A note on some factorized groups

Enrico Jabara

Received 22 October 2003
Available online 30 April 2004
Communicated by Gernot Stroth

1. Introduction

A group G is (properly) factorizable if it contains two (proper) subgroups A and B such that $G = AB$, that is $G = \{ab \mid a \in A, b \in B\}$. A classical problem in group theory is to study how the structure of the two factors A and B determines the structure of the group G. For example, if A and B are abelian, G is metabelian by a well-known result of Itô [1, Theorem 2.1.1].

In this paper we study the structure of a group $G = SH$ factorized by an elementary abelian group S of exponent 2 and a periodic group H without involutions. Our main result is

Theorem. Let $G = SH$ be a group factorized by S, a subgroup of exponent 2, and H, a periodic group without elements of even order. If H is hypercentral then G is hyper-abelian; moreover, if H is soluble with derived length d, then G has derived length at most $2d$.

The preceding theorem is one of the few results on factorized groups without further assumptions on G (as, for example, the solubility or the residual finiteness), as can be easily verified, for example, in [1] and in its references.

2. Notation and preliminary results

If G is a group, we denote by $\pi (G)$ the set of primes p for which there exists an element of G whose order is divisible by p. The other notation is standard (as in [1] or [3]).

We shall denote by G a group satisfying the following condition:

E-mail address: jabara@dsi.unive.it.

0021-8693/$ – see front matter © 2004 Elsevier Inc. All rights reserved.
\textbf{Lemma 2.} \textit{Any normal subgroup of }\Delta\textit{ and therefore }\mathcal{X} = (\ast)\textit{ Lemma 1. Every }g \in G\textit{ can be uniquely written as }g = ax\textit{ with }a \in S\textit{ and }x \in H.\

\textbf{Proof.} Otherwise, there exist }b \in S,\ y \in H\textit{ with } (a, x) \neq (b, y)\textit{ and }g = by.\textit{ Then }ax = by,\ ba = yx^{-1}\textit{ and since }S\textit{ is an elementary abelian group, }yx^{-1}\textit{ should be an involution, against the hypothesis.} \quad \square

We recall that a subgroup }X\textit{ of }\Delta\textit{ is factorized if }X = (A \cap X)(B \cap X)\textit{ and }A \cap B \leq X\textit{ (see [1, Lemma 1.1.1]).}

\textbf{Lemma 2.} \textit{Any normal subgroup of }G\textit{ is factorized.}\

\textbf{Proof.} If }N\textit{ is a normal subgroup of }G,\textit{ in }\overline{G} = G/N\textit{ we have }\overline{S} \cap \overline{H} = \{1\}\textit{ because }\pi(\overline{S}) \cap \pi(\overline{H}) = \emptyset.\textit{ The statement is then a consequence of Lemma 1.1.2(iii) in [1].} \quad \square

We denote by }O_2(G)\textit{ the maximal normal periodic 2-subgroup of }G\textit{ (by the preceding lemma, }O_2(G) \subseteq S).\textit{ We also denote by }O_2'(G)\textit{ the maximal normal periodic 2' subgroup of }G\textit{ (by the preceding lemma, }O_2'(G) \subseteq H).\textit{ If }g \in G\textit{ is a periodic element of the group }G,\delta(g)\textit{ denotes the order of }g\textit{ and }\delta(g) = 2^a\delta'(g)\textit{ with } \langle 2, \delta'(g) \rangle = 1.\textit{ The following lemma is essential to obtain our results.}

\textbf{Lemma 3.} \textit{The group }\langle S, Z(H) \rangle\textit{ is factorized and }\langle S, Z(H) \rangle = SH_1\textit{ with }H_1\textit{ an abelian subgroup of }H.\textit{ In particular, }\langle S, Z(H) \rangle\textit{ is metabelian.}\

\textbf{Proof.} The group }\langle S, Z(H) \rangle\textit{ is certainly factorized since it contains }S,\textit{ one of the factors of }G.\textit{ Then we can write }\langle S, Z(H) \rangle = SH_1\textit{ with }H_1\textit{ a subgroup of }H.\textit{ As already observed, }S \cap H = \{1\}\textit{ and therefore, to prove that }H_1\textit{ is abelian, we can suppose }O_2(G) = \{1\}.\textit{ Let }a \in S,\ z \in Z(H)\textit{; then }a^z = bx\textit{ for some }b \in S\textit{ and }x \in H.\textit{ We put }\delta = \delta(x) = \delta'(x).\textit{ Since }a^z\textit{ has order 2, we have } (bx)^2 = 1\textit{ and }x^b = x^{-1};\textit{ then }b = xa^z\textit{ and therefore }x^a^z = x^{-1};\textit{ finally, since }z \in Z(H)\textit{ we also have }x^a = x^{-1}.\textit{ Therefore the element }ab\textit{ of }S\textit{ centralizes }x\textit{ and: }\[[a, z] = aa^z = abx \quad \text{with } \delta = \delta'(\{a, z\}).\]

We consider the set }\Delta = \{[a, z]^y | a \in S,\ z \in Z(H),\ \delta = \delta'(\{a, z\})\}.\textit{ We have }\Delta \subseteq S\textit{ and therefore }\Delta\textit{ is normalized by }S\textit{ (which is abelian). Let }a \in S,\ z \in Z(H),\ y \in H\textit{ and }a^y = y'\textit{, for some }a' \in S\textit{ and }y' \in H,\textit{ then }[a, z]^y = [a^y, z] = [a', z].\textit{ Moreover, since }[a, z]\textit{ and }[a', z]\textit{ are conjugate, they have the same order and therefore }\delta'(\{a, z\}) = \delta'(\{a', z\}) = \delta.\textit{ Then }([a, z]^y)^y \in \Delta\textit{ for any }y \in H\textit{ and }\Delta\textit{ is normalized by }H.\textit{ The subgroup }
\(\langle \Delta \rangle \) is a normal subgroup of \(G \). Since by hypothesis we have \(O_2(G) = \{1\} \), and also that \(\Delta = \{1\} \) and then \([a, z] \in H \) for any \(a \in S \) and any \(z \in Z(H) \).

We have \([S, Z(H)] = \langle [a, z] \mid a \in S, z \in Z(H) \rangle \subseteq H \), moreover this subgroup is normalized by \(S \). If then \(y \in H \) we have, with the above notations, \([a, z]^y = [a', z] \); therefore \([S, Z(H)] \) is a normal subgroup of \(G \) contained in \(H \).

If we consider \([a_1, z_1] \) and \([a_2, z_2] \) with \(a_1, a_2 \in S \) and \(z_1, z_2 \in Z(H) \) then \([a_1, z_1]^{a_2} \in H \) and therefore \([a_1, z_1]^{a_2}z_2 = [a_1, z_1]^{a_2}z_2 = [a_1, z_1] \).

We conclude that \([S, Z(H)] \) is abelian.

In \(\overline{G} = G/[S, Z(H)] \), we have that \(Z(H)[S, Z(H)]/[S, Z(H)] \) is central; therefore the subgroup \(H_1 = Z(H)[S, Z(H)] \) is normal in \(G \) and it is abelian since \([S, Z(H)] \subseteq H \).

Finally, \(\langle S, Z(H) \rangle = \langle S, [S, Z(H)], Z(H) \rangle = SH_1 \) is metabelian by Itô’s theorem. \(\square \)

3. Proof of the main result

Proposition 1. If \(H \) is hypercentral then \(G \) is hyper-abelian. If \(H \) is nilpotent (of class \(c \)) then \(G \) is soluble (of derived length at most \(2c \)).

Proof. If \(N \) denotes the normal closure of \(Z(H) \) in \(G \) then \(1 \neq N = Z(H)^G = Z(H)^{H_S} = Z(H)^S \subseteq \langle S, Z(H) \rangle \). By Lemma 3, \(\langle S, Z(H) \rangle \) is metabelian. \(\square \)

If \(H \) is nilpotent then \(G \) is soluble and (by Lemma 2) periodic and therefore locally finite. This property holds also under the hypothesis that \(H \) is hypercentral:

Proposition 2. If \(H \) is hypercentral then \(G = O_2^c(G) \), moreover \(G \) is locally finite.

Proof. To prove the first part of the statement, it is enough to show that if \(O_2^c(G) = \{1\} \) then \(S \) is normal in \(G \). Let then \(O_2^c(G) = \{1\} \) and \(F = F(G) \) be the Fitting subgroup of \(G \). By Lemma 2, \(F \) is factorized. Then there exists \(S_0 \leq S \) and \(H_0 \leq H \) with \(F = S_0H_0 \).

Since \(F \) is locally nilpotent and \(\pi(S_0) \cap \pi(H_0) = \emptyset \), we have \(F = S_0 \times H_0 \) and \(H_0 \) is normal in \(G \). Then \(H_0 = \{1\} \) and \(F \leq S \); since \(S \) is abelian, we also have \(S \leq C_G(F) \).

By Proposition 1, \(G \) is hyper-abelian and by [7, Lemma 2.17] \(C_G(F) \leq F \) which implies \(S = F \) normal in \(G \).

Since \(G \) is hypercentral and periodic, it is locally finite and therefore the normal series of \(\{1\} \leq O_2^c(G) \leq O_2^c(G) \leq O_2^c(G) \) has locally finite quotients: it follows that \(G \) is locally finite [7, Theorem 1.45]. \(\square \)

Proposition 3. If \(H \) is hypercentral then every finite subgroup of \(G \) is contained in a finite factorized subgroup of \(G \).

Proof. Let \(\langle g_1, g_2, \ldots, g_n \rangle \) be a subgroup of \(G \) (which is finite because \(G \) is locally finite) and \(g_i = a_i x_i \) for some \(a_i \in S, x_i \in H, i = 1, 2, \ldots, n \). If we put \(S_0 = \langle a_1, a_2, \ldots, a_n \rangle \leq S \) and \(H_0 = \langle x_1, x_2, \ldots, x_n \rangle \leq H \), it is enough to prove that there exist two finite subgroups \(S_1 \leq S \) and \(H_1 \leq H \) such that \(S_0 \leq S_1, H_0 \leq H_1 \) and \(S_1 H_1 = H_1 S_1 \).
By the preceding proposition, \(<S_0, H_0> \leq O_2^2(G)H_0\), and we can take \(G = O_2^2(G)H_0\).

In \(\overline{G} = G/O_2^2(G)\), let \(\overline{S}_1 = \overline{S}_0^{H_0} = \overline{S}_0^{H_0}\). Since \(\overline{S}\) is elementary abelian and \(\overline{H}_0\) is finite, also \(\overline{S}_1\) is finite.

If \(O_2^2(G)S_1\) is the preimage of \(\overline{S}_1\) in \(G\) then \(<S_0, H_0> \leq O_2^2(G)S_1H_0\) and we can suppose \(G = O_2^2(G)S_1H_0\) that is \(S = S_1\).

Then \(<S_1, H_0>\) is finite and factorized (since it contains \(S\)), so it is \(S_1H_1\) where \(H_1 = H \cap <S_1, H_0>\).

Using the preceding proposition and (essentially) Theorem A of Hall and Higman [4] (see also [5]), we get:

Corollary 1. If \(H\) is nilpotent of class \(c\), then \(G\) is soluble of derived length at most \(c + 1\).

Proof. It is enough to apply [4, Theorem 1.2.4]. □

Corollary 2. If \(H\) is hypercentral and soluble with derived length \(d\) then \(G\) is soluble with derived length at most \(2d\).

Proof. By Proposition 3, we can suppose \(G\) finite. By induction on the order of \(G\), we can reduce to the case in which \(H\) is a \(p\)-group \((p \neq 2)\). From [4] we have \(H^{(d-1)} \leq O_p(G)\) and therefore in \(\overline{G} = G/O_p(G)\) the subgroup \(\overline{H}\) has derived length at most \(d - 1\). By Proposition 2, \(\overline{S}\) is a normal subgroup of \(\overline{G}\) and therefore \(\overline{G}\) has derived length at most \(d\). We conclude recalling that \(O_p(G) \leq H\) has derived length at most \(d\). □

The bounds in the preceding corollaries are not, in general, the best possible. In fact, by [2, Theorem 1] we get that if \(H\) has derived length 2, then \(G\) has derived length at most 3.

4. Sylow’s theory

We recall that a Sylow \(p\)-subgroup of a group \(X\) is a maximal \(p\)-subgroup of \(X\) (see [3, Chapter 2]).

The structure of \(G\) allows us to develop a Sylow’s theory for 2-subgroups also in the case in which \(H\) is not hyper-abelian.

We begin with some easy results.

Lemma 4. Every involution in \(G\) is conjugate to an element of \(S\) by an element of \(H\).

Proof. If \(g \in G\) is an involution then \(g = ax\) for some \(a \in S\) and \(x \in H\); then \(ag = x \in H\) has odd order \(\delta(x)\) and \((a, g)\) is isomorphic to the dihedral group of order \(2\delta(x)\), in which all the involutions are conjugate. □

Lemma 5. There does not exist any element of order 4 in \(G\).
Proof. Suppose, by contradiction, that \(g \in G \), \(g^2 \neq 1 = g^4 \) and \(g = ax \) for some \(a \in S \) and \(x \in H \). By the preceding lemma, we can suppose \(g^2 \in S \); then \(g^2 = axax \) and \(xax = (axax)^a = (g^2)^a = g^2 \). It follows that \(1 = g^4 = axaxaxax = xax^2ax \) and \((x^2)^a = x^{-2} \), but \(x \) has odd order and then \(x^a = x^{-1} \); that is, \(g^2 = axax = x^ax = 1 \); a contradiction. \(\square \)

Lemma 6. \(S \) is a Sylow \(2 \)-subgroup of \(G \).

Proof. If \(\Sigma \) is a \(2 \)-subgroup of \(G \) containing \(S \), by Lemma 4, \(\Sigma \) is elementary abelian. If \(g \in \Sigma \), then \(g = ax \) for some \(a \in S \) and \(x \in H \). Then \(x = ag \in \Sigma \) should be a \(2 \)-element, while \(H \) does not contain involutions. Hence \(x = 1 \) and \(g = a \in S \). \(\square \)

Lemma 7. Let \(T \) be a \(2 \)-subgroup of \(G \). Then:

(a) \(T \) is isomorphic to a subgroup of \(S \);
(b) if \(T \) is finite, there exists \(x \in H \) with \(T^x \subseteq S \).

Proof. (a) By Lemma 4 there are not elements of order 4 in \(G \) and therefore \(T \) is elementary abelian. Then to show the statement, it is enough to show that \(|T| \leq |S| \). For any \(y \in T \) there exists unique \(a \in S \) and \(x \in H \) with \(t = ax \). We conclude if we prove that the map \(T \to S \) defined by \(t = ax \mapsto a \) is injective. In fact, if \(t_1, t_2 \in T \), \(t_1 = ax \) and \(t_2 = ay \) (with \(a \in S \) and \(x, y \in H \)), recalling that \(t_1 \) is an involution, we get \(x^a = x^{-1} \) and \(t_1t_2 = axay = x^{-1}y \). Since \(H \) does not contain involutions, we must have \(x = y \) and \(t_1 = t_2 \).

(b) By induction on the order of \(T \): if \(|T| = 2 \) we conclude by Lemma 6. We then suppose that \(|T| > 2 \) and let \(t \) be a nontrivial element of \(T \). By Lemma 5, there exists \(x \in H \) with \(t^x \in S \). Let \(G_0 = C_G(t^x) \); then \(T^x \leq G_0 \), \(S \leq G_0 \) and \(G_0 \) is factorized: \(G_0 = SH_0 \). In \(G_0 = G_0/(t^x) \) we have \(|T^x| < |T| \) and therefore by induction hypothesis there exists \(\overline{y} \in \overline{H} \) such that \((T^x)^{\overline{y}} \leq \overline{S} \). If \(y \) is the preimage of \(\overline{y} \) in \(H_0 \), we get \(T^{xy} \leq S \). \(\square \)

The following example is inspired by \([6] \) (see \([3, \text{Example 2.2.14}] \)).

Example 1. Let \(A \) be a countable elementary abelian \(2 \)-group:

\[A = \langle a_1 \rangle \times \langle a_2 \rangle \times \cdots \times \langle a_n \rangle \times \cdots \]

and \(B \) an elementary abelian \(2 \)-group with \(|B| > \aleph_0 \). Let \(S \) be \(A \times B \) and \(X = \langle x \rangle \) be a group of prime order \(p \neq 2 \). Let \(H \) be the set of maps \(\rho : S \to X \) such that for every \(b \in B \) we have \(\rho((a, b)) \neq 1 \) only for a finite number of \(a \in A \).

For any \(\rho, \sigma \in H \) and any \(s \in S \) we put \((\rho \sigma)(s) = \rho(s)\sigma(s) \) and \((\rho^{-1})(s) = \rho(s)^{-1} \). Then \(H \) is an elementary abelian \(p \)-group and \(S \) acts over \(H \) in a natural way, putting \((\rho^k)(s) = \rho(st) \).

If \(G = HS \) is the semidirect product of \(H \) by \(S \), it can be easily verified that \(G \) is a group satisfying \((\ast) \).
We denote by \(a \) the element \((a, 1) \in S\) and \(b \) the element \((1, b) \in S\). If \(n \geq 1 \), we put \(A_n = \langle a_1, a_2, \ldots, a_n \rangle \) and define \(\rho_n \in H \) by

\[
\rho_n((a, b)) = \begin{cases} x, & \text{if } a \in A_n \text{ and } b \in B \setminus \{1\}, \\ 1, & \text{otherwise.} \end{cases}
\]

For any \(i < n \) and \(s \in S \) we have \(\rho(s) = \rho(a_is) = \rho^{a_i}(s) \) and therefore the elements of \(A_{n-1} \) commute with \(\rho_n \). We denote by \(\sigma_n = \rho_1 \rho_2 \ldots \rho_n, t_n = a_n^{\sigma_n}, T = \langle t_1, t_2, \ldots, t_n, \ldots \rangle \) and \(G_0 = HA = HT \). We prove that \(T \) is a Sylow 2-subgroup of \(G \) and moreover \(CG(T) = T \). In fact, if \(g \not\in T \) is an element of \(G \) such that \(T = \langle T, g \rangle \) is a 2-group then we have \(G_0 < H \overline{T} = HS_1 \) with \(A < S_1 < S \). There exist \(b \in B \) and \(\rho \in H \) with \(\rho b \in C_G(T) \).

Then for any \(n \) we have:

\[
a_n^{\rho \sigma_n} = a_n^{\rho}
\]

and since \(b \) centralizes \(A \), the map \(\tau_n = \sigma_n \rho(\sigma^{-1})b \in H \) centralizes \(a_n \). Then

\[
\tau_n(1) = \sigma_n(1)\rho(1)\sigma_n(b)^{-1} = \rho(1)x^{-n}
\]

and

\[
\tau_n(1) = \tau_n^{\rho}(1) = \sigma_n(a_n)\rho(a_n)\sigma_n(ba_n)^{-1} = \rho(a_n)x^{-1}
\]

and therefore

\[
\rho(a_n)x^{n-1} = \rho(1) \quad \text{for all } n \in \mathbb{N}.
\]

Then for an infinite number of \(a \in A \) we have \(\rho(a) \neq 1 \), and this contradicts the definition of \(H \). Therefore \(C_G(T) = T \). Then \(|T| = |A| < |S| \) and \(T \) is not isomorphic to \(S \).

However, we can prove

Proposition 4. If \(S \) is countable (or finite) all the Sylow 2-subgroups of \(G \) are isomorphic.

Proof. If \(S \) is finite, the statement follows from Lemma 7 (in this case all the Sylow 2-subgroups of \(G \) are conjugate). Let \(S \) be countable and \(T \) be a Sylow 2-subgroup of \(G \). By Lemma 7, we have \(|T| \leq |S| \). Moreover, \(T \) is not finite since in this case by Lemma 7 we can find \(x \in H \) with \(T^x \leq S \) and then \(S^{x^{-1}} \) is 2-subgroup of \(G \), containing \(T \) properly, against the hypothesis. Then \(|T| = |S| \) and therefore, recalling that \(S \) and \(T \) are elementary abelian, we get \(T \cong S \). \(\square \)

The following is a classical example (see [3, Example 2.6.6]) and shows that also under the hypothesis of the preceding proposition, it is not true that the Sylow 2-subgroups of \(G \) are conjugate.
Example 2. Let \((d_1, d_2, \ldots, d_n, \ldots)\) be a sequence of natural odd numbers strictly greater than 1 and let \(D_i = \langle h_i, s_i \mid h_i^{d_i} = s_i^2, \ h_i^{-1} = h_i^{-1}\rangle\) be the dihedral group with \(2d_i\) elements. Let \(S\) be the direct sum of \(\langle s_i \rangle\), \(H\) the direct sum of \(\langle h_i \rangle\) and \(G\) the direct sum of \(D_i\). Then \(G = HS\) is a countable group satisfying (\(\ast\)); but the Sylow 2-subgroups of \(G\) are \(2^{\aleph_0}\) and therefore they cannot be conjugated by elements of \(S\).

We need an additional hypothesis on \(H\) to conclude that the Sylow 2-subgroups of \(G\) are conjugate.

Lemma 8. If \(T\) is a Sylow 2-subgroup of \(G\) not contained in \(S\), then it has a conjugate \(T^*\) in \(\langle S, T \rangle\) such that \(T\) does not lie in \(\langle S, T^* \rangle\).

Proof. Note that \(S \cap T\) is central in \(\langle S, T \rangle\). Like any subgroup of \(G\) containing \(S\), \(\langle S, T \rangle\) is factorized; moreover, (\(\ast\)) also holds with \(G\) and \(S\) replaced by \(\langle S, T \rangle\), \(S\) and \(\langle S, T \rangle \cap H\).

Since \(T/(S \cap T)\) is a nontrivial Sylow 2-subgroup of \(\langle S, T \rangle/(S \cap T)\) intersecting \(S/(S \cap T)\) trivially, by Lemma 4 it has a conjugate \(T^*/(S \cap T)\) which intersects \(S/(S \cap T)\) nontrivially, that is, \(S \cap T^* > S \cap T\). If we had \(T \lec (S, T^*)\), then \(T\) would centralize \(S \cap T^*\) and so \(S \cap T^*\) would be a 2-group. But \(T\) is a Sylow subgroup and \(S \cap T^*\) does not lie in it, so this cannot happen.

Proposition 5. If \(H\) satisfies \(\text{min}\) on subgroups then all the Sylow 2-subgroups of \(G\) are conjugate.

Proof. Suppose that \(T\) is a Sylow 2-subgroup of \(G\) such that no conjugate of \(T\) lies in \(S\). Set \(T_0 = T\) and, if \(k > 0\), \(T_k = T_{k-1}^*\) as in the proof of the previous lemma. Then \(G_k = \langle S, T_k \rangle = SH_k\) form a strictly descending infinite chain of factorized (since \(S \lec G_k\)) subgroups. Then also \(H_k\) is a strictly descending infinite chain of subgroups of \(H\); this contradicts the assumption that \(H\) satisfies \(\text{min}\) on subgroups.

References