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a b s t r a c t

The fuzzy linear regression model has been a useful tool for analyzing relationships
between a set of variables in a fuzzy environment and has been extensively studied in
the literature. However, this model may fail to reflect the more complicated regression
relationships that are usually found in practice because of its simple and predefined linear
structure. In order to enhance the feasibility and adaptability of the fuzzy linear models,
we propose in this paper a fuzzy varying coefficient model in which the fuzzy coefficients
in the fuzzy linearmodels are allowed to vary with a covariate. A restrictedweighted least-
squares estimation is suggested for locally fitting themodel. Furthermore, some real-world
datasets are analyzed in order to evaluate the performance of the proposedmethod, and the
results show that the proposedmodel with its estimation approach performs satisfactorily
in predicting the fuzzy response even in the case where the regression relationship is
complicated.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Regression analysis is amethodology commonly used for analyzing the relationship between a response variable and a set
of explanatory variables. In the conventional regression analysis, the associated uncertainty is randomness and observations
of both the response variable and the explanatory variables are assumed to be crisp values. This kind of regression analysis
has been well developed in the framework of probability theory and statistics. In practice, however, we are frequently
faced with another type of uncertainty, of vagueness or fuzziness. Specifically, observations of some variables cannot be
collected precisely, especially when the data are influenced by subjective judgment or expressed linguistically. Therefore, it
is necessary to develop some methods for performing regression analysis in a fuzzy environment.
On the basis of Zadeh’s fuzzy theory [1], Tanaka et al. [2] were the first to develop themethod of fuzzy regression analysis.

Since then, many approaches have been proposed in the literature of fuzzy regression. Roughly speaking, these approaches
can be classified into two categories. One is the mathematical programming based methods in which the total spread of the
fuzzy parameters is minimized under some constraints to calibrate the fuzzy regression models (see, for example, [2–6]).
The other is the fuzzy least-squares based methods that minimize the total square of the deviations between the observed
and estimated values of the response to estimate the fuzzy parameters (see, for example, [7–14]). The fuzzy least-squares
based methods are appealing because they can be implemented in the framework of traditional least-squares regression.
Most of the existing research on fuzzy regression analysis has focused on the fuzzy parametric models, especially on the

fuzzy linear regression model. In many real-world situations, however, the functional relationship between the response
variable and explanatory variables is difficult to predefine. If a preassumed parametric model does not follow the data
generation mechanism well, a large estimation bias will be obtained. To overcome this problem, some model-free fuzzy
regressionmethods have beendeveloped, ofwhich themost popular ones are perhaps the fuzzified neural networks [15–19],
the support vector fuzzy regression machines [20–26] and some fuzzy nonparametric regression approaches [27,28]. These
methods make fewer assumptions on the regression function and thus are more flexible in exploring hidden structures of
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the regression relationships. However, they may fail to incorporate some prior information if available and suffer from the
so-called curse of dimensionalitywhichmakes the analysis practically invalidwhen the number of the explanatory variables
is large.
Ideally, a regression model with the simplicity of linear models and the flexibility of nonparametric models may be

preferred. Along this line of thinking, we propose in this paper a fuzzy varying coefficient regression model with the
explanatory variables being crisp and the response being assumed to be a symmetric fuzzy number. In the model, the
basic structure of a linear fuzzy regression model is retained, but the regression coefficients are allowed to vary as some
unknown fuzzy functions of a covariate. These varying coefficients can greatly increase model flexibility and adaptability
while the local linear structure connecting the explanatory variables and the response can effectively avoid the curse of
dimensionality encountered in fuzzy nonparametric models. In order to overcome the shortcoming that some least-squares
based methods cannot guarantee automatically the non-negativity of the estimated spreads of the fuzzy coefficients (see,
for example, [11,28–30]), we suggest a restricted weighted least-squares procedure for locally fitting the proposed fuzzy
varying coefficient model. Some real-world datasets are further analyzed with the proposed model fitting method in order
to evaluate its performance.
The remainder of this paper is organized as follows. In Section 2, the fuzzy varying coefficient model is proposed and the

restricted weighted least-squares procedure is suggested for fitting the model. Three real-world datasets are analyzed in
Section 3 with the proposed method and the results are compared with some other existing fuzzy regression methods. The
paper is then ended with some final remarks.

2. The fuzzy varying coefficient model and its restricted weighted least-squares estimation

2.1. The fuzzy varying coefficient model

We introduce in this subsection the fuzzy varying coefficient model used to describe a regression problem where the
explanatory variables are crisp and the response is a symmetric fuzzy number.
A fuzzy number Ã is a fuzzy subset of the real line R with its membership function µÃ(x) satisfying the following

conditions:

(i) for any α ∈ (0, 1), the α-level set of µÃ(x) is a closed interval;
(ii) there exists an x ∈ R such that µÃ(x) = 1;
(iii) for any λ ∈ [0, 1] and x1, x2 ∈ R,µÃ(λx1+ (1−λ)x2) ≥ min(µÃ(x1), µÃ(x2)). In particular, a fuzzy number Ãwith the

following membership function:

µÃ(x) =

L
(
|A− x|
S

)
, A− S ≤ x ≤ A+ S;

0, elsewhere
(1)

is called a symmetric fuzzy number and is usually denoted by (A, S)L, where A and S are the center and spread of Ã
respectively and L(·) is a strictly decreasing function on [0, 1]with L(0) = 1 and L(1) = 0. The choice of L(·) is generally
dependent upon subjective judgment.

Let X1, X2, . . . , Xp and U be crisp explanatory variables and Ỹ = (Y , S)L be the symmetric fuzzy response with center Y
and spread S. We propose a fuzzy varying coefficient model:

Ỹ = β̃1(U)X1 + β̃2(U)X2 + · · · + β̃p(U)Xp. (2)

In the model, β̃j(U) =
(
βj(U), σj(U)

)
L is assumed to be a symmetric fuzzy number with its center βj(U) and spread σj(U)

being unknown functions ofU for each j = 1, 2, . . . , p. The operations in the fuzzy regression function β̃1(U)X1+β̃2(U)X2+
· · · + β̃p(U)Xp are according to Zedeh’s extension principle [31], in which it is assumed, without loss of generality, that all
of the explanatory variables take non-negative values (otherwise, an appropriate transformation can be performed to make
this assumption valid). Generally, we take X1 ≡ 1 to make the model include a fuzzy varying intercept.
Suppose that {ỹi = (yi, si)L; ui, xi1, xi2, . . . , xip; i = 1, 2, . . . , n} are n observations of the symmetric fuzzy response Ỹ

and the crisp explanatory variables X1, X2, . . . , Xp and U . The sample form of the model (2) is

ỹi = β̃1(ui)xi1 + β̃2(ui)xi2 + · · · + β̃p(ui)xip, i = 1, 2, . . . , n, (3)

or {
yi = β1(ui)xi1 + β2(ui)xi2 + · · · + βp(ui)xip;
si = σ1(ui)xi1 + σ2(ui)xi2 + · · · + σp(ui)xip,

i = 1, 2, . . . , n. (4)

The main task of fitting the model is to estimate the fuzzy regression coefficients β̃j(U) (j = 1, 2, . . . , p) at any U = u0 on
the basis of the observations.
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The fuzzy varying coefficientmodel is an extension of the fuzzy linear regressionmodel, by allowing the fuzzy regression
coefficients to be dependent upon another explanatory variable U to increase the flexibility and adaptability of the fuzzy
linearmodel. Therefore, it is possible to expect a less biased estimate of the response variable. Additionally, as the regression
coefficients in model (2) are one-dimensional, the curse of dimensionality problem can be avoided.
From the practical point of view, one of themost important applications of the fuzzy varying coefficientmodel is perhaps

in exploring a dynamic relationship between a fuzzy variable and a set of crisp covariates by taking the values of U in
the regression coefficients to be the time points where the observations of Ỹ and X1, X2, . . . , Xp are made. In many real-
world problems from econometrics, finance, epidemiology, environmental science and so on, fitting this kind of dynamic
relationship is especially helpful for understanding how the association between the response and explanatory variables
varies over time.

2.2. The restricted weighted least-squares estimation of the fuzzy varying coefficient model

Before embarking on calibrating the fuzzy varying coefficientmodel, we briefly introduce the distance from [32] that will
be used to formulate the estimation equations of the fuzzy varying coefficient model.
Let Ã and B̃ be two fuzzy numbers. Xu [32] proposed a distance between Ã and B̃ as

d2(Ã, B̃) =
∫ 1

0
f (λ)d̄2(Aλ, Bλ)dλ, (5)

where f (λ) is an increasing function on [0, 1] satisfying f (0) = 0 and
∫ 1
0 f (λ)dλ = 1/2, Aλ = [a1(λ), a2(λ)] and Bλ =

[b1(λ), b2(λ)] are λ-level sets of Ã and B̃ respectively and

d̄2(Aλ, Bλ) = [a1(λ)− b1(λ)]2 + [a2(λ)− b2(λ)]2.

As pointed out in [32], this distance incorporates, through the λ-level sets Aλ and Bλ, the information of the membership
functions of fuzzy numbers Ã and B̃. Furthermore, the degree of nearness of and overlap between the λ-level sets Aλ and
Bλ, measured by d̄2(Aλ, Bλ), is weighted by the monotonically increasing function f (λ) to emphasize the contribution of the
higher values of λ to the distance between Ã and B̃.
In particular, when Ã = (A, SA)L and B̃ = (B, SB)L are two symmetric fuzzy numbers, the λ-level sets of Ã and B̃ are

respectively

Aλ = [A− L−1(λ)SA, A+ L−1(λ)SA] and Bλ = [B− L−1(λ)SB, B+ L−1(λ)SB],

where L−1(λ) is the inverse function of L(λ). Therefore

d̄2(Aλ, Bλ) = 2(A− B)2 + 2(L−1(λ))2(SA − SB)2

and the distance (5) becomes

d2(Ã, B̃) = (A− B)2 +4(L, f )(SA − SB)2, (6)

where 4(L, f ) = 2
∫ 1
0 f (λ)(L

−1(λ))2dλ. Furthermore, when Ã and B̃ are symmetric triangular fuzzy numbers (that is,
L(t) = 1− t 0 ≤ t ≤ 1) and f (λ) = λ, we have4(L, f ) = 1/6.
In consideration of the advantages of Xu’s distance and its simple form for the symmetric fuzzy numbers, the distance in

(6) is used henceforth to formulate the objective function with the restrictions that the spreads of the fuzzy coefficients are
non-negative for calibrating the fuzzy varying coefficient model.
Suppose that the domain of variable U isU and u0 is a given point inU . On the basis of the distance (6) and the principle

of the kernel smoothing in statistics, we formulate the following restricted weighted least-squares problem. That is, the
objective function is

Ψ
(
β1(u0), . . . , βp(u0); σ1(u0), . . . , σp(u0)

)
=

n∑
i=1

d2
(
(yi, si)L,

(
p∑
j=1

βj(u0)xij,
p∑
j=1

σj(u0)xij

)
L

)
Kh(ui − u0)

=

n∑
i=1

(yi − p∑
j=1

βj(u0)xij

)2
+4(L, f )

(
si −

p∑
j=1

σj(u0)xij

)2 Kh(ui − u0)
=

n∑
i=1

(
yi −

p∑
j=1

βj(u0)xij

)2
Kh(ui − u0)+4(L, f )

n∑
i=1

(
si −

p∑
j=1

σj(u0)xij

)2
Kh(ui − u0)

subject to σj(u0) ≥ 0, j = 1, 2, . . . , p.

(7)

And it is minimizedwith respect to {βj(u0), σj(u0), j = 1, 2, . . . , p}, where Kh(·) = K(·/h)/h, with K(·) being a given kernel
function and h being the smoothing parameter.
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It can be observed that the objective function in Eq. (7) is a summation of two separate parts in which each part includes
a different group of unknown parameters, that is, {βj(u0), j = 1, 2, . . . , p} and {σj(u0), j = 1, 2, . . . , p}, and the factor
4(L, f ) is independent of the unknown parameters. Therefore, the restricted weighted least-squares problem is equivalent
to minimizing the following two equations:

n∑
i=1

(
yi −

p∑
j=1

βj(u0)xij

)2
Kh(ui − u0) (8)

and 
n∑
i=1

(
si −

p∑
j=1

σj(u0)xij

)2
Kh(ui − u0)

subject to σj(u0) ≥ 0, j = 1, 2, . . . , p.

(9)

Let

X =


x11 x12 · · · x1p
x21 x22 · · · x2p
...

...
...

...
xn1 xn2 · · · xnp

 , Y =


y1
y2
...
yn

 , S =


s1
s2
...
sn

 , (10)

W(u0) = Diag (Kh(u1 − u0), Kh(u2 − u0), . . . , Kh(un − u0)) , (11)

β(u0) =
(
β1(u0), β2(u0), . . . , βp(u0)

)T
,

σ(u0) =
(
σ1(u0), σ2(u0), . . . , σp(u0)

)T
.

Wehere assume that the inversematrix ofXTW(u0)X exists for each u0 ∈ U . Then the solution of theweighted least-squares
problem (8), that is, the estimate of the center vector β(u0) of the fuzzy coefficients, can be obtained using matrix notation
as

β̂(u0) =
(
β̂1(u0), β̂2(u0), . . . , β̂p(u0)

)T
=
(
XTW(u0)X

)−1 XTW(u0)Y
= H(u0)Y, (12)

where

H(u0) =
(
XTW(u0)X

)−1 XTW(u0) (13)

is a p× nmatrix. Let ej denote a p-dimensional column vector with its jth element being 1 and the others being 0. Then we
obtain from (12) that

β̂j(u0) = eTj β̂(u0) = eTj H(u0)Y, j = 1, 2, . . . , p. (14)

The spread estimates of the fuzzy coefficients at u0 ∈ U can be obtained by solving the restrictedweighted least-squares
problem (9). In solving the least-squares problem with the same restrictions as in Eq. (9), Waterman [33] proposed an
algorithmwithout the use of linear programming in which the solution can be obtained by performing the regression on all
possible subsets of the explanatory variables and solving a series of unrestricted least-squares problems. This algorithm is
easy to carry out with some modern computer software and can directly be extended to the case of the restricted weighted
least-squares problem (9). The extended procedure can be described in detail as follows.
(i) Solving the weighted least-squares problem (9) without considering the restrictions, we obtain, with the same

procedure as was used for solving (8),

σ̂j(u0) = eTj
(
XTW(u0)X

)−1 XTW(u0)S, j = 1, 2, . . . , p. (15)

If σ̂j(u0) ≥ 0 for all j = 1, 2, . . . , p, then no further work needs to be done.
(ii) If at least one of σ̂j(u0) (j = 1, 2, . . . , p) is negative, then we need to solve a number of unrestricted weighted least-

squares problems. Specifically, let

C = {C : C ⊂ {1, 2, . . . , p} and C 6= {1, 2, . . . , p}}

denote the index set with its elements being all possible subsets of {1, 2, . . . , p} except for {1, 2, . . . , p} itself. For each
C = {l1, l2, . . . , lk} ∈ C , where 1 ≤ k < p, let

QC
(
σl1(u0), σl2(u0), . . . , σlk(u0)

)
=

n∑
i=1

(
si −

k∑
j=1

σlj(u0)xilj

)2
Kh(ui − u0). (16)
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Select σl1(u0), σl2(u0), . . . , σlk(u0) to minimize QC
(
σl1(u0), σl2(u0), . . . , σlk(u0)

)
; then the solution of this unrestricted

weighted least-squares problem can be obtained by using(
σ̂l1(u0), σ̂l2(u0), . . . , σ̂lk(u0)

)T
=
(
XTCW(u0)XC

)−1 XTCW(u0)S, (17)

whereXC is an n×kmatrix formulated from the l1th, l2th, . . . , lkth columns ofX, andX, S andW(u0) are shown respectively
in Eqs. (10) and (11). If σ̂lj(u0) ≥ 0 for all j = 1, 2, . . . , k, then compute the value of QC

(
σ̂l1(u0), σ̂l2(u0), . . . , σ̂lk(u0)

)
according to Eq. (16); otherwise, nothing is done. For C = ∅ ∈ C , let QC (∅) =

∑n
i=1 s

2
i Kh(ui − u0).

Let

Γ =
{
QC
(
σ̂l1(u0), . . . , σ̂lk(u0)

)
: C = {l1, . . . , lk} ∈ C and σ̂lj(u0) ≥ 0 for all j = 1, . . . , k

}
∪ {QC (∅)} .

Suppose that the minimal element of Γ is QD
(
σ̂q1(u0), . . . , σ̂qk0 (u0)

)
with D = {q1, . . . , qk0} ∈ C and define

σ̂j(u0) =
{
σ̂j(u0), j ∈ {q1, q2, . . . , qk0},
0, j 6∈ {q1, q2, . . . , qk0},

(18)

for j = 1, 2, . . . , p. Then σ̂j(u0) (j = 1, 2, . . . , p) are the solutions of the restricted weighted least-squares problem (9) and
therefore they are the spread estimates for the coefficients at u0 ∈ U .
Performing the above estimation procedure at u0 = u1, u2, . . . , un respectively, we can obtain the fitted values of the

center of the fuzzy response Ỹ as

ŷi = β̂1(ui)xi1 + β̂2(ui)xi2 + · · · + β̂p(ui)xip

= (xi1, xi2, . . . , xip)
(
β̂1(ui), β̂2(ui), . . . , β̂p(ui)

)T
= xTi H(ui)Y, i = 1, 2, . . . , n, (19)

where xTi = (xi1, xi2, . . . , xip) is the ith row of X. Similarly, the fitted values of the spread of Ỹ are

ŝi = σ̂1(ui)xi1 + σ̂2(ui)xi2 + · · · + σ̂p(ui)xip, i = 1, 2, . . . , n. (20)

Therefore, the estimates of the fuzzy response Ỹ at ui (i = 1, 2, . . . , n) are

ˆ̃yi =
(
ŷi, ŝi

)
L , i = 1, 2, . . . , n. (21)

2.3. Selection of the kernel function and the smoothing parameter

In order to implement the above calibration procedure of the fuzzy varying coefficient model, we have to determine
the kernel function K(·) and the smoothing parameter h in advance. The role of K(·) is to place more emphasis on the
observations close to u0 than those farther away in generating the estimates of the center and spread of the fuzzy coefficients
at u0. As in statistical nonparametric regression, two commonly used kernel functions are the Gaussian kernel

K(t) =
1
√
2π
exp

(
−
1
2
t2
)

(22)

and the Epanecknikov kernel

K(t) =

{3
4
(1− t2), if |t| ≤ 1;
0, otherwise.

(23)

The role of the smoothing parameter h in the weight Kh(·) = K(·/h)/h is to adjust the degree of smoothness of the
estimates of the center and spread of the fuzzy coefficients. Here, we use the distance (6) used to fuzzify the cross-validation
procedure (see, for example, [34]) in statistics for selecting the optimal value of the smoothing parameter h. Specifically, for
each of i = 1, 2, . . . , n, delete the ith observation ỹi = (yi, si)L and compute the estimates of the center and spread of
the fuzzy coefficients β̃j(u) (j = 1, 2, . . . , p) at u = ui according to the procedure described above. Let β̂

(−i)
j (ui, h) and

σ̂
(−i)
j (ui, h) (j = 1, 2, . . . , p) be the resulting estimates of the centers and spreads of the fuzzy coefficients under h and

ŷ(−i)(h) =
p∑
j=1

β̂
(−i)
j (ui, h)xij and ŝ(−i)(h) =

p∑
j=1

σ̂
(−i)
j (ui, h)xij
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Table 1
The GDP data and the fitted values of G̃DP obtained by fitting the fuzzy varying coefficient model with the proposed method and by fitting its linear
counterpart with the Xu and Li and the Coppi et al. methods.

Data Fitted values of G̃DP
U I WP G̃DP Our method The Xu–Li method The Coppi et al. method

1 137.0 102.5 (124.5, 6.23)T (124.461, 6.651)T (123.415, 6.174)T (123.415, 6.174)T
2 138.1 103.5 (129.4, 6.47)T (129.006, 6.787)T (127.585, 6.382)T (127.585, 6.383)T
3 141.5 104.8 (135.1, 6.76)T (135.836, 7.055)T (135.922, 6.800)T (135.921, 6.799)T
4 144.8 106.1 (142.3, 7.12)T (142.815, 7.338)T (144.110, 7.209)T (144.110, 7.209)T
5 148.1 107.5 (150.1, 7.51)T (150.529, 7.642)T (152.553, 7.632)T (152.553, 7.631)T
6 146.0 108.7 (154.3, 7.72)T (152.942, 7.684)T (152.496, 7.627)T (152.496, 7.628)T
7 148.8 109.5 (159.2, 7.96)T (158.325, 7.996)T (158.673, 7.937)T (158.673, 7.936)T
8 151.0 110.7 (164.0, 8.20)T (164.660, 8.291)T (164.979, 8.252)T (164.979, 8.252)T
9 151.4 112.5 (167.9, 8.40)T (169.839, 8.498)T (170.147, 8.509)T (170.147, 8.510)T
10 153.7 113.2 (174.4, 8.72)T (175.039, 8.821)T (175.331, 8.769)T (175.330, 8.769)T
11 155.6 114.0 (182.1, 9.11)T (179.978, 9.127)T (180.176, 9.011)T (180.176, 9.012)T
12 158.8 114.9 (187.4, 9.37)T (187.534, 9.514)T (187.200, 9.363)T (187.199, 9.362)T
13 161.9 116.0 (195.2, 9.76)T (195.396, 9.894)T (194.584, 9.732)T (194.583, 9.732)T
14 166.1 118.0 (207.3, 10.37)T (206.920, 10.336)T (205.883, 10.297)T (205.883, 10.296)T
15 169.1 120.3 (217.3, 10.87)T (216.753, 10.693)T (216.170, 10.811)T (216.170, 10.811)T
16 173.0 122.6 (228.3, 11.42)T (228.145, 11.091)T (227.789, 11.392)T (227.788, 11.391)T
17 176.0 125.0 (237.0, 11.85)T (238.141, 11.414)T (238.330, 11.918)T (238.330, 11.918)T
18 174.8 126.3 (239.4, 11.97)T (238.997, 11.444)T (239.859, 11.994)T (239.859, 11.995)T

be the predicted values of the center and spread of the fuzzy response Ỹ at ui. The CV score is formulated by using the
distance (6) as

CV(h) =
n∑
i=1

d2
(
(yi, si)L, (ŷ(−i)(h), ŝ(−i)(h))L

)
=

n∑
i=1

(
yi −

p∑
j=1

β̂
(−i)
j (ui, h)xij

)2
+4(L, f )

n∑
i=1

(
si −

p∑
j=1

σ̂
(−i)
j (ui, h)xij

)2
. (24)

Then, select h0 as the optimal value of the smoothing parameter such that
CV(h0) = minh>0CV(h). (25)

3. Examples on application of the proposed method

Three real-world datasets are analyzed in this section in order to illustrate some applications of the proposed fuzzy
varying coefficient model with its estimation method. Furthermore, we compare the results with those obtained by some
othermethods for fitting the corresponding fuzzy linearmodel in order to evaluate the performance of the proposedmethod.
In order to make a comprehensive comparison, we first introduce a metric for evaluating the accuracy of a method in

predicting the fuzzy response as

GOF =

(
1
n

n∑
i=1

d2((yi, si)L, (ŷi, ŝi)L)

) 1
2

=

(
1
n

n∑
i=1

(
(yi − ŷi)2 +4(L, f )(si − ŝi)2

)) 12
, (26)

where ŷi and ŝi are the fitted values of the center and spread of the fuzzy response Ỹ at the ith designed point with a given
method. This quantity gives an overall measurement of the difference between the observed values of the fuzzy response Ỹ
and its corresponding estimates.

Example 1. The dataset is taken from [35] and consists of 18 observations of the income (I), working population (WP) and
gross domestic product (G̃DP) of Japan from 1975 to 1992, in which the G̃DP is assumed to be a symmetric triangular fuzzy
number. The data are shown in the second to fourth columns of Table 1 where we use the lower subscript ‘‘T ’’ to denote a
symmetric triangular fuzzy number and we refer the reader to [35] for the details for formulating the dataset.

Now, we take the variableU to be the time order of each year and consider the following fuzzy varying coefficientmodel:

G̃DP i = β̃1(i)+ β̃2(i)Ii + β̃3(i)WP i, i = 1, 2, . . . , 18. (27)
The Gaussian kernel (22) is used in the proposed method, and we set f (λ) = λ in Xu’s distance (6) which leads to
∆(L, f ) = 1/6. The optimal value of the smoothing parameter selected by the fuzzified cross-validation procedure is
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Table 2
The carbonmonoxide concentration data and the fitted values of C̃O obtained by fitting the fuzzy varying coefficient model with the proposed method and
by fitting its linear counterpart with the Xu–Li and Coppi et al. methods.

Data Fitted values of C̃O
U RH R WS C̃O Our method The Xu–Li method The Coppi et al. method

1 82.27 0.90 2.87 (1.15, 0.70)T (1.228, 1.875)T (1.190, 1.139)T (1.194, 1.075)T
2 88.70 0.90 1.12 (2.98, 2.36)T (3.126, 2.019)T (3.112, 1.939)T (3.119, 1.841)T
3 82.51 0.02 0.85 (3.92, 1.97)T (3.783, 1.876)T (3.702, 2.044)T (3.701, 2.072)T
4 79.46 0.00 0.45 (4.65, 2.07)T (4.017, 1.804)T (3.931, 2.093)T (3.927, 2.162)T
5 68.85 0.00 0.91 (3.98, 2.13)T (3.089, 1.561)T (2.981, 1.609)T (2.970, 1.782)T
6 79.39 0.02 1.07 (3.35, 1.97)T (3.402, 1.798)T (3.345, 1.872)T (3.342, 1.929)T
7 88.87 1.30 0.69 (3.13, 1.99)T (3.236, 2.009)T (3.218, 2.001)T (3.226, 1.883)T
8 88.92 0.09 0.40 (4.15, 2.41)T (4.400, 2.007)T (4.382, 2.379)T (4.385, 2.344)T
9 83.52 0.00 0.83 (3.96, 2.27)T (3.801, 1.882)T (3.786, 2.086)T (3.785, 2.106)T
10 87.51 0.05 2.09 (4.07, 2.18)T (2.813, 1.968)T (2.795, 1.763)T (2.798, 1.713)T
11 86.04 0.04 0.90 (3.30, 1.98)T (3.816, 1.931)T (3.818, 2.130)T (3.819, 2.119)T
12 91.77 0.93 1.22 (4.02, 2.55)T (3.183, 2.055)T (3.152, 1.992)T (3.161, 1.857)T
13 83.62 0.02 3.00 (2.06, 2.12)T (1.799, 1.869)T (1.790, 1.337)T (1.791, 1.312)T
14 73.10 0.02 1.75 (1.37, 0.66)T (2.357, 1.630)T (2.410, 1.445)T (2.402, 1.556)T
15 80.38 0.09 0.73 (3.35, 1.73)T (3.597, 1.789)T (3.654, 2.004)T (3.651, 2.053)T
16 87.98 0.24 1.87 (1.45, 1.05)T (2.877, 1.953)T (2.879, 1.810)T (2.883, 1.747)T
17 90.13 0.02 2.39 (2.74, 1.41)T (2.678, 1.997)T (2.673, 1.747)T (2.678, 1.665)T
18 64.95 0.00 1.25 (2.44, 1.62)T (2.311, 1.436)T (2.476, 1.373)T (2.462, 1.579)T
19 80.16 0.01 1.02 (2.79, 1.86)T (3.335, 1.769)T (3.437, 1.916)T (3.434, 1.966)T
20 86.14 0.44 0.70 (3.31, 1.44)T (3.657, 1.896)T (3.710, 2.111)T (3.712, 2.077)T
21 89.12 0.01 1.17 (4.02, 2.46)T (3.688, 1.958)T (3.747, 2.139)T (3.750, 2.092)T

h0 = 3.2. With the selected value of h, we calibrate model (27) with the restricted weighted least-squares procedure and
report in Table 1 the fitted values of the response G̃DP at i (i = 1, 2, . . . , 18) in the fifth column.
For comparison, the method in [11] and the method in [30] for fitting the linear counterpart of the model (27) are also

used to analyze this dataset, and the fitted fuzzy outputs are listed in the sixth and seventh columns of Table 1.
Comparing the observed values of the response with its fitted values, we see that the proposed fuzzy varying coefficient

model with its estimation procedure produces more accurate estimates of the response, especially for the center of the
response. The quantity GOF is also calculated for the three methods; it is GOF = 0.914 for our method, GOF = 1.385 for the
Xu–Li method and GOF = 1.384 for the Coppi et al. method. The smaller value of GOF for our method also demonstrates
that the fuzzy varying coefficient model performs better than its linear counterpart in fitting this dataset.

Example 2. The dataset comes from [30] and consists of 21 observations of the atmospheric concentration of carbon
monoxide (CO) and a set of meteorological variables collected in Rome, Italy, in the period from October 5 to 25, 1992.
The concentration of CO was observed hourly for each of the 21 days and the meteorological variables were recorded daily
in the same period. From the analysis in paper [30], three crisp meteorological variables, that is, relative humidity (RH), rain
(R) and wind speed (WS), have a significant influence on the fuzzy response variable C̃O of the concentration of CO. Here,
we take these three variables as the explanatory variables in our analysis.

In paper [30], however, the response C̃Owas assumed to be a nonsymmetric triangular fuzzy number whose center was
defined as the mean of the observations recorded each day, and the left and right spreads were the averaged deviations of
the values that are smaller than the mean and those that are larger than the mean respectively. For the purpose of using
the proposed fuzzy varying coefficient model, we redefine the response C̃O as a symmetric triangular fuzzy variable with
its center being the same as that in paper [30] and its spread being the whole of the averaged absolute deviations of all
observations in each day. The observations of the newly defined response can be computed from the data of the left spreads
li and right spreads ri of C̃O reported in Table 2 of paper [30] as follows. Firstly, let ni1 and ni2 be respectively the number
of the observations of CO that are smaller than the mean and the number of the observations of CO that are larger than the
mean on the ith day. Then, according to the definition of li and ri in [30], we have

ni1li = ni2ri, i = 1, 2, . . . , 21.

Therefore, the observations of the spread of the newly defined response C̃O are

si =
ni1li + ni2ri
ni1 + ni2

=
2ni2ri

ni2ri/li + ni2
=
2rili
ri + li

, i = 1, 2, . . . , 21.

The observations of the explanatory variables and the newly defined response are shown in Table 2.
We still take the time orders from October 5 to 25 as the observations of the variable U in the fuzzy coefficients to build

a fuzzy varying coefficient model between C̃O and the variables RH , R andWS as

C̃Oi = β̃1(i)+ β̃2(i)RH i + β̃3(i)Ri + β̃4(i)WS i, i = 1, 2, . . . , 21. (28)
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a b

Fig. 1. (a) The center, lower and upper limits of the observed values of ÃT and (b) the fitted corresponding lines of ÃT obtained with our method.

With use of the Gaussian kernel and f (λ) = λ in the distance (6), the selected optimal value of the smoothing parameter is
h0 = 12.7. The fitted values of the response C̃O calculated by the proposed method are listed in the sixth column of Table 2.
Furthermore, we also listed in the seventh and eighth columns of Table 2 the fitted values of the fuzzy response obtained
by fitting the corresponding fuzzy linear model with the Xu–Li method [11] and the Coppi et al. method [30].
From the results, we can see that the fitted values of C̃O obtained by the proposed method and those obtained by the

Xu–Li method and the Coppi et al. method are all comparable. The values of GOF for the three methods are 0.634, 0.651 and
0.652 respectively, which have little difference among them.
The above results also indicate that a fuzzy linear model may be appropriate for the dataset. From the inferential point

of view, because the fuzzy varying coefficient model is more flexible than its linear counterpart in tracking the trend of
the response, it can also be used as an exploratory tool for judging whether a fuzzy linear model is appropriate to a given
dataset by fitting a fuzzy varying coefficient model and its linear counterpart and comparing the fitting results. If there is no
significant difference between the results, a fuzzy linear model may be chosen to fit the dataset.

Example 3. The dataset is graphically shown in Fig. 1(a) which consists of 365 observations of the average temperature (ÃT )
and sunlight time (ST ) for each day of a year in Xi’an, China from January 1 to December 31. In this dataset, ÃT is assumed
to be a triangular fuzzy variable. The observations of ÃT and ST are formulated as follows. With the observed data of the
average temperature and sunlight time of each day from January 1, 1951, to December 31, 2000, the mean of the average
temperatures collected on the same days of the 50 years is taken as the center value of ÃT on that day and the corresponding
sample standard variance is used as the spread value of ÃT . The value of the crisp variable ST is defined as the mean of the
sunlight times on the same days of the 50 years. It is worth pointing out that the data on February 29 during the 50 years
have been excluded.

Like in the above examples, the observations of the variable U in the regression coefficients are taken as the time orders
from January 1 to December 31, and the following fuzzy varying coefficient model connecting ÃT and ST is considered:

ÃT i = β̃1(i)+ β̃2(i)ST i, i = 1, 2, . . . , 365. (29)

The proposed method with the Gaussian kernel (22) and f (λ) = λ for the distance (6) is used to fit model (29). The optimal
value of the smoothing parameter selected by the fuzzified cross-validationmethod is h0 = 2. The fitted values of the center,
lower and upper limits of the fuzzy response are shown in Fig. 1(b) and the value of GOF is 0.230, which indicates that the
fuzzy varying coefficient model with its estimation method can produce a satisfactory fit of the fuzzy response.
Additionally, the linear counterpart of the model (29) is also used to fit the dataset with the methods in [11,30]. The

resulting values of GOF are 8.430 and 8.429 respectively, which aremuch larger than that obtained by the proposedmethod.
In order to graphically show the differences in fitting the response with the three methods, we calculate, for each of the
methods, Xu’s distance in (6) with f (λ) = λ between the observed value and the fitted value of ÃT on each day, that is

di =
(
(yi − ŷi)2 +

1
6
(si − ŝi)2

) 1
2

, i = 1, 2, . . . , 365,

where ŷi and ŝi are the fitted center and spread of the response with one of the three methods. We draw the scatter plots
of each di obtained by our method versus those obtained by the Xu–Li method and the Coppi et al. method respectively in
Fig. 2(a) and (b). Note that the scales for the two axes are very different. The scatter plots show that the proposed fuzzy
varying coefficient model is still powerful in fitting some complicated regression relationships, but the corresponding fuzzy
linear model may completely fail to fit this dataset.
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Fig. 2. The scatter plots of the distances between the observed and fitted values of ÃT obtained by the three methods.

4. Final remarks

In this paper, a fuzzy varying coefficient model with crisp explanatory variables and a symmetric fuzzy response is
proposed and a restricted weighted least-squares procedure is suggested for fitting the model. By allowing the fuzzy
regression coefficients in the fuzzy linearmodel to varywith a covariate, themodel flexibility and adaptability can be greatly
increased. Furthermore, thismodel can effectively avoid the problemof the curse of dimensionality encountered in the fuzzy
nonparametric regression models. The analysis of some practical datasets has demonstrated that the proposed model with
its estimation approach performs quite satisfactorily in predicting the fuzzy response even in the case where the regression
relationship seriously deviates from the fuzzy linear model.
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