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Abstract

The collection of points of a locally compact regular formal space is shown to be isomorphic to a
set in the context of Martin-Löf type theory. By introducing the notion of uniform formal space, this
result is refined and generalized in the subcategory of open formal spaces.
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0. Introduction

The notion of locale is generally regarded as furnishing the proper concept of topology
in topos-theoretic (intuitionistic) contexts [21,20,17]. Formal spaces [30] provide a
presentation of locales which is furthermore adequate to be expressed within constructive
(intuitionistic and predicative) settings such as Martin-Löf type theory [26,25], and Aczel’s
constructive set theory [1].

In contrast with what happens with localesin topoi, considered in such settings, the
category of formal spaces is not locally small (the classhom(S1,S2) of continuous
functions between two given formal spacesS1,S2 need not be a set): the assumption that
all homsets are small is easily seen to imply the powerset axiom [13]. More specifically
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(as observed by T. Coquand and P. Martin-Löf), nor even the collection of pointsPt(S)

of a given formal spaceS – i.e. the collection of continuous functions from the terminal
object toS – may be assumed to form a set in general.

This paper is principally devoted to showing that, forS belonging to some important
classes of formal spaces, the collectionPt(S) actually is isomorphic to a set. The first
class for which this result is established (inSection 2) is that of compact regular formal
spaces. More generally, this holds true for the locally compact regular formal spaces.
Compact regular locales/formal spaces are the point-free constructive counterpart of
compact Hausdorff spaces [21,9]. Examples of compact regular formal spaces that may
illustrate the role played by this class even in constructive settings are the formal space
L(A) of linear functionals of norm less than one over a given semi-normed spaceA,
the Vietoris hyperspace of a given compact regular formal space [7,8], the Stone–̌Cech
compactification of every formal spaceS for which the classhom(S, [0, 1]) of continuous
functions fromS to the – compact regular – formal unit interval forms a set [13].2

In Section 3the notion of (open) uniform formal spaceis introduced as a natural
generalization of that of metric formal space [12], and the relation between complete
regularity and uniformizability is analyzed. Uniform formal spaces are organized in a
category inSection 4, where also the relation of this category with that of uniform spaces is
sketched. These definitions and results are applied (inSection 5) to yield a generalization
(in the subcategory of open formal spaces) of the representation of the collection of points
of a locally compact regular formal space proved inSection 2. Intuitively, one would like
to identify points with ‘shrinking’ sequences of ‘regions’. In [12] it is shown that this
may be done for locally compact metric formal spaces; there ‘shrinking’ means having a
vanishing diameter, and ‘regions’ are basic opens. However, metrizable spaces necessarily
satisfy forms of countability assumptions (e.g.,first-countability), in general not enjoyed
by arbitrary compact Hausdorff spaces. To capture quantitatively arbitrary compact regular
formal spaces one is thus led to consider uniformizability, that is, a concept of proximity
defined by the point-free equivalent of possibly many different (pseudo-)metrics.

The point-free analogue of a Cauchy complete uniform space,then, enjoys the property
that its points may be identified with generalized sequences of neighborhoods (nets),
shrinking according to the concept of proximity defined by the given uniformity, and
forming a set.This is true, more generally, for the class of ‘weakly complete’ uniform
formal spaces to be defined, comprising both complete uniform formal spaces and locally
compact uniform formal spaces. The concept of weak completeness allows us to regard the
representation of the collection of points of a compact regular formal space inSection 2,
and the analogous fact proved for locally compact metric formal spaces in [12], uniformly
in terms of a notion of completeness.

No familiarity with type theory is actually needed to read this paper: the arguments
involved in the constructions of the considered classes of points as sets are essentially
geometrical, and the proof that these constructions indeed yield sets may be formulated in
terms of Bishop’s naïve set and subset theory [4]. In this sense, the proof is claimed to be

2 The (generalized) Stone–̌Cech compactification of a formal spaceS exists constructively exactly whenS
enjoys this property. The class of formal spaces for whichhom(S, [0, 1]) is a set comprises the locally compact
formal spaces [13].
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independent from the adopted foundation, provided that this is adequate for constructive
mathematics in the sense of Feferman [16]. A large part of the material in this paper
(particularly that concerning uniformizability) is intended to be valid also in the (choice-
free) context of topoi and in the context of Aczel’s constructive set theory, so care is taken
to indicate (with an asterisk) those results that depend on a principle of choice.

1. Preliminaries

1.1. A formal topology(often simply atopology) is a pairS ≡ (S,�) whereS is a set,
called thebase, and thecover relation� is a relation between elements and subsets ofS
satisfying the following conditions (reada � U as ‘a is covered byU ’, or ‘U coversa’):

i. a ∈ U impliesa � U (reflexivity)
ii. if a � U andU � V , thena � V (transitivity)
iii. a � U, a � V imply a � U ↓ V (↓- right)

whereU � V stands for(∀u ∈ U)u � V , andU ↓ V , theformal intersectionof U, V , is
given by{b ∈ S : (∃u ∈ U) (b � {u}) & (∃v ∈ V) (b � {v})} [10,31].

Two subsetsU, V of Sare the sameformalopen, U =S V , exactly whenU �V & V �

U . Denote withOpen(S) ≡ (P(S),=S ) the collection of formal opens endowed with this
equality. If V, W, Z are subsets ofS, andUi (i ∈ I ) is a family of subsets ofS, one has
V ∪ (W ↓ Z) =S (V ∪ W) ↓ (V ∪ Z), and(

⋃
i Ui ) ↓ V = ⋃

i (Ui ↓ V). In impredicative
contexts,Open(S) forms a set;thus, withU ∧ V ≡ U ↓ V and

∨
i∈I Ui ≡ ⋃

i∈I Ui ,
(Open(S),

∨
,∧) is a frame, and each frame may be obtained asOpen(S) for someS [30].

1.2. A morphism f : S1 → S2 of formal topologies is a mapf : S1 → P(S2) suchthat

i. S2 �2 f (S1),
ii. f (a ↓1 b) =S2 f (a) ↓2 f (b),
iii. a �1 U → f (a) �2 f (U)

(where , forV ⊆ S, f (V) ≡ ⋃
b∈V f (b)). With this notion of morphism, formal topologies

form the categoryFT. Within the topos-theoretic (impredicative) context,FT is equivalent
to the category of frames [30], so its dual, to be called the categoryFSp of formal spaces
andcontinuous functions, is equivalent to the category of locales.

1.3. A formalpointof a formal topologyS is a continuous function from the formal space
T ≡ ({1},∈) to S (i.e. a morphism fromS to T). This may alternatively be described as a
subsetα ⊆ Ssuchthat

i. (∃a ∈ S)a ∈ α,

ii. a ∈ α & b ∈ α imply (∃c)(c ∈ a ↓ b & c ∈ α),
iii. a ∈ α anda � U imply (∃b ∈ U)(b ∈ α).

The class of formal points is denoted byPt(S). In contrast with what happens in topoi,
Pt(S) in general forms a proper class in constructive contexts.
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1.4. A formal topologyS is said to becompactif, wheneverS� U , there exists a finite
subsetū = {u1, . . . , un} ⊆ U suchthatS� ū.

For U ⊆ S, the(pseudo-)complement U∗ of U is defined byU∗ ≡ {b : (b ↓ U) � ∅}.
For simplicity we will often improperly confuse elementsa with singleton subsets{a}, so
that, for instance, the notationa∗ is used inplace of{a}∗. Observethat, forUi (i ∈ I ) a
family of subsets ofS, (

⋃
i Ui )

∗ = ⋂
i (U

∗
i ); in particular, for U, V ⊆ S, (U ∪ V)∗ =

U∗ ∩ V∗ = U∗ ↓ V∗.
A topologyS is said to beregular if, for all a in S, a � wc(a), with wc(a) ≡ {b :

S� a ∪ b∗}, the subset of elements that are well covered bya.
Finally, for U, V ⊆ S, sayV is way-below Uif given anyW ⊆ S suchthatU � W

there is a finite subset̄w of W suchthatV � w̄. S is locally compactif it may be endowed
with an indexed familywb(a)(a ∈ S) of subsets ofSsuchthat

wb1: for all a ∈ S a=S wb(a),

wb2: for all b ∈ wb(a), {b} is way-below{a}.
It is non-restrictive [12] to assume that the family of subsetswb(x) for x ∈ S satisfies the
following property,trivially enjoyed also by the familywc(x):

b′ � b, b ∈ �(a) and a� a′ imply b′ ∈ �(a′) (∗)

(� ∈ {wc, wb}).
Remark. Aczel [3] has observed that every locally compact topologyS is set-presented
in the constructive set theory CZF, i.e. that there are families of sets,I (a)(a ∈ S), and
C(a, i )(a ∈ S, i ∈ I (a)), C(a, i ) ⊆ S, such thata � U ⇐⇒ (∃i ∈ I (a))C(a, i ) ⊆ U
(the same also holds in Martin-Löf type theory [14]).

Note that this allows us to simplify the definition of local compactness: we may say
that a locally compact formal topology is a set-presented topology such that, for alla ∈ S,
a � wb′(a), wherewb′(a) is the subset of elements that are way-belowa with respect to
just the subsetsC(a, i ): b ∈ wb′(a) ⇐⇒ (∀i )(∃v̄)b � v̄, with v̄ finite subset ofC(a, i ).

2. Maximal regular subsets form a set

The theorem recalled below was proved in [11]. It asserts that the points of a compact
regular formal space may be characterized as subsets of basic neighborhoods (the maximal
regular ones) satisfying certain purely first-order conditions. This characterization is the
first step in the proof that the class ofpoints of a compact regular formal space is
isomorphic to a set.

2.1. Given a formal spaceS, wecall a subsetα of S (filtering and)regular if it satisfies

1. (∃a)(a ∈ α),

2. (a ∈ α & b ∈ α) ↔ (∃c ∈ S)(c ∈ a ↓ b & c ∈ α),
3. a ∈ α → a ��∅,

4. a ∈ α → (∃b ∈ S)(b ∈ wc(a) & b ∈ α).
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We say thatα is amaximal regular subset3 of S if moreover, for alla, b in S,

5. b ∈ wc(a) → ((∃c ∈ S)(c ∈ α & (b ↓ c) � ∅) ∨ a ∈ α),

that is, if a neighbourhoodb is well covered by a neighbourhooda, either a is a
neighbourhood ofα, or one can find a neighbourhoodc of α disjoint fromb.

Observe that maximal regularsubsets are maximal (between regular subsets) in the
usual sense: letS be any formal topology and letα ⊆ S be a maximal regular subset. If
β ⊆ S is a regular subset andα ⊆ β we haveα = β: indeed, leta ∈ β; by regularity ofβ
there isb ∈ β suchthatb ∈ wc(a). Then (by maximality) either there isc ∈ α suchthat
(b ↓ c) � ∅, or a ∈ α; butα ⊆ β implies that(b ↓ c) ��∅ for all c ∈ α (since, by 2, from
b, c ∈ α one hasd ∈ α with d ∈ b ↓ c, and, by 3,d ��∅), and hencea ∈ α.

The following result was proved for topologies with a positivity predicate in [11]. The
extension to general topologies indicated here is straightforward (a proof can be found
in [14]).

Theorem. In a compact regular formal topologyS, the formal points ofS are precisely
the maximalregular subsets ofS.

Note that no second-order object (other than the ‘parameter’α) appears in the expression
of conditions 1–5.

2.2. In order to emphasize the topological aspects (as opposed to the type-theoretical or
set-theoretical ones) of the argument we areto carry out, and at the same time not to bind
it to a particular setting, we keep using the common informal mathematical language. This
informal language is similar to the one adopted in Bishop’s style mathematics, and should
allow a reader acquainted with type theory to easily imagine the type-theoretic (formal)
version of theproof (a hint is given in2.3below).

Since just the principles of Bishop’s naive foundation are exploited in the following, we
expect the construction to be presented to be valid in every setting in which these principles
are formally represented (cf. Feferman’s notion of adequate formalization [16]).

Let S be any topology. For anyx, y ∈ S, considerthe setW = {(x, y) ∈ S× S : y ∈
wc(x)}. Observe that, formally, the elements ofW will be triples (x, y, p), wherep is a
proof thaty ∈ wc(x) [16]. We define a predicateD (thedomainfor S) on theset W→ S
by stipulating that a functionf : W → SsatisfiesD if andonly if

(∀w1, w2 ∈ W)(∃w ∈ W)( f (w) ∈ f (w1) ↓ f (w2)) &

& (∀w ∈ W)[
f (w) ��∅ &

& (∃w′ ∈ W) f (w′) ∈ wc( f (w)) &

& (( f (w) ↓ bw) � ∅ ∨ ( f (w) = aw))]
with (aw, bw) = w. One may think of the elementsf of W → S as of ‘sequences’ (or,
better, nets; cf.5.4) of elements ofS indexed by the pairs(a, b) suchthatb ∈ wc(a). Then

3 The idea for defining maximality for regular subsets in this way was inspired by the notion ofmaximal
approximation, as formulated in [23]. This form of maximality condition has been exploited recently also in
connection with R-structures [32].
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a ‘sequence’ f satisfiesD essentially if the set of its elements has the properties required
in the conditions defining a maximal regular subset ofS. It will thus not come as a surprise
that, defining forf ∈ W → S, f satisfyingD,

Ff = {a ∈ S : (∃w ∈ W) f (w) � a},
Ff is a maximal regular subset ofS (to check this, observe that in every topologyS, each
neighbourhood is well covered by the whole spaceS, and thatone may always assume that
S has a ‘top’ basic element 1, 1=S S. Thus,W may be assumed to be non-empty).

Conversely, given a maximal regular subsetα of S we can extract fromα a ‘sequence’
fα as follows. Informally, we definefα by using the maximality condition and relying on
the constructive reading of existential and disjunctive statements: givenw = (a, b) ∈ W,
by condition 5 we get a proofπ(w) of

((∃c ∈ S)(c ∈ α & (b ↓ c) � ∅) ∨ a ∈ α).

This means that either we have a proof thata belongs toα, or we have an elementc and a
proof that it satisfies the first disjunct.

The value offα((a, b)) is defined accordingly as being eithera or c. Thus, in particular
fα((a, b)) ∈ α.

Observe thatfα is a ‘choice’ function,4 and that its values actually depend not just
on the pair(a, b), but alsoon the particular proof thatb ∈ wc(a) (the formal definition
appears in the next paragraph). This dependence is not mentioned explicitly, since it has
no effect on what follows.

2.3. Here is a sketch of how this definition may be given formally in type theory (the
reader uninterested in the formalization in type theory may safely skip this paragraph). We
adopt here the notation in [24]. We also assume that subsets are treated as propositional
functions [24, pg. 64], so that, in particular, a pointα is a propositional functionα(x)

(x ∈ S) (a ∈ α will stand forα(a) true, and, for a, b ∈ S, b ∈ wc(a) is the proposition
S� b∗ ∪ a). The setW is defined as(�x ∈ S× S)q(x) ∈ wc(p(x)) (p, q being left and
right projection, respectively [24, pg. 45]). Observe that, forw ∈ W, p(w) is an element
of S× S, andq(w) is a proof thatq(p(w)) ∈ wc(p(p(w))).

Forw ∈ W we set

fα(w) ≡ D(π(w), (u)p(u), (v)p(p(w))),

where:

D is the constantpertaining to the rule of+-elimination,
π(w) is an element (yielded by condition 5, through the propositions-as-sets
interpretation) of the sum(

∑
c ∈ S)(c ∈ α & (q(p(w)) ↓ c) � ∅) + p(p(w)) ∈ α,

u is a generic element of the first addendum,(
∑

c ∈ S)(c ∈ α & (q(p(w) ↓ c) � ∅),
v is a generic element of the second addendum,p(p(w)) ∈ α.

4 In the development of constructive mathematics in Bishop’s style this function would have been part of the
definition of maximality of a regular subset, although it may beobtained using the constructive principle of choice
available in Bishop’s setting. A discussion of this topic may found in [16, 15.2, 15.3].
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2.4. We continue in the previous more informal style. Letα be a maximal regular subset.

Proposition. D( fα) true and Ffα = α.

Proof. Note, first, that by definition offα one has that, for alla, b suchthatb ∈ wc(a),
( fα((a, b)) ↓ b) � ∅ ∨ fα((a, b)) = a; thus, thelast condition inD is satisfied. Moreover,
since fα((a, b)) ∈ α for all (a, b) in W, fα((a, b)) ��∅ also holds.

Now let a1, b1, a2, b2 be such thatb1 ∈ wc(a1) andb2 ∈ wc(a2). Since fα((a1, b1))

and fα((a2, b2)) belong toα, by condition 2 there isc ∈ α suchthatc ∈ fα((a1, b1)) ↓
fα((a2, b2)). Moreover, by condition 4, there isc′ ∈ α, c′ ∈ wc(c). As noted, we have
( fα((c, c′)) ↓ c′)�∅∨ fα((c, c′)) = c. The firstdisjoint is false however, sincec′ belongs to
α, and thus has non-empty formal intersection with all other neighborhoods inα (recall that
fα((a, b)) ∈ α, for all (a, b) in W). Then fα((c, c′)) = c ∈ fα((a1, b1)) ↓ fα((a2, b2)),
as required.

Now, let a, b be such thatb ∈ wc(a). Since fα((a, b)) ∈ α, by condition 4 there
are c, c′ ∈ α, c ∈ wc( fα((a, b))), and c′ ∈ wc(c). Then we have( fα((c, c′)) ↓
c′) � ∅ ∨ fα((c, c′)) = c. Reasoning as above, we obtainfα((c, c′)) = c, which is what
we wanted, sincec ∈ wc( fα((a, b))).

Finally, to prove thatFfα = α, we just need to show thatFfα ⊆ α, sinceFfα andα are
two maximal regular subsets. ButFfα ⊆ α is obvious (sincefα((a, b)) belongs toα for all
(a, b) ∈ W, and since fα((a, b))� c impliesc ∈ α by condition 2 on regular subsets).�

Summing up, we have shown that the maximal regular subsets ofS may be identified
with (equivalence classes of) effectively defined functions satisfyingD. Set f =D g if and
only if α f = αg.

Theorem∗. The collection of maximal regular subsets of a formal topologyS is
isomorphic to the set�D ≡ { f ∈ W → S : D( f )}, endowed with the equality=D.

Corollary∗. The collection of points of a compact regular formal spaceS is isomorphic
to a set.

2.5. Remarks. i. In [11] a characterization analogous to that recalled at the beginning of
this section for the points of a compact regular topology is obtained forlocally compact
regular topologies. On the basis of this characterization, and arguing essentially as above,
one proves that more generally the points of locally compact regular formal spaces form a
set. This result will also be obtained (foropenlocally compact regular formal topologies)
as a corollary of a more general result inSection 5.

ii. In [ 13] the Cěch–Stone compactification of a formal space is defined. In particular,
this associates with a topologyS a compact completely regular topologySγ in such a way
that, if S is completely regular, the collection of points ofS forms a ‘dense’ subclass of
the points of its compactification. More formally, a pair(S ′, f ) is acompactificationof S
if S ′ is compact and (completely) regular andf : S ′ → S is onto (for U ⊆ S there is
U ′ ⊆ S′ suchthat f (U ′) = U ) anddense(for all a, f (a) � ∅ → a � ∅). This is just the
point-free way of expressing the standard definition of compactification. In [13], we have
in particular thatf (a) = {a}, whence ‘dense’ means that if a neighbourhooda is covered
by the empty set inS so it is inSγ . By the results in this section, thus, the collection of
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points of every completely regular formal space may be embedded into a set as a dense
subclass in the above sense.

iii. In recent papers (e.g. [31]), formal spaces endowed with a positivity predicate with
two argumentsPos(a, F)(a ∈ S, F ⊆ S) have been considered. Intuitively,Pos(a, F)

means “there is a point ina whose neighborhoods belong toF”. The above result allows us
to show that in every (locally) compact regular formal topology(S,�) a binarypositivity
predicate is definable by simply formalizing its meaning, and of course substituting
elements of�D for points:Pos(a, F) ≡ (∃ f ∈ �D)(∃(c, d) ∈ W)( f ((c, d)) � a &
Ff ⊆ F).

3. Uniform formal spaces

The representation obtained in the previous section may appear as somewhat unclear.
It would be nice to be able to identify (maximal) points with shrinking sequences of
neighborhoods (possibly indexed by the natural numbers), where ‘shrinking’ means that
the neighborhoods in the sequence have a vanishing ‘diameter’. This is indeed what one
obtains in the presence of stronger topological conditions – necessarily involving some
kind of countability assumption on the topology – that make itpossible to carry out a
metrization.5

The standard way to get rid of countability assumptions is to make use of a more general
criterion of uniform proximity than that determined by just one metric. This leads to the
notion of uniformity. Recall [15] that no assumption other than complete regularity is
needed for a topological space to be uniformizable (and, with dependent choice, compact
regular spaces are completely regular).

A uniformity may always be thought of as defined by a family of pseudo-metrics (gauge
structure). Thus, uniformizability of a space corresponds to having a notion of proximity
defined by as many different criteria as there are pseudo-metrics defining the uniformity.

We then need a point-free analogue of these facts, beginning with a notion ofuniform
formal topology. This will be just a topology endowed with a family of a particular kind
of diameter (playing here the role of pseudo-metrics), compatible with the given topology
in a natural sense to be specified. The (constructive analogue of the) equivalence between
complete regularity and uniformizability may then be re-obtained in this point-free setting.
This will lead (in the next section) to achieving our original goal, that is, to identifying the
points of any compact (completely) regular open topology with generalized ‘sequences’ of
shrinking neighborhoods, and also to opening the way to a natural generalization of this
result.

3.1. For simplicity, we restrict ourselves here tothe full subcategory of open formal spaces
(a ‘conservative’ generalization to non-open spaces is work in progress; note, however,

5 In [12] we proved that the points of (locally) compact metric formal topologies may be indexed precisely by a
set made up of such sequences. A metrization result for enumerably completely regular open formal topologies (a
constructive point-free version of the Urysohn metrization theorem) thus implies that such an indexing obtains for
locally compact enumerably completely regular open topologies (whence, in particular, for compact enumerably
regular open topologies) [12].
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that the property of being open has been shown to be often needed in connection with
uniformizability [22]). The equivalent ofopenlocales in the present setting is given by
formal spaces with apositivity predicate [30], namely a predicatePos(x), for x in S,
satisfying

i. Pos(a) anda � U imply (∃b ∈ S)b ∈ U & Pos(b) (monotonicity),
ii. a � U impliesa � U+ (positivity),

whereU+ ≡ {b ∈ U : Pos(b)}. We write Pos(U) for (∃a ∈ U)Pos(a). Classically, all
formal spaces (frames) are open (withPos(a) ≡ a ��∅). Note that one has¬Pos(U) ⇐⇒
U =S ∅, andPos(U) ⇒ U �=S ∅, while U �=S ∅ ⇒ Pos(U) in general cannot be
obtained constructively. The positivity predicate, thus, may be thought of as a way of
expressing positively the information that an open subset is non-empty.

3.2. The following definition of uniform formal space naturally generalizes that of metric
formal space [12]. We recall first some definitions from [12]:

Let Q+ be the set of positive rational numbers, and letd(x, r ), be a relation satisfying

1. d(a, r ) & r < r ′ → d(a, r ′), 2. d(a, r ) → ∃r ′(r ′ < r & d(a, r ′))

for all a in S, r ∈ Q+. We saythatd is anelementary diameterif

(o) a � ∅ → (∀r )d(a, r ),
(i) b � a → (d(a, r ) → d(b, r )),
(ii) S� {a : d(a, ε)}, for all ε in Q+.

Intuitively, d(a, r ) holds true when the diameter of the basic neighbourhooda is less than
r . Let Ch(S) ≡ {(a1, . . . , an) ∈ Pw(S) : Pos(ai ↓ ai+1), i = 1, . . . , n − 1} be the set of
chainsof S, anddefine, for(z1, . . . , zn) ∈ Ch(S) andr ∈ Q+,

lg((z1, . . . , zn), r ) ≡ (∃r1, . . . , rn ∈ Q+)(∀i )d(zi , r i ) & �n
1r i < r.

Denote the set of chains beginning witha and ending withb (i.e., the chains(z0, . . . , zn) ∈
Ch(S) suchthat z0 = a, zn = b) by Ch(a, b). The following relation may be used to
evaluate distances:

νd(x, y, r ) ≡ (∃(z0, . . . , zn) ∈ Ch(x, y))(lg((z1, . . . , zn−1), r );
that is,one hasνd(x, y, r ) when a chainof length less thanr exists connectingx andy.
We say that the distance betweenx andy is less thanr .

A gauge structureon a open formal topologyS is just a familyD ≡ {di }i∈I of
elementary diameters onS. Let lgi andνi be the length and distance relations associated
with eachdi , and let, for ī = {i1, . . . , i k} ⊆ I , δ ∈ Q+,

Wδ

ī
≡{(c1, c2) : (∀i ∈ ī )∃(c1, z1 . . . , zn, c2) ∈ Ch(c1, c2)lgi ((c1, z1, . . . , zn, c2), δ)}

(observe that(c1, c2) ∈ Wδ

ī
if and only if, for all i ∈ ī , νi (c1, c2, r i ), di (c1, si ), di (c2, ti ),

for somer i , si , ti suchthatr i + si + ti < δ, i.e. if and only if the distance betweenc1 and
c2 plus their diameters is less thanδ for everyi ∈ ī ).



G. Curi / Annals of Pure and Applied Logic 137 (2006) 126–146 135

Define

b �ī
δ a ≡ (∀(c1, c2) ∈ Wδ

ī
)c1 � b → c2 � a.

We say thatb is uniformly coveredby a, andwrite

b ∈ uc(a),

if

(∃i1, . . . , i k ∈ I)(∃δ ∈ Q+)b �ī
δ a.

A gauge structureD on a topologyS is compatibleif, for all a in S,

a � uc(a).

If D is a compatible gauge structure onS, thepair(S,D) is called a (open)uniform formal
topology, andS is said to beuniformizable. Note that the family of subsetsuc(x) for x ∈ S
satisfies property1.4, (∗) (with � = uc).

It is easy to see that in the particular case of acompatible gauge structure consisting of
a single elementary diameter, the uniformly covered relation collapses to the measurably
covered relation, and thus the resultinguniform topology is just a metric formal
topology [12]; thus, the concept of uniformizability naturally generalizes the notion of
metrizability in formal spaces.

The following simple lemma will be applied repeatedly.

Lemma. Assume b�ī
δ a, for somefinite ī ⊆ I andδ > 0, and let c be such that di (c, δ/2)

for all i ∈ ī , andPos(b ↓ c). Then c� a.

Proof. From Pos(b ↓ c), one obtainsc′ � b, c′ � c, Pos(c′). Sincec′ � c, one has
di (c′, δ/2) for all i ∈ ī . Thus(c′, c) is a chain shorter thanδ for all i ∈ ī , whence, by
b �ī

δ a, c � a. �

3.3. Remark. Uniform locales were first studied (classically) in Isbell [19], where these
are point-free versions of uniform spaces in the presentation via systems of coverings (see
also [28,29], where a non-constructive diametrization iscarried out for Isbell’s definition).
Johnstone [22] presents an intuitionistic theory of uniformizability and uniform locales,
described again in terms of coverings. This is probably the more natural way to define
uniformities in a point-free setting. However, it is still not clear (at least not to the
author) whether classically equivalent ways of introducing uniformities are such also in
the predicative and intuitionistic sense, and the definition given above, deriving from
that of gauge structure, seems more suited to a predicative context. This very naturally
generalizes the notion of constructive metrizability introduced in [12], allows us to obtain
the quantitative characterization of complete regularity to follow, and is the kind of
approach needed to carry the standard meaning to the notion of uniform continuity in
metric spaces (cf.4.1).

The concept of point-free uniformity just introduced was conceived with the aim,
recalled in the introduction, of describing points as Cauchy nets of neighborhoods, and
thus of giving a unified treatment of the set-indexing of classes of points presented here
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and in [12]. The notions in this section constitute just a sketch, far from being exhaustive,
of a constructive theory of uniformizability. A broader treatment of the topic, as well as the
analysis of the relationship between these definitions and those in Johnstone [22], are the
subject of a work in progress.

3.4. Now we show that gauge structures serve our purpose, namely they allow us to regard
complete regularity in quantitative terms.

Let I ≡ {p ∈ Q : 0 ≤ p ≤ 1}. Given two subsetsU, V of S, ascalefrom U to V is a
family of subsetsUp of S, indexed byI, with U0 = U , U1 = V , and such that, for all p, q
in I, p < q impliesS� U∗

p ∪ Uq (i.e.Up well covered byUq). If a scale exists fromU to
V we say thatU is really coveredby V . S is completely regularif it comes equipped with
an indexed familyrc(a) (a ∈ S) of subsets ofS suchthat

rc1: for all a ∈ S, a =S rc(a), and
rc2: for all a, b in S, if b ∈ rc(a), {b} is really covered by{a}.
As for the familywb, one may always assume thatthe familyrc satisfies property1.4, (∗)
with � = rc [12]. Observe that a completely regular topology is also regular, since for all
a, rc(a) ⊆ wc(a).

Remark. A more satisfactory equivalent of the notion of complete regularity may be given
for those formal spacesS for which the class of real-valued continuous functions forms a
set [13]. Observe also that in type theoryS completely regularmeansthatone has a set-
indexed family(U(a,b,i ))b∈rc(a),i∈I that, for fixeda, b with b ∈ rc(a), is a scale fromb to
a. In choice-free contexts, complete regularity does not come with such a choice of a scale
for eacha, b as above (P. Aczel drew the author’s attention to this point). We may define
this version of the notion ‘strong complete regularity’.

Now letS be a (strongly) completely regular formal topology. With each pair(a, b) in S
suchthatb ∈ rc(a) one may associate an elementary diameter as follows (cf. [12]): from
b ∈ rc(a) one obtains a scaleUp (p ∈ I) from b to a. DefineVp (p ∈ I) by Vp = Up

for all p < 1, andV1 = S. The elementary diameterda,b associated witha, b is given by
da,b(x, r ) if andonly if

(∃p ∈ I)(x � Vp & p < r )

∨ (∃p1, p2 ∈ I)(x � Vp1 & (x ↓ Vp2) � ∅ & p1 − p2 < r ).

This association leads to theuniformizationof completely regular topologies. Similarly
to the metrization result in [12], this consists in ‘transforming’ the really covered relation
into the uniformly covered relation. First, we need to ‘extend’ the diametersda,b to finite
subsets: foru = (u1, . . . , un) ∈ Pω(S) andr ∈ Q+, defined̄a,b(u, r ) as

(∃p ∈ I)(u � Vp & p < r )

∨ (∃p1, p2 ∈ I)(u � Vp1 & (u ↓ Vp2) � ∅ & p1 − p2 < r ).

In [12, 4.3 and 4.4] we proved that:

i. For all u in Pω(S), (b ↓ u) �� ∅ andd̄a,b(u, 1) implies u� a.
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ii. For all u, v in Pω(S) such that (u ↓ v) �� ∅, d̄a,b(u, r1) and d̄a,b(v, r2) imply
d̄a,b(u ∪ v, r1 + r2).

We then have the announced:

Theorem. Given any (strongly) completely regular open topology(S, rc), the pair
(S, {da,b}b∈rc(a)) is a uniform formal topology.

Proof. SinceS is completely regular, it is enough to prove that

b ∈ rc(a) → b ∈ uc(a).

Givena, b ∈ Ssuchthatb ∈ rc(a), we show thatb�
(a,b)
1 a, i.e. that,if (c1 = z0, . . . , zn =

c2) is a chain inCh(c1, c2), with c1 � b and lg(a,b)((z0, . . . , zn), 1), then c2 � a. By
lg(a,b)((z0, . . . , zn), 1), one has

(∃r0, . . . , rn ∈ Q+)(∀k ≤ n)da,b(uk, rk) & �n
0rk < 1.

By ii above, this implies d̄a,b((u1, . . . , un), 1), whence, by i, we conclude that
{u1, . . . , un} � a. �

3.5. Classically, uniformizabilitycoincideswith complete regularity. Intuitionistically,
a counterexample to ‘uniformizable implies regular’ is given in [22], with respect to
the notion of uniformity there adopted: every discrete locale is there shown to have
a uniformity. We can showthat actually this is even metrizable, whence in particular
uniformizable in the present sense: define on the discrete formal spaceD(X) ≡
(X,∈,Pos ≡ True) an elementary diameter by lettingd(x, r ) ≡ True. We leave it as
an easy exercise to verify that this is indeed a compatible elementary diameter.

Now let S be a formal topology, and{di }i∈I be any gauge structure onS. For ī =
i1, . . . , i t ∈ I, b ∈ S and p > 0, letU p

b,ī
≡ {c2 ∈ S : (∃c1 � b)(∀i ∈ ī )(∃(b0, . . . , bn) ∈

Ch(c1, c2))lgi ((b0, . . . , bn), p)}, U0
b,ī

≡ {b}. Then, if for all such ī , p and for allb, c ∈ S,

Pos(c ↓ U p
b,ī

) is decidable, we have that

b ∈ uc(a) impliesb really covered bya

(the scaleUp (p ∈ I) is constructed as follows: letb ∈ uc(a), i.e. (∃i1, . . . , i k ∈ I)(∃δ ∈
Q+)b �ī

δ a. Then letδ∗ = min{δ, 1} and letU0 = {b}, U1 = {a}, Up ≡ U pδ∗
b,ī

, for
0 < p < 1. Recalling that, for eachi , di is an elementary diameter, and hence that
S� {a : di (a, ε)}, for all ε in Q+, it is an easy exercise to prove thatthis family indeed
yields the required scale).

Thus,a uniform open topology in whichPos(c ↓ U p
b,ī

) is decidable for all̄i ∈ I, p > 0

and for all b, c ∈ S, is completely regular.6 These considerations show in particular that
(classically) uniformizability is invariant under isomorphisms since complete regularity is
(constructively) such; this also holds true constructively (but the proof is omitted).

6 Note that this generalizes [12, 3.7]. Note also that the decidability ofPos(x ↓ y) suffices for having that a
uniformizable topology is regular.
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3.6. The following proposition establishes a connection between the notions of way-below
and uniformly covered, refining that betweenway-below and measurably covered proved
in [12].

Proposition. Let S be any uniform open topology. If b is way-below a, then b∈ uc(a).
Thus, ifS is locally compact, we have

wb(a) ⊆ uc(a),

for all a.

Proof. Let b be way-belowa. Sincea � uc(a), there areb1, . . . , bk in uc(a) suchthat
b � {b1, . . . , bk}. Thus, fors = 1, . . . , k, bs �ī s

δs a for someī s, δs. Let δ = mins{δs}/2,

ī = ⋃
s ī s. Thenb �ī

δ a: assume that, forc1 � b, c2 ∈ S, and for alli ∈ ī there is(c1 =
z0, . . . , zm = c2) in Ch(c1, c2) with lgi ((z0, . . . , zm), δ). Sincec1 � b, b � {b1, . . . , bk},
andPos(c1), by monotonicity of the positivity predicate one obtainsPos(bs ↓ c1) for
somes. Thus there isc′

1 � c1, c′
1 � bs suchthatPos(c′

1). Sincec′
1 � c1, we havedi (c′

1, r )

for all r for which di (c1, r ). In particular,di (c′
1, δ) for all i ∈ ī . But thenwe have, for all

i ∈ ī s, a chain (c′
1, c1 = z0, . . . , zm = c2), with lgi ((c

′
1, z0, . . . , zm), 2δ). Since 2δ ≤ δs,

by bs �ī s

δs a we may concludec2 � a. Thus,b �ī
δ a. �

3.7. A compact regular topology is (strongly) completely regular (using dependent choice;
cf. [12]), and hence uniformizable. We conclude this section by showing that – again
invoking countable dependent choice – in a locally compact regular topology, ‘way-
below’ implies ‘really covered’, and hence also thatlocally compact regular topologies
are completely regular.

It is a well known fact that inthe lattice-theoretic context the way-below relation
interpolates. The following lemma establishes (little more than) the corresponding property
in our setting.

Lemma. Let S be locally compact, and let U, V be subsets of S with V way-below U.
Then there is a finite subsetz̄ of S suchthat V is way-below̄z andz̄ is way-below U.

Proof. By local compactness,U �
⋃

a∈U
⋃

b∈wb(a) wb(b). SinceV is way-belowU , there
is a finite subset̄w ⊆ ⋃

a∈U
⋃

b∈wb(a) wb(b) suchthatV � w̄. If w = ∅, the thesis holds
true trivially. Let w̄ = {c1, . . . , ck}, with ci ∈ wb(bi ), bi ∈ wb(ai ) for someai ∈ U . Then
the requiredz̄ is given byz̄ ≡ {b1, . . . , bk}. Indeed, letM ⊆ Sbe such that̄z � M. For all
ci ∈ w̄ there is a finite subset̄mi ⊆ M suchthatci � m̄i (since eachci ∈ wb(bi )). Thus
w̄ �

⋃
i mi ≡ m̄, whenceV � w̄ � m̄, that proves thatV is way-below z̄. To prove that

z̄ is way-belowU , let N ⊆ S be such thatU � N. Then for eachbi ∈ z̄, there isa finite
n̄i ⊆ N suchthatbi � n̄i , whencez̄ �

⋃
i n̄i ≡ n̄. �

3.8. Now we just need to prove the following:

Proposition. LetS be regular. Then, given U, V subsets of S, V way-below U implies V
well covered by U.
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Proof. By regularity, U �
⋃

a∈U wc(a). Then (sinceV is way-below U ), V � m̄, with
m̄ ≡ {b1, . . . , bk}, a finite subset of

⋃
a∈U wc(a). Then it suffices to prove thatS�m̄∗ ∪U .

For eachbi ∈ m̄ there isai ∈ U such that bi ∈ wc(ai ), i.e. S � b∗
i ∪ ai . Thus,

S � (b∗
1 ∪ U) ↓ . . . ↓ (b∗

k ∪ U). Therefore, S � (b∗
1 ↓ . . . ↓ b∗

k) ∪ U , whence
S� {b1, . . . , bk}∗ ∪ U , i.e. S� m̄∗ ∪ U . �

Corollary∗. A locally compact regular topologyS is (strongly) completely regular with
rc(a) = wb(a) for all a.

Proof. Given b ∈ wb(a), using the interpolation property3.7, Proposition 3.8, and
applying dependent choice, construct the required scaleUp (p ∈ I). �

Note that in considering locally compact (strongly) completely regular topologies in the
absence of choice principles, one may as well take the familyrc to coincide with the
family wb (by [12, 2.8]).

4. The category of uniform formal topologies

In this section the categoryUFT of uniform formal topologies and uniform morphisms
is introduced, and the relation of this with the standard category of uniform spaces is
sketched.

4.1. Let (S, {di }i∈I) be any uniform formal space; recall that we defined, forī = i1, . . . , i k
in I , δ in Q+,

Wδ

ī
≡ {(c, d) : (∀i ∈ ī )∃(c, z1 . . . , zn, d) ∈ Ch(c, d)lgi ((c, z1 . . . , zn, d), δ)}.

A morphism f : S1 → S2 between two uniform topologies(S1, {di }i∈I) and
(S2, {dj } j ∈J ) is said to beuniform if, for all i ∈ I, ε > 0, there arēj = { j1, . . . , jn} ⊆
J, δ > 0 such that, for alla, b ∈ S1, c, d ∈ S2,

(c, d) ∈ Wδ
j̄

& c � f (a) & d � f (b) → νi (a, b, ε).

(This definition expresses in the present setting the condition requiring the counter-image
of an element of the pre-base of the uniformity on the co-domain to contain a basic element
of the uniformity on the domain.) Observe that, when the gauge structures consist of a
single elementary diameter, the above condition reduces to the following one: for allε > 0
there isδ > 0 such that, for all a, b ∈ S1, c, d ∈ S2,

ν2(c, d, δ) & c � f (a) & d � f (b) → ν1(a, b, ε),

which gives the point-free version of the familiarε–δ condition for uniform continuity in
metric spaces. With this notion of morphism, uniform formal topologies form the category
UFT (composition is defined as composition of the underlying morphisms; although
posing no particular difficulty, the proof that the composite of two uniform morphisms
is auniform morphism requires some work).

The rest of this section is devoted to sketching some basic facts concerning the relation
betweenUFT and the usual category of uniform spaces. Familiarity with the notions of
sober space and spatial locale/formal space is presupposed here (see e.g. [18,12]).
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4.2. Assume(X,U) is any uniform space, whereX is a set and the uniformityU = U(D)

is presented by the family of pseudo-metricsD = {ρi }i∈I (cf. [4]). One associates with
(X,U) a uniform formal space(SX, {di }i∈I) as follows: assumeBX is any set indexing a
base of the uniform topology onX (observe that whenX is a set, the set of finite inhabited
subsets ofX × Q+ × I is a set of indices for the standard base). Then the base whose
elements are the unions of any pair of elements of the base indexed byBX is set-indexed
by BX × BX. DefineSX as BX × BX, and let, for x ∈ SX, ext(x) be the basic open
indexed byx. Define the cover�X as point-set inclusion (that is,a �X U if and only if
ext(a) ⊆ ⋃

b∈U ext(b)), andPos(a) true if and only if ext(a) contains a point. Finally, let
{di }i∈I be the family of elementary diameters defined by: fori ∈ I, a ∈ SX, di (a, r ) if
and only if for allx, y in ext(a), one hasρi (x, y) < r ′ < r (i.e., iff the standard point-set
diameter associated with the pseudo-metricρi is strictly less thanr on ext(a)). It is not
difficult to check that the pair(SX, {di }i∈I) thus defined is a uniform formal space.

4.3. For i ∈ I , α, β ∈ P t (SX), r ∈ Q+, let

ρ̄i (α, β, r ) ≡ (∃r ′ < r )(∀a ∈ α, b ∈ β)νi (a, b, r ′).7

If X is sober, one hasP t (SX) ∼= X. If αx is the formal point associated withx under
the bijection X ∼= P t (S), one also hasρi (x, y) < r ⇐⇒ ρ̄i (αx, αy, r ), so that
ρ̄i (αx, βy) ≡ inf {r : ρ̄i (αx, βy, r )} (exists and) coincides withρi (x, y) (recall that the reals
are not order-complete intuitionistically). Thus, for every sober uniform space(X, {ρi }i∈I ),
(X, {ρi }i∈I ) ∼= (P t (SX), {ρ̄i }i∈I ).

If (S, {di }i∈I) is any uniform formal topology, the topology induced onPt(S) by the
family {ρ̄i (α, β, r )}i∈I , namely that having as base the finite intersections of balls of
the form Bi (α, r ) ≡ {β : ρi (α, β, r )}, coincides with the spatial topology onP t (S).
Thus,a sober space X is uniformizable by a family of pseudo-metricsD = {ρi }i∈I if
and only ifSX is uniformizable by a family{di }i∈I of elementary diameters such that
ρ̄i (α, β) ≡ inf {r : ρ̄i (α, β, r )} exists in R for all i ∈ I , α, β ∈ P t (S).

4.4. If f : X → Y is any uniformly continuous function between two uniform spaces
X, Y, then, in particular, it is continuous. One easily checks that the morphismf ∗
betweenSY andSX associated withf ( f ∗(a) = f −1[ext(a)]) is uniform. Conversely,
if g : (S2, {dj } j ∈J) → (S1, {di }i∈I ) is a uniform morphism, the continuous map (for
the spatial topologies) induced on the collection of pointsgpt : P t (S1) → P t (S2)

(gpt(α) = ⋃
a∈α{b ∈ S2 : a ∈ g(b)}; cf. [30]) is uniformly continuous (in the sense

that for all j ∈ J, ε > 0 there isa finite ī ⊆ I andδ > 0 such that, if ρ̄i (α, β, δ) for all
i ∈ ī , thenρ̄ j (gpt(α), gpt(β), δ)). Thus, a mapf : X → Y between two sober uniform
spacesX, Y is uniformly continuous if and only iff ∗ : SY → SX is auniform morphism.

Denote with UFT∗
Sp the full subcategory ofUFT whose objects are those spatial

uniform topologies (S, {di }i∈I) for which P t (S) is (isomorphic to) a set and̄ρi (α, β)

exists in R for all i ∈ I , α, β ∈ P t (S). A few more steps show that there is a duality
between the category of sober uniform spaces andUFT∗

Sp. A more detailed and exhaustive

7 Note that these relations may be regarded as pseudo-metrics [12].
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discussion on the relationships between these two categories, and betweenUFT and
existing categories of uniform locales, will be presented elsewhere.

5. Weakly complete formal spaces

Now we are in a position to show that the points of a compact regular open formal
topology may be identified with generalized sequences that contain, for each diameter in
the associated gauge structure, an arbitrarily small neighbourhood (Cauchy nets of basic
neighborhoods). This corresponds to Cauchy completeness of the uniformity associated
with a compact Hausdorff space. One may thus expect this result to hold for (the point-free
counterpart of) all Cauchy complete uniform spaces; in this section the result is proved
indeed for an even wider class of uniform topologies, that of weakly Cauchy complete
topologies, which contains, beside Cauchy complete topologies, locally compact uniform
formal topologies. The notion of weak completeness plays here just an auxiliary role. It
allows us to regard uniformly, in terms of a concept of completeness, the solution to the
problem of representing the collection ofpoints as a set for formal spaces belonging to
different classes.

5.1. Let SD ≡ (S, {di }i∈I ) be any uniform topology, and letuc′(a)(a ∈ S) be a family of
subsets ofSsuchthatuc′(a) ⊆ uc(a), a�uc′(a) for all a, andsatisfying condition1.4(∗)
(with � = uc′). We call a subsetα of S (filtering and)uniform with respect to uc′ (often
simplyuniform) if it satisfies conditions 1, 2 of Section 2, and

3′. a ∈ α → Pos(a),

4′. a ∈ α → (∃b)(b ∈ uc′(a) & b ∈ α).

We say that auniform subset is aCauchy uniform subset ofSD with respect to uc′ (often
simply a Cauchy uniform subset) if it also satisfies

5′. (∀ε ∈ Q+)(∀i ∈ I)(∃a)(a ∈ α & di (a, ε)).

Cauchy uniform subsets may be regarded as an elementary alternative to the classical
notion of round Cauchy filters.

Clearly, given any uniform topologySD, thepoints ofSD are Cauchy uniform subsets
with respect touc′, for everyuc′ as above (bya � uc′(a), 3.2, ii, and by 1.3, iii). The
converse may be false foreverysuchuc′. When it is the case that the points ofSD coincide
with its Cauchy uniform subsets for a given familyuc′, SD is said to beweakly (Cauchy)
complete(with respect touc′). A formal topology isweakly completeif it is isomorphic to
auniform topology(S,D) weakly complete with respect touc′ for some family uc′.

Note, finally, that the Cauchy uniform subsets are maximal among uniform subsets, in
the sense that, ifβ is a Cauchy uniform subset andα is anyuniform subset,β ⊆ α implies
α = β: indeed, letb ∈ α. By 4′ there isb′ ∈ α suchthatb′ �ī

δ b for someδ and ī . Since
β ⊆ α, for all c ∈ β we havePos(c ↓ b′) (by 3′, 2). Moreover, sinceβ satisfies 5′, we
can choosec ∈ β suchthatdi (c, δ/2) for all i ∈ ī (by 5′, 2 and3.2, i). Sinceb′ �ī

δ b, by
Lemma3.2one hasc � b, andby 2 (with a = b), we conclude thatb ∈ β.
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5.2. For U in the frameOpen(S) (1.1), definedi (U, r ) ⇐⇒ (∃r ′ < r )(∀a, b ∈
Pos)(a�U & b�U → νdi (a, b, r ′)). A Cauchy filteronOpen(S) is a filterF onOpen(S)

such that for all i ∈ I, ε ∈ Q+ there isU in F with di (U, ε). Rephrasing in this context the
notion of Cauchy completeness for spaces and locales [5] one may define(S, {di }i∈I ) as
beingCauchy completeif every Cauchy filterF onOpen(S) contains a point ofS. Clearly,
every sober uniform space(X,U) is complete if and only if its point-free representation as
auniform topology(SX, {di }i∈I) (4.2) is Cauchy complete.

However, the notion of Cauchy completeness seems of rare use in predicative contexts.8

What matters here is that:

Proposition. Every Cauchy complete uniform topology is weakly Cauchy complete for
every family uc′ as above.

Proof. The Cauchy uniform subsets correspond to a subcollection of Cauchy filters on
Open(S), and since allthe latter converge, so do the former: assumeα is a Cauchy uniform
subset onS; definea filter Fα ⊆ Open(S) by U ∈ Fα ⇐⇒ (∃a ∈ U)a ∈ α. Using the
fact thatα is Cauchy, one easily proves thatFα is a Cauchy filter. By Cauchy completeness,
Fα contains a pointβ of S. This implies thatβ ⊆ α, but sinceβ is also a Cauchy uniform
subset, by maximality one concludes thatβ = α. �

5.3. Now we show that every locally compact uniform topology — and hence, every locally
compact (strongly completely) regular open topology is weakly Cauchy complete.

Let uc′ = wb. By Proposition3.6(and by1.4(∗)) uc′ satisfies therequired properties.
Now, a formal pointα of a locally compact formal topologytrivially satisfies the condition
a ∈ α → (∃b)(b ∈ wb(a) & b ∈ α), andhence is a uniform subset with respect towb
(the left implication in condition 2 follows from1.3, iii, and 3′ is obtained by positivity
and again1.3, iii). Furthermore, in a uniform formal topology, formal points contain
‘arbitrarily small’ neighborhoods, according to each one of the diameters in the gauge
structure (by3.2, ii and 1.3, iii), i.e., condition 5′ is satisfied. Thus, in a locally compact
uniform topology, the points are Cauchy uniform subsets with respect towb. But also the
converse holds true:

Theorem. Let (S, {di }i∈I) be a locally compact uniform formal topology. A subsetα of S
is a formal point ofS if and only if it is a Cauchy uniform subset ofS with respect towb.

Proof. Letα be a Cauchy uniform subset with respect towb. Conditions1.3, i, ii and iv are
trivially satisfied. Then leta ∈ α, U ⊆ Sanda�U . Sinceα is uniform with respect towb,
the subsetU may be assumed to be finite (cf. [12, Lemma 5.2]);then letU = {a1, . . . , at }.
By 4′, there isb in α, b ∈ wb(a). SinceS is auniform topology, fors = 1, . . . , t , we have
as � uc(as). Then, by local compactness,b � Ub, with Ub finite subset of

⋃t
s=1 uc(as).

8 This notion has anyway a rather peculiar behavior in point-free topology, even in topoi; see [5, pg. 75].
In [5] the relation of Cauchy completeness of a uniform locale with the following different, properly stronger,
concept of completeness for localic uniformities is also analyzed: a uniform frameL is said to becomplete(in
the sense of Ǩríž) whenever every dense and surjective uniform homomorphism from a uniform frameL ′ to L is
an isomorphism.
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Let Ub ≡ {c1, . . . , ck} where, for all j = 1, . . . , k, cj ∈ uc(as) for somes, i.e., cj �ī j

δ j as

for someδ j , andī j . Let δ∗ = min1≤ j ≤k{δ j }/2, ī = ⋃k
j =1 ī j .

Considerb′ in α suchthat di (b′, δ∗) for all i ∈ ī andb′ � b (this exists since for all
i ∈ ī there isbi ∈ α suchthatdi (bi , δ

∗); the set of thesebi is finite, thus, fromb in α and
condition 2 we obtain the requiredb′). Sinceb′ � b � Ub, by ↓-right and monotonicity,
one hasPos(b′ ↓ Ub), i.e., there isk suchthatPos(b′ ↓ ck). By cj �ī j

δ j as for all j and

somes, andby di (b′, δ∗), with δ∗ ≤ min{δ j }/2 for all i ∈ ī , applying Lemma3.2we get
b′ � as for somes, whenceas ∈ α (by 2, with a, b both equal toas), as desired. �

5.4. Now we can prove that the Cauchy uniformsubsets may be identified with a set of
‘shrinking’ generalized sequences (Cauchy nets of basic opens). LetV ≡ P∗

ω(I) × Q+,
with P∗

ω(I) the set ofinhabited finite subsets ofI. Consider the following predicateDc,
defined on the set of functions from the setV to S: for f : V → S, Dc( f ) is to be true if
and only if

(∀v1, v2 ∈ V)(∃v ∈ V)( f (v) ∈ f (v1) ↓ f (v2)) &

& (∀v ∈ V)[
Pos( f (v)) &

& (∃v′ ∈ V) f (v′) ∈ uc′( f (v)) &

& (∀i ∈ īv)di ( f (v), εv)]
where(īv, εv) = v (compare2.2). One easily checks that, givenf suchthat Dc( f ) true,
Ff ≡ {a ∈ S : (∃v ∈ V) f (v) � a} satisfies conditions 1–5′, and thus is a Cauchy uniform
subset ofS.

Conversely, given a Cauchy uniform subsetα, define fα as follows: forī ∈ P∗
ω(I), ε ∈

Q+, by 5′, 2 we havec ∈ α suchthatdi (c, ε/2) for all i ∈ ī . This yields a (choice) function
defined by

fα(v) = c,

for v = (ī , ε) (the type-theoretic definition isfα(v) = p(k(v)), wherek(v) is a proof of
(∃c ∈ α)(∀i ∈ p(v))di (c, q(v)/2), andp, q are the projections related to the

∑
type).

Proposition. Dc( fα) true and Ffα = α.

Proof. The first property to check is(∀(ī1, ε1), (ī2, ε2))(∃(ī3, ε3))( fα((ī3, ε3)) ∈
fα((ī1, ε1)) ↓ fα((ī2, ε2))). Since fα((ī1, ε1)) and fα((ī2, ε2)) belongs toα, there isc ∈ α,
c ∈ fα((ī1, ε1)) ↓ fα((ī2, ε2)); there is, moreover,c′ in α, c′ ∈ uc′(c), whencec′ �ī

δ c for
someī ∈ P∗

ω(I), δ ∈ Q+. We havePos( fα((ī , δ)) ↓ c′) (since fα((ī , δ)), c′ both belong

to α). Then, byc′ �ī
δ c and Lemma3.2, one obtainsfα((ī , δ))�c (recall that, by definition

of fα , di ( fα((ī , δ)), δ/2) for all i ∈ ī ). We may thus put(ī3, ε3) = (ī , δ).
To show that∀(ī , ε)∃( j̄ , ε′)( fα(( j̄ , ε′)) ∈ uc′( fα((ī , ε))), one uses again the same

trick: since fα((ī , ε)) belongs toα, there arec, c′ in α such that c ∈ uc′( fα((ī , ε))),

c′ ∈ uc′(c). Reasoning as above, byc′ �
j̄
δ c for some j̄ ∈ P∗

ω(I) and δ ∈ Q+, one
obtains fα(( j̄ , δ)) � c. Thus, sincec ∈ uc′( fα((ī , ε))), one concludes thatfα(( j̄ , δ)) ∈
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uc′( fα((ī , ε))). The verification of theother properties is straightforward. Finally, to prove
Ffα = α, argue as in the proof of Proposition2.4. �

We have thus proved the following

Theorem∗. The collection of points of a weakly complete formal spaceS is isomorphic to
a set.

Remark. Recall that a compact (strongly completely) regular open topology is locally
compact (strongly completely) regular (withwc = rc = wb [12]). By 3.4, every such
topology is uniform, and by5.3 it is weakly complete with respect towb; thus, the above
result generalizes Corollary2.4(considered in the subcategory of open formal spaces). At
the same time, this generalizes [12, 5.3].

The Cauchy uniform subsets may be regarded as Cauchy nets in the following sense:
define a directed partial order onP∗

ω(I) × Q+ by letting (ī1, ε1) ≤ (ī2, ε2) ⇐⇒ ī1 ⊆
ī2 & ε2 ≤ ε1. We may thus regard a mappingf : P∗

ω(I) × Q+ → S as a net of basic
neighborhoods. One may describe asuniform those nets onP∗

ω(I) × Q+ satisfying the
clauses inDc except the last one, and say that a uniform net isCauchy if it moreover
satisfies the following condition: for alli , ε there is(ī ′, ε′) suchthatdi ( f (ī ′′, ε′′), ε) for all
(ī ′′, ε′′) ≥ (ī ′, ε′). In thiscase we say thatD′

c( f ). Clearly, given f suchthat D′
c( f ), F f is

a Cauchy uniform subset, and sinceDc( f ) ⇒ D′
c( f ), givenany Cauchy uniform subset

α, there is fα with D′
c( fα) andFfα = α.

6. Conclusion and related work

The identification of the points of a formal space with (uniform) Cauchy nets is
considerably more informative than the representation in2.4. In a weakly Cauchy complete
metric formal spaceS, for instance, it allows us not just to say that the points ofS form
a set, butalso that (some) pointsexist: starting from any positive neighbourhooda, using
the principle of dependent choice, one can easily build a Cauchy uniform net to whicha
belongs (this is more easily recognized by observing that, in these hypotheses, nets can be
replaced by sequences; cf. [12]).

The construction of the collection of points of a regular (locally) compact formal space
as a set in2.4 has circulated in the form of a draft since June 2001. The result was first
presented at a conference in April 2002. On that occasion, P. Aczel suggested that a choice-
free version of the construction might probably be obtained in the constructive set theory
CZF. This appears in [3], where also generalizations ofthis result (in particular to set-
presentable and regular formal topologies) are described.

Another (type-theoretical) generalization of Corollary2.4is due to E. Palmgren: making
use of a particular kind of type universe and exploiting (a form of) dependent choice, it is
shown in [27] that the collection of points of a set-presented formal topology whose points
are maximal forms a set in Martin-Löf type theory (a corresponding result is shown to hold
in the constructive set theory CZF+ uREA+ DC in [3]).

Applications of the representations obtained in this paper may be in the following
direction: in the formalization/development of mathematics in constructive type/set
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theories, the carriers of the mathematical structures under consideration (rings, metric or
vector spaces, spaces of functionals,. . . ) are generally required to be sets (see e.g. [2,6].
Notethat this is always required also in the context of Bishop’s constructive mathematics).
It may be nontrivial to show that this requirement is actually met by a given class, or by the
class yielded by a particular construction (as, for instance, for the completion of a uniform
space). The results in this, and the related papers mentioned, may be instrumental in this
sense.

References

[1] P. Aczel, The type-theoretic interpretation of constructiveset theory, in: A. MacIntyre, L. Pacholski, J. Paris
(Eds.), Logic Colloquium’77, North-Holland, 1979, pp. 55–66.

[2] P. Aczel, Galois: A Theory Development Project, Report for the 1993 Turin meeting on the Representation
of Mathematics in Logical Frameworks.

[3] P. Aczel, Aspects of general topology in constructive set theory, Ann. Pure Appl. Logic (in press)
doi:10.1016/j.apal.2005.05.016.

[4] E. Bishop, D. Bridges, Constructive Analysis, Springer-Verlag, Berlin, 1985.
[5] B. Banaschewski, A. Pultr, Samuel compactification and completion of uniform frames, Math. Proc. Camb.

Phil. Soc. 108 (1990) 63–78.
[6] V. Capretta, Universal algebra in type theory, in: Y. Bertot, G. Dowek, A. Hirschowits, C. Paulin,

Laurent Théry (Eds.), Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, LNCS, vol. 1690, Springer, 1999, pp. 131–148.

[7] J. Cederquist, T. Coquand, Entailment relations and distributive lattices, in: S.R. Buss et al. (Eds.), Logic
Colloquium’98, Proceedings of the Annual European Summer Meeting of the Association for Symbolic
Logic, Prague, Czech Republic, August 9–15, 1998, Lect. Notes Log., vol. 13, A K Peters, Ltd, Natick,
MA, 2000, pp. 127–139.

[8] T. Coquand, A direct proof of the localic Hahn–Banach Theorem (unpublished).
[9] T. Coquand, Formal compact Hausdorff spaces, unpublished note.

[10] T. Coquand, G. Sambin, J. Smith, S. Valentini, Inductively generated formal topologies, Ann. Pure Appl.
Logic 124 (1–3) (2003) 71–106.

[11] G. Curi, The points of (locally) compact regular formal topologies, in: P.M. Schuster et al. (Eds.), Reuniting
the Antipodes—Constructive and Nonstandard Views of the Continuum, Synthèse Library, vol. 306, Kluwer
Academic Publishers, Dordrecht, 2001, pp. 39–54.

[12] G. Curi, Constructive metrizability in point-free topology, Theoret. Comput. Sci. 305 (2003) 85–109.
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