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Spin-foam models are hoped to provide a dynamics for loop quantum gravity. These start from the
Plebanski formulation of gravity, in which gravity is obtained from a topological field theory, BF theory,
through constraints, which, however, select more than one gravitational sector, as well as an unphysical
degenerate sector. We show this is why terms beyond the needed Feynman-prescribed one appear in
the semiclassical limit of the EPRL spin-foam amplitude. By quantum mechanically isolating a single
gravitational sector, we modify this amplitude, yielding a spin-foam amplitude for loop quantum gravity
with the correct semiclassical limit.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Loop quantum gravity (LQG) [1–4] offers a compelling kine-
matical framework in which discreteness of geometry is derived
from a quantization of general relativity (GR) rather than pos-
tulated. The discreteness has enabled well-defined proposals for
the Hamiltonian constraint — defining the dynamics of the the-
ory — in which one sees how diffeomorphism invariance elimi-
nates normally problematic ultraviolet divergences. However, the
lack of manifest space–time covariance, inherent in any canonical
approach, is often suspected as a reason for the presence of ambi-
guities in the quantization of the Hamiltonian constraint. This has
motivated the spin-foam program [1,5–7], which aims to provide
a space–time covariant, path integral version of the dynamics of
LQG a la Feynman. The histories summed over in the path integral
arise from loop quantization methods, each representing a ‘quan-
tum space–time’, and referred to as a spin-foam.

At the heart of the path integral approach is the prescription
that the contribution to the transition amplitude by each history
should be the exponential of i times the action. The use of such
an expression has roots tracing back to Paul Dirac’s Principles of
Quantum Mechanics [8], and is central to the successful derivation
of the classical limit of the path integral. In spin-foams, the ‘quan-
tum space–times’ have a classical geometric interpretation only in
the semiclassical limit h̄ → 0. It is in this limit that one seeks a
spin-foam amplitude equal to the exponential of i times the clas-
sical action. We call this the ‘semiclassical limit’ of a spin-foam
amplitude, following [9]. As highlighted in these remarks, having
such a correct semiclassical limit is key in recovering the correct
classical limit of the theory in the standard way.
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The method used for constructing the individual amplitudes in
a spin-foam sum is to use the Plebanski formulation of gravity, or
variations thereof. In this formulation of gravity, one takes advan-
tage of the fact that GR can be formulated as a topological field
theory whose spin-foam quantization is well-understood — BF the-
ory [10] — supplemented by so-called simplicity constraints. Within
the last several years, a spin-foam model of quantum gravity was,
for the first time, introduced whose kinematics match those of LQG
and therefore realize the original goal of the spin-foam program:
to provide a path integral dynamics for LQG. This is known in the
literature as EPRL [11–14]; when the Barbero–Immirzi parameter
[15,16] γ , a certain quantization ambiguity, is less than 1, this
model is identical to the Freidel–Krasnov model [17]. Despite its
success, the EPRL amplitude still has difficulty in obtaining the cor-
rect semiclassical limit: (non-geometric) degenerate configurations
are not suppressed, and even if one restricts to non-degenerate
configurations, the semiclassical limit of the simplest component
of the amplitude, the vertex amplitude, has four terms instead of
the desired one term of the form exponential of i times the ac-
tion [18]. Both of these problems cause unphysical configurations
to dominate in the semiclassical limit, as we will show. (See also
additional arguments [19–22] on the importance of having only
the one exponential term, reviewed in the final discussion.) Fur-
thermore, we will show that both of these problems are directly
due to a deficiency in the way gravity is recovered from BF theory:
When one imposes the simplicity constraints, one isolates not just
a single gravitational sector, but multiple sectors, not all physical.
The other 4-d spin-foam models of gravity have similar problems
with a similar source [9,23,24].

In the present work, we show how, by formulating the restric-
tion to what we call the Einstein–Hilbert sector classically first,
quantizing it, and incorporating it into the EPRL vertex definition,
one can define a modified vertex for which the extra terms in
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the semiclassical limit are eliminated, degenerate configurations
are exponentially suppressed, and one achieves a vertex amplitude
with the correct semiclassical limit. This new modified vertex, which
we call the proper EPRL vertex, additionally continues to be com-
patible with loop quantum gravity, linear in the boundary state,
and SU(2) invariant. The key condition of linearity in the bound-
ary state ensures that the final transition amplitude defined by the
spin-foam model is linear in the initial state and anti-linear in the
final state.

To begin, we review the classical discrete framework, review
the EPRL vertex, point out its problems, and then derive the so-
lution, leading to the definition of the proper EPRL vertex. In the
final discussion, we note how the proper vertex may also solve
other problems in the literature, in addition to the above one orig-
inally motivating this work. This Letter provides a summary of the
work, with emphasis on motivation and broader consequences, de-
tailed proofs being left to the two longer articles [25,26].

2. A review of EPRL from a new perspective

The quantum histories used in spin-foam sums are usually
based on a triangulation of space–time into 4-simplices. The prob-
ability amplitude for a given spin-foam history breaks up into a
product of amplitudes associated to each component of the tri-
angulation [1,7]. The most important of these amplitudes is the
vertex amplitude, which provides the probability amplitude for data
associated to a single 4-simplex. In the following, as we are con-
cerned specifically with the vertex amplitude, for conceptual clar-
ity, we focus on a single 4-simplex σ . (Though the EPRL vertex
has been generalized to arbitrary cells [27], we restrict ourselves
to the simplicial case, as certain key elements will depend on
the combinatorics of this case. See final discussion.) Let triangles
and tetrahedra of σ be denoted respectively by f and t and dec-
orations thereof. Fix a transverse orientation of each f within
the boundary of σ . Furthermore, fix an affine structure, which
is equivalent to fixing a flat connection ∂a , on σ ; this is a pure
gauge choice [26]. The basic variables for the single 4-simplex σ
consist in 5 group elements (Gt ∈ Spin(4))t∈σ , and 20 algebra el-
ements (BIJ

t f ∈ so(4)) f ∈t∈σ , I, J = 0,1,2,3. These are subject to
constraints: (1.) ‘orientation’, Gt � B f t = −Gt′ � B f t′ , where � de-
notes adjoint action, (2.) ‘closure’,

∑
f ∈t B f t = 0, and (3.) ‘linear

simplicity’, (B f t)
i j = 0, i, j = 1,2,3. Each of these three constraints

either restrict the allowed histories in the spin-foam sum or are
imposed in the sense that violations are exponentially suppressed.
Constraints (1.) and (2.) imply [25,28] that there exists a unique
two-form BIJ

μν , constant with respect to ∂a , such that, for all t, f
with f ∈ t ,

Gt � BIJ
f t =

∫
f

BIJ. (1)

In this Letter, μ,ν, . . . denote tensor indices over σ as a manifold.
When the constraint (3.), linear simplicity, is additionally imposed,
BIJ

μν takes one of the three forms [25]

(II±) BIJ = ±1

2
εIJ

KLeK ∧ eL for some const. eI
μ,

(deg) εIJKL BIJ
μν BKL

ρσ = 0 (degenerate B), (2)

where εIJKL is the Levi-Civita array, and the names for these sec-
tors have been taken from [25,29]. In sectors (II+) and (II−),
eI
μ has the interpretation of a co-tetrad, determining the space–

time metric via gμν := ηIJeI
μe J

ν , where ηIJ := diag(−1,1,1,1). Note
that, despite the spatial indices i j appearing in the constraint (3.),
the eI
μ arising in this way has full SO(4) freedom intact: For all

H ∈ Spin(4), under Gt �→ HGt , we have eI
μ �→ H I

J e J
μ where H I

J is
the SO(4) matrix canonically associated to H (see, e.g., [18,26]).

If BIJ
μν is non-degenerate, it additionally defines a dynamically

determined orientation of σ , which we represent by its sign rela-
tive to the fixed orientation ε̊ of σ :

ω := sgn
(
ε̊μνρσ εIJKL BIJ

μν BKL
ρσ

)
.

For convenience, define ω = 0 when BIJ
μν is degenerate. Addition-

ally, let ν := ±1,0 according to whether BIJ
μν is in (II±) or (deg).

If ν �= 0, the BF Lagrangian is related to the Einstein–Hilbert La-
grangian by

LBF = ωνLEH.

When ων = +1, LBF = LEH and we say that BIJ
μν , and the data

(BIJ
f t , Gt) determining BIJ

μν , are in the Einstein–Hilbert sector.
What we have described until now are the discrete space–time

variables of the model. These determine the phase space variables
(G f , J IJ

f t) on the boundary via

G f := Gt′f t f
:= G−1

t′f
Gt f ∈ Spin(4),

J IJ
f t := 1

8πG

(
BIJ

f t + 1

2γ
εIJ

KL BIJ
f t

)
.

Here t f , t′
f are respectively the tetrahedron ‘above’ and ‘below’ f

within the boundary ∂σ of σ . The J IJ
f t are conjugate to the G f

in the sense that they generate left or right translations on G f
depending on whether t = t f or t = t′

f . The generators of (internal)

spatial rotations in terms of these are then Li
f t := 1

2 ε i
jk J jk

f t .
In quantum theory, the simplicity constraint reduces the bound-

ary Hilbert space of the quantum BF theory to that of LQG, yielding
an embedding of LQG boundary states into Spin(4) BF theory
boundary states [14]. Let us recall this embedding both because
it is at the heart of the EPRL vertex amplitude, and because it will
be key in the modification we propose.

The LQG Hilbert space associated to ∂σ is L2(× f SU(2)). A (gen-
eralized) spin-network Ψ(k f ,ψ f t ) in this space is labeled by one
spin k f and two states ψ f t′f ∈ V ∗

k f
, ψ f t f ∈ Vk f per triangle f ,

where Vk denotes the spin-k representation of SU(2). Ψ(k f ,ψ f t ) ∈
L2(× f SU(2)) is given explicitly by

Ψ(k f ,ψ f t )((g f )) :=
∏

f

〈ψ f t′f |ρ(g f )|ψ f t f 〉, (3)

where ρ(g) denotes the action of g ∈ SU(2). The embedding ι from
LQG states to Spin(4) BF theory boundary states is defined in terms
of the basis (3) by

(ιΨ(k f ,ψ f t ))((G f )) :=
∏

f

〈ψ f t′ f |ιk f ρ(G f )ιk f |ψ f t f 〉,

where here and throughout this Letter we set s± := 1
2 |1 ± γ |k,

ιk : Vk → V s− ⊗ V s+ denotes the intertwiner among the indicated
SU(2) representations, scaled such that it is isometric in the Hilbert
space inner products, ιk : V s− ⊗ V s+ → Vk denotes its Hermitian
conjugate, and ρ(G) denotes the action of G ∈ Spin(4) in the ap-
propriate representation. Note that in order to ensure that s±

f are
half integers, the values of k f must be restricted; the resulting
spectra of geometric operators then become continuous in the
semiclassical limit if and only if γ is rational, so that γ must be
rational in order for the theory to be viable [14,30]. (This is an
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artifact of the Euclidean EPRL theory and does not persist in the
Lorentzian theory [14].) Let Kγ denote the set of allowed values
for each k f , and let Hγ

∂σ be the span of SU(2) spin-networks (3)
with {k f } ⊂Kγ , so that ι :Hγ

∂σ → L2(× f Spin(4)).
The EPRL vertex amplitude Aσ : Hγ

∂σ → C, in terms of the above
is

Aσ (Ψ(k f ,ψ f t )) :=
∫

Spin(4)5

×
t

dGt(ιΨ(k f ,ψ f t ))((G f ))

=
∫

Spin(4)5

×
t

dGt

∏
f

〈ψ f t′f |ι
k f ρ(G f )ιk f |ψ f t f 〉. (4)

3. EPRL asymptotics and their problem

The vertex amplitude (4) can be specialized to Livine–Speziale
coherent states [31]. Each such state Ψ(k f ,n f t ) is labeled by one
spin k f per f , and one unit 3-vector n f t per f , t with f ∈ t ,
and are obtained from the states (3) by setting ψ f t′f := 〈−n f t′f |
and ψ f t f := |n f t f 〉, where |n f t〉 ∈ Vk f denotes the SU(2) Perelo-

mov coherent state [32] peaked on the SU(2) generators L̂i via
〈n f t |L̂i |n f t〉 = k f ni

f t . One then has

Aσ (Ψ(k f ,n f t )) =
∫

Spin(4)5

×
t

dGt

∏
f

〈−n f t′f |ι
k f ρ(G f )ιk f |n f t f 〉. (5)

The Spin(4) boundary state ιΨ(k f ,n f t ) is a coherent state peaked on

the classical configuration of BIJ
f t ’s taking the values

BIJ
f t = 16πGk f δ

[I
0 n J ]

f t, (6)

where n0
f t := 0. BIJ

f t values of this form are the most general sat-
isfying linear simplicity — constraint (3.) enumerated in the last
section. Furthermore, the integral over the Gt ’s in (5) is in a precise
sense [26] a path integral over possible Gt ’s, which one identifies
with the five group elements in the discrete classical framework
reviewed at the start of Section 2 above.

If the data (k f ,n f t) are such that, for each t , the span of
{n f t} f ∈t is three dimensional, and is such that there exist group
elements Gt allowing all the constraints (1.), (2.), and (3.) to be
satisfied, then a unique Regge geometry [33] of the 4-simplex is de-
termined and the data are called Regge-like. In this case the overall
phase of the coherent state Ψ(k f ,n f t ) can be fixed uniquely, giving

rise to what is called the Regge state Ψ R
(k f ,n f t )

[18]. For such states,

the asymptotics of the EPRL vertex are

Aσ

(
Ψ R

(λk f ,n f t )

) ∼ N1eiSR + N1e−i SR + N2e
i
γ SR + N3e− i

γ SR (7)

for large λ ∈ R
+ , where the error term is bounded by a constant

times λ−12, SR denotes the Regge action determined by the data
(λk f ,n f t), and Ni are real functions of (k f ,n f t). If the span of
{n f t} f ∈t is not three dimensional for some t , but there still exist
group elements Gt such that constraints (1.), (2.), and (3.) are sat-
isfied, the asymptotics of the vertex are

Aσ

(
Ψ R

(λk f ,n f t )

) ∼ N, (8)

where again the error term is bounded by a constant times λ−12.
The presence of the four distinct terms in (7) is enough to spoil

the semiclassical limit of the model when multiple 4-simplices
are involved. To see this, consider a spin-foam on a triangula-
tion � whose data we assume, for simplicity, is Regge-like at each
4-simplex. The full amplitude then takes the form
A(�) =
∏

f

A f

∏
t

At

∏
σ

Aσ , (9)

where A f and At are the factors associated to each triangle f and
tetrahedron t in � [14]. Let S f ,t denote the phase angle of the
product

∏
f A f

∏
t At (defined modulo 2π ). As A f and At are al-

ways real, S f ,t is 0 or π . The asymptotics of each factor Aσ in (9)
now has four terms as in Eq. (7). On multiplying out these terms,
the semiclassical limit of the full amplitude takes the form

A(�) ∼
∑

(λσ ∈{±1,±1/γ })
N(λσ )e

iS(λσ ) ,

where S(λσ ) := S f ,t + ∑
σ λσ S R(σ ), and the sum is over all

possible assignments of a coefficient λσ ∈ {±1,±1/γ } to each
4-simplex σ . S(λσ ) is the Regge action for � (modulo 2π ) if and
only if all the λσ are 1. Because, however, the λσ can vary from
4-simplex to 4-simplex, S(λσ ) is in general not equal to the Regge ac-
tion, even upto to rescaling by a constant, and its stationary points do
not in general solve the Regge equations of motion. One thus has
sectors in the semiclassical limit of the model which do not rep-
resent general relativity. These are in addition to the spin-foams
which persist in the semiclassical limit whose data are degenerate
and do not even represent a space–time geometry.

The most obvious way to correct the problem with the semi-
classical limit of the amplitude is to somehow alter the vertex
amplitude such that all but the first term in (7) is eliminated. How
might one do this? Each term in the asymptotics (7) corresponds
to a critical point of the integral (5), and hence to a particu-
lar value of the variables Gt , which, together with the boundary
data (6), via Eq. (7) determine a continuum two-form BIJ

μν which
is in one of the three Plebanski sectors labeled by ν = 0,±1, and
which determines an orientation labeled by ω = 0,±1. The values
of ν and ω corresponding to each of the four terms in (7) sat-
isfy ων = +1,−1,0,0, respectively.1 Therefore, to isolate the first
term, one must impose ων = +1 — that is, one must restrict to

1 On looking at the asymptotics in Eq. (7), it may be confusing that the last two

terms correspond to the degenerate sector (ων = 0). If BIJ
μν is degenerate in this

sector, what is the space–time metric corresponding to the non-degenerate geom-
etry determining the Regge action appearing in these terms in the asymptotics?
Furthermore, it would seem that if one isolates one of these last two terms (instead
of the Einstein–Hilbert term), one would also have the correct action up to rescal-
ing by 1/γ in the asymptotics, a rescaling which does not change the equations of
motion but rather the value of the effective Newton constant. That is: it appears
that the sectors corresponding to these last two terms are also gravitational sectors.

This suspicion turns out to be correct, and, as far as the author knows, has
heretofore not been pointed out in the literature. It is certainly true that in these
sectors εIJKL BIJ ∧ BKL = 0, so that in this sense B is degenerate. Furthermore, in these
sectors there does not exist a tetrad such that B is of the form (2). Nevertheless, in
these sectors, B still determines a unique, non-degenerate space–time geometry.
Specifically, the self-dual and anti-self-dual parts of B each determines an Urbantke
metric [29,34] on space–time, and these two metrics are equal up to an overall
sign because of linear simplicity. Furthermore, when the equation of motion for
the connection is satisfied (see [35]), the BF action reduces to a constant times the
Einstein–Hilbert action. Thus, these are indeed gravitational sectors.

Thus, in the space of solutions to the linear simplicity constraint, one finds four
sectors of general relativity, each corresponding to a different rescaling of the gravi-
tational action, and two of which are found in what is usually called the degenerate
sector because B is degenerate there. In addition to these four gravitational sectors,
there still remains a “truly” degenerate sector, in which not only B , but also the two
Urbantke metrics determined by B , are degenerate. This truly degenerate sector is
the one giving rise to the asymptotics in Eq. (8), and also corresponds to ων = 0.

In principle, one could restrict to any one of the four gravitational sectors,
thereby isolating any one of the four terms in (7), and obtain a spin-foam model
with the correct semiclassical limit — this is an ambiguity in the definition of the
model which we have chosen to resolve in what might be called an “obvious” way.
What is important, however, is that only one of these sectors are included. For, if
more than one is included, because the action is rescaled differently in the different
sectors, the semiclassical limit would be ruined by the cross-terms in the asymp-
totics, as discussed above.
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the Einstein–Hilbert sector as we have defined it. This, at the same
time, will eliminate the degenerate sector represented in Eq. (8),
in which one also has ων = 0.

4. A condition selecting the Einstein–Hilbert sector and its
quantization

Our strategy is first to find a classical condition on the basic
variables that selects the Einstein–Hilbert sector, quantize this con-
dition, and then use it to modify the EPRL vertex (4, 5). For each
face f define β f ((Gt̃)) by

β f ((Gt̃)) := − sgn
[
εi jk(Gt f t1)

i
0(Gt f t2)

j
0(Gt f t3)

k
0

· εlmn(Gt′f t1
)l

0(Gt′f t2
)m

0(Gt′f t3
)n

0
]
,

where G I
J denotes the SO(4) matrix canonically associated to a

given Spin(4) element G , t1, t2, t3 are the tetrahedra in σ not con-
taining f , in any order, and sgn is defined to be zero when its
argument is zero. The constant 2-form BIJ

μν determined by (1) is
then in the Einstein–Hilbert sector iff

β f ((Gt̃)) · (Gt)
i
0 · (L f t)i > 0 (10)

for any f , t , with f ∈ t [26]. This is the condition which we seek
to quantize and use to modify the vertex integral (4), (5). Nor-
mally this would be done by inserting into the path integral (5)
the Heaviside function

Θ
(
β f ((Gt̃)) · (Gt)

i
0 · (L f t)i

)
, (11)

where Θ(·) is zero when its argument is zero. However, if one
inserts this into (5), one obtains a vertex amplitude which is non-
linear in the boundary state, spoiling the property of the final spin-
foam sum that it be linear in the initial state and anti-linear in the
final state, a property necessary for it to be interpreted as a tran-
sition amplitude. Instead, we partially quantize the expression (11)
before inserting it into (4), (5), by replacing Li

f t with SU(2) gener-

ators L̂i acting on the coherent state |n f t〉. Because the generators
L̂i are peaked on Li

f t = j f ni
f t when acting on |n f t〉, such insertions

will still impose the desired condition (10) in the semiclassical
limit, and so remove the unwanted sectors, while at the same time
preserving the necessary linearity in the boundary state. We em-
phasize that we quantize only the dependence on (L f t)

i in (11),
and not the dependence on the Gt variables, as only this is nec-
essary to preserve linearity in the boundary state, and one wants
to stay as close as possible to the usual path integral strategy, that
is, to keep as much as possible of the insertion a classical discrete
quantity, rather than an operator. This decision to quantize only
the (L f t)

i dependence will also lead to a simpler modified vertex.
Thus we insert the following group-variable dependent operator
on Vk f :

P̂ f t((Gt̃)) := P (0,∞)

(
β f ((Gt̃)) · (Gt)

i
0 · L̂i

)
,

where PS (Ô ) denotes the spectral projector for the operator Ô
onto the portion S of its spectrum. Inserting this into the vertex
path integral (4), one obtains what we call the proper EPRL vertex
amplitude:

A(+)
σ (Ψ{k f ,ψ f t })

=
∫

Spin(4)5

×
t

dGt

∏
f

〈ψ f t′f |ι
k f ρ(G f )ιk f P̂ f t f ((Gt̃))|ψ f t f 〉. (12)

One can equivalently write this expression with the projector on
the left side of each integrand factor [26]. This vertex amplitude
is manifestly linear in the boundary state (3), and one can fur-
thermore show that it is SU(2) invariant [26]. Furthermore, despite
the use of internal spatial indices i, j,k, . . . at certain points, this
vertex amplitude does not break Spin(4) symmetry [26]. For the
coherent state Ψ(λk f ,n f t ) , for large λ, the proper EPRL vertex is ex-
ponentially suppressed unless (k f ,n f t) describes a non-degenerate
Regge geometry, in which case it furthermore now has precisely the
required asymptotics [26]

A(+)
σ

(
Ψ R

(λk f ,n f t )

) ∼ N1eiSR .

5. Discussion

By implementing quantum mechanically a restriction to the
Einstein–Hilbert sector, the EPRL vertex amplitude has been mod-
ified, yielding what we call the proper EPRL vertex. The resulting
vertex is linear in the boundary state, SU(2) invariant, and leads to
a correct semiclassical limit.

Let us remark first on the non-triviality of the removal of the
degenerate sector that has been achieved. In the work [9], the de-
generate sector of the Freidel–Krasnov model (equal to EPRL for
γ < 1) is removed by using a path integral representation based
on coherent states, similar to the path integral representation of
the EPRL vertex given in (5) above. However, in the conclusion of
the work [9], the authors mention that they do not know how to
rewrite the resulting restricted path integral as a spin-foam sum
— that is, as a sum over histories of spin-foams labeled with spins
and intertwiners, similar to (4). The reason for this difficulty ar-
guably can be traced to the same reason for our rejection of the
“naive” prescription of inserting the non-quantized Heaviside func-
tion (11) into (5): because the resulting transition amplitude is
non-linear in the boundary state. Thus, as far as removal of the de-
generate sector is concerned, the new element of the present work
is precisely the fact that the removal is achieved in such a way
that linearity in the boundary state is preserved, so that the vertex
amplitude can continue to be used to define transition amplitudes
between canonical states in the usual sense.

Beyond the removal of the degenerate sector, the proper ver-
tex furthermore achieves isolation of the Einstein–Hilbert sector,
in which the sign of the Lagrangian relative to the Einstein–Hilbert
Lagrangian is restricted to be consistently positive, ensuring the
correct equations of motion in the semiclassical limit. In doing this,
linearity in the boundary state is again preserved. This contrasts
with the modification proposed in [21], in which the undesired
term in the asymptotics is removed by direct means without un-
derstanding first its deeper meaning in terms of Plebanski sectors
and orientations, and without removing the degenerate sector.

In addition to ensuring the correct equations of motion, the fact
that the proper vertex asymptotically has only a single term with a
single sign in front of the action may solve other problems as well.
In particular, such asymptotics seem necessary in order for spin-
foams to be consistent with the positive frequency condition in
loop quantum cosmology [36,37]. They have also been advocated
by Oriti [19] as a way of implementing causality in the sense intro-
duced by Teitelboim [38]. Finally, from studies of 3-d gravity, there
are indications that such asymptotics may completely eliminate a
certain divergence in spin-foam sums present until now [22].

The expression (12) can be easily generalized to the Lorentzian
signature [26]. One open issue is to provide a derivation of this
generalization as well as to verify that, like the Euclidean proper
vertex above, it has the desired asymptotics. A second open issue is
to generalize this work to an arbitrary cell [27]. This second gen-
eralization will likely require an entirely new perspective, as the
combinatorics of the 4-simplex are presently used in a key way
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not only in the derivation of the proper vertex, but in its very def-
inition.
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