The talar (P < 0.01) and the tibial cartilage (P < 0.001) spa-
tial mean thickness values were significantly greater than
the fibula cartilage. For maximum cartilage thickness the
only significant difference was between the talus and the
fibula (P < 0.05).

Cartilage surface area and BCl area measurements
showed clear significant differences. The talus had a
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significantly larger surface area than both the tibia
(P < 0.001) and the fibula (P < 0.001). Even when the tibia
and fibula were combined, representing the superior half of
the ankle joint, the talus had a significantly larger surface
area (P < 0.001).

The talar cartilage volume was also significantly greater
than the combined tibia—fibula cartilage volume
(P < 0.001) and the tibia had a significantly greater volume
than the fibula (P < 0001). This is a clear reflection of the
larger area covered by articular cartilage on the talus com-
pared with the tibia and fibula.

As an assessment of the homogeneity/inhomogeneity of
the cartilage thickness across the joint surface the coeffi-
cient of variation was calculated for the superior part of
the joint (the tibia—fibula complex) and the inferior part of
joint (the talus). The coefficients of variation were very sim-
ilar for both halves of the joint, 30.21% over the tibia—fibula
complex cartilage and 30.54% over the talar cartilage.

Discussion

In this study we have described a highly accurate tech-
nique for generating 3-D geometric models and making
quantitative measurements in thin cartilage layers, based
on a commercially available stereophotography system,
ATOS™. The system allows rapid acquisition and process-
ing of large volumes of geometric data with a measurement
noise (accuracy) of £2 um. The versatility and accuracy of
the technique have enabled us to study geometrical param-
eters of thin highly curved cartilage layers to a level of detail
that has not been previously possible.

Our results show that the spatial mean cartilage thickness
ranged from 0.85 + 0.13 mm in the fibula to 1.16 + 0.14 mm
in the tibia, and maximum thickness ranged from
2.06 +0.08 mm in the fibula to 2.38 + 0.4 mm in the talus.
The coefficients of variation show that ankle cartilage thick-
ness has a relatively consistent level of homogeneity
throughout the joint; the values are lower than those re-
ported in the knee joint®, but consistent with results reported
in the ankle joint®.

A variety of techniques have been used previously to
measure ankle cartilage thickness in the ankle. Using the
in vitro needle force probe technique”??, mean cartilage
thickness values have been reported as 1.22 mm and
1.16 mm for the talus, 1.18 mm and 1.35 mm for the tibia
and 0.95 mm for the fibula. Using A-mode ultrasound in
an in vitro study the reported mean thickness values were
lower; 0.95 mm and 1.0 mm for the talus and tibia, respec-
tively. In an MRI-based study of volunteers® the mean

h‘.' -. POST
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Fig. 3. Representative 3-D thickness distribution maps of the talar articular cartilage layer, viewed from the lateral (left) and medial aspects
(right) of a right talus.
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Fig. 4. Representative 3-D thickness distribution maps of the tibial articular cartilage layer, viewed from the inferior aspect of a right tibia.

cartilage thickness was at the lower limit of values reported
in the literature; 0.89 mm and 0.82 mm in the talus and the
tibia, respectively.

Unfortunately each of the above techniques has limita-
tions. The needle probe technique can only be used at
a number of discrete points over the surface and ruptures
the surface limiting the usefulness of further testing. Fur-
thermore, Jurvelin et al.'® previously reported the change
in force signal was not very sharp and a subjective evalua-
tion was required when using a needle probe. The accuracy
of ultrasound measurements is dependent on the assump-
tion that sound travels at a uniform speed through all layers
of the articular cartilage. However, previous studies'®23
have shown considerable variation in the velocity, espe-
cially in thin cartilage layers, which may help to explain
the lower mean values seen with ultrasonic measurements.

MRI can avoid many of these limitations, allowing mea-
surements at every voxel and calculation of surface areas
and volumes. Unfortunately, the earlier MRI study® ex-
cluded the talar shoulders and malleolar facets as well as
the tibial medial malleolar and fibular surfaces, because
non-isotropic sagittally acquired data were used. Therefore,
a direct comparison of volume and surface area measure-
ments with the current study is not possible.

Fig. 5. A representative 3-D thickness distribution map of the fibula
articular cartilage layer, viewed from the anterior aspect of a left
fibula.

During the disarticulation and potting the specimens were
kept hydrated with phosphate buffered saline which theoret-
ically may result in some swelling of the articular cartilage;
however, if the cartilage was left untreated it would poten-
tially become dehydrated by exposure to the atmosphere
and the surface preparation. The relatively short preparation
time and the rapid data acquisition process for the cartilage
surface by the ATOS™ system helped to minimise these ef-
fects; therefore, we believe that the results of the present
study realistically represent the thickness of the cartilage
in the in vivo state.

Although the reported stereophotography technique is
destructive to articular cartilage, and thus can only be per-
formed in vitro it is still a very useful technique as it provides
an independent gold standard for validating the accuracy of
other measurement techniques, such as MRI'*, which may
also be used for in vivo studies.

In the talus the thickness distribution maps indicate the
thickest cartilage region occurs anterior-laterally and poste-
rior-medially over the shoulders of the talus. Earlier studies,
unable to assess the highly curved regions of the joint sur-
faces, reported the thickest cartilage to occur in the central
region of the talar dome”®22. Qur findings are in keeping
with those of Muller-Gerbl and Putz>* who described find-
ings from anatomical sections. The results of this study
clearly show that the regions of greatest thickness on the ta-
lus correspond to the most common site of Osteochondritis
dissecans (OCD) lesions in the ankle?®. Furthermore, the
thick cartilage over the anterior border of the tibia corre-
sponds to cartilage injury sites seen in dorsiflexion testing®®.
It is also interesting to note that the regions of greatest car-
tilage thickness in the ankle joint correspond to regions on
the talus and tibia where the subchondral bone is most
dense®*. These finding may be a response to the prevailing
mechanical conditions occurring in the ankle joint.

Understanding the behaviour of ankle articular cartilage
requires a true understanding of the 3-D anatomy, including

Table |
Mean values (£S.D.) for each of the quantitative parameters mea-
sured from 12 ankle specimens

N=12 Talus Tibia Fibula

1.10+0.18 1.16+0.14 0.85+0.13
2.38+0.4 2.18+0.19 2.06+0.08
21.56+2.14 1345+1.28 4.30+£0.79

Mean thickness (mm)
Max thickness (mm)
Cartilage surface

area (mm?)
BCI area (mm?) 236+1.67 1257+079 3.67+0.63
Volume (ml) 2.44+0.48 1.50+0.28 0.32+0.08
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the distribution of cartilage thickness across the joint sur-
face. Additionally, biomechanical knowledge of the cartilage
stiffness distribution across the joint surface is important. As
the results of this study show that the thickest cartilage
occurs where cartilage injuries are most commonly seen,
future studies of the cartilage mechanical properties in
these regions will be of significant interest.

Changes in quantitative geometric parameters have been
suggested as potentially sensitive measures of degenera-
tive change in cartilage layers'?’. The described stereo-
photography technique offers the possibility to validate
MRI derived measurement for surface areas and volumes,
in addition to thickness in thin cartilage layers. Validated
MRI techniques offer a powerful tool for detecting and mon-
itoring cartilage injury and degenerative change.

The geometric data generated using this technique can
be used as input to finite element (FE) computational
models. As a result the geometric database created from
this study may be used to generate a representative geom-
etry of the ankle joint and its cartilage layers®®. FE models
based on representative geometry can be of significant ben-
efit for stress and strain analyses®® and to aid development
of improved ankle prostheses®.

Conclusions

We have reported a highly accurate technique for acquir-
ing geometric data and making quantitative measurements
of thin articular cartilage layers. The reported stereophoto-
graphic technique may be used as an independent gold
standard for validation of the accuracy of in vivo measure-
ments in thin cartilage layers using MRI. Furthermore, the
3-D geometric ankle cartilage data will help to produce
more realistic computational models for biomechanical
analysis. Finally, the thickness distribution maps produced
show that the thickest articular cartilage in the ankle occurs
at the clinically relevant regions where cartilage lesions
most commonly occur?®.
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