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Abstract

When dark matter candidate and its parent particles are nearly degenerate, it would be difficult to probe 
them at the Large Hadron Collider directly. We propose to explore their quantum loop effects at the CEPC 
through the golden channel process e+e− → μ+μ−. We use a renormalizable toy model consisting of a 
new scalar and a fermion to describe new physics beyond the Standard Model. The new scalar and fermion 
are general multiplets of the SU(2)L × U(1)Y symmetry, and couple to the muon lepton through Yukawa 
interaction. We calculate their loop contributions to anomalous γμ+μ− and Zμ+μ− couplings which can 
be applied to many new physics models. The prospects of their effects at the CEPC are also examined 
assuming a 2‰ accuracy in the cross section measurement.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

One of the major tasks of particle physics is to understand the particle nature of dark mat-
ter [1–4]. As the dark matter candidate does not register at the detector and induce a large missing 
transverse momentum (/ET ), one usually searches for the dark matter candidate in the signature 
of a large /ET together with a bunch of visible particles in the standard model (SM). The method 
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is valid only when there is a large mass gap between the dark matter candidate and its parent 
particle. However, there could be a scenario in which the dark matter candidate (Y ) and its par-
ent particle (X) are nearly degenerate, e.g. X → Y + a, where a denotes the SM particles. The 
energy of a tends to 0 (Ea → 0) in the degenerate limit of X and Y . The particles a (or their 
decay products if a’s are not stable) are very soft and cannot register in the detector. It is hard 
to directly observe or test such new physics signals at the Large Hadron Collider (LHC), and we 
name it as a “nightmare” scenario.

On the other hand, the new physics particles affect the SM processes through quantum loop 
corrections, no matter whether they are degenerate or not. Such quantum corrections, if large 
enough, could be detected at the electron–positron colliders, e.g. the Circular electron–positron 
collider (CEPC), FCC-ee or International Linear Collider (ILC). In this work we focus on the 
“nightmare” scenario and explore the potential of measuring the new physics effects in the 
scattering of e+e− → μ+μ− at the CEPC with a center of mass energy of 240 GeV. The 
e+e− → μ+μ− channel is known as the golden channel which serves as a precision candle 
owing to its clean background and high detection efficiency [5]. A relative precision of 2‰ on 
σ(e+e− → μ+μ−) can be reached at ILC [6,7], and the CEPC [8] is expected to achieve a 
comparable accuracy.

Dark scalars appear often in various new physics models and have been studied extensively 
in the literature [2,9–12]. Rather than considering a specific complete model, we use a simple 
toy model to describe the new physics beyond the SM. The toy model consists of a new complex 
scalar multiplet (S) and a vector-like fermion (F ). We demand that the neutral component of S
serves as the dark matter candidate, while the fermion F facilitates the Yukawa coupling of S
to μ−. In practice we require that F be slightly heavier than S such that it can decay into S and 
muon lepton pairs.1 Our toy model respects the SM gauge symmetry SU(3)C ×SU(2)L ×U(1)Y
and is renormalizable. Therefore, it can be viewed as a simplified version of a UV-completion 
model and can be generalized to many new physics models, e.g., the lepto-philic dark matter 
models [10,11,14–19]. To ensure the stability of the dark matter candidate, we restrict the mixing 
of such exotic particles with the SM particles through an exact Z2 symmetry, under which the 
SM fields are all even, whereas the new fields are odd. As a result, the SM particles can only 
interact with a pair of those exotic particles at a time.

We emphasize that the new physics particles in our toy model can be light, say around 
O(100 GeV), such that the approach of effective field theory [20–26] no longer works, and the 
full one loop calculation is necessary to address its effects. We use the dimensional regularization 
to calculate the loop corrections in the on-shell renormalization scheme [27,28]. The analytical 
results are written in terms of the Passarino–Veltman scalar functions [29,30].

The paper is organized as follows. In Sec. 2 we first introduce our simplified new physics 
model with new dark scalar and fermion multiplets. We then calculate the anomalous γμ+μ−
and Zμ+μ− couplings in the on-shell renormalization scheme. A simple form of those anoma-
lous couplings is also derived in the approximation of large mass expansion. In Sec. 3 we evaluate 
the numerical effects of those anomalous couplings on the cross section of e+e− → μ+μ−. After 
taking into account the constraints from dark matter searches at the LHC, we discuss the poten-

1 Note that the vector-like fermion F , except for a weak gauge singlet, cannot play the role of dark matter candidate as 
it is constrained severely by the direct detection of the dark matter. However, for the scalar dark matter, it is easy to escape 
the constraint from LUX data [13] if a small mass splitting is generated between the real and imaginary components of 
the neutral complex scalar.
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tial of measuring the loop effects of those dark scalars and fermions through the e+e− → μ+μ−
channel at the CEPC. Finally, we conclude in Sec. 4.

2. Anomalous couplings of γμ+μ− and Zμ+μ−

We calculate the loop correction to the scattering of e−(p−)e+(p+) → μ−(k−)μ+(k+) from 
a vector-like fermion F and a scalar S, where p± and k± are the momenta of the electrons and 
muons. The new fermion and scalar couple to the SM particles through the following interaction:

�L = F̄ (i/D − MF )F + |DνS|2 − M2
SS†S − V (S,H) +LYuk, (1)

where Dν,i = ∂ν − igWa
ν T a

i − ig′BνYi is the usual covariant derivative with T 1,2,3
i and Yi be-

ing the SU(2)L and U(1)Y generators of the i field (i = F, S), respectively, and g and g′
being the corresponding coupling strengths. Wa

ν and Bν are the weak eigenstate gauge fields, 
which are related to the weak bosons by Zν = cWW 3

ν − sWBν , Aν = sWW 3
ν + cWBν and 

W±
ν = (W 1

ν ∓ iW 2
ν )/

√
2, where sW = sin θW , cW = cos θW , with θW being the weak mixing 

angle. V (S, H) denotes a general scalar potential. LYuk denotes the Yukawa interaction of F , 
S and μ−; depending on the weak isospins of the F and S fields (IF and IS ), they may couple 
to either the SM left-handed doublet μL when IF = IS ± 1/2, or the right-handed singlet μR

when IF = IS . Besides, the gauge interaction in the first two terms in Eq. (1) also enters into the 
loop corrections. We assume no Yukawa interaction of the electron with the new physics fields 
F and S, and ignore the electron mass in our calculations. We shall elaborate the anomalous 
couplings induced by the Yukawa interaction and the purely gauge interaction separately.

The demand that S contains an electrically neutral component as the dark matter candidate 
restricts the value of YS as follows,

YS ∈
{

− IS,−IS + 1, . . . , IS − 1, IS

}
. (2)

In this section we first calculate the anomalous couplings of γμ+μ− and Zμ+μ− for generic 
IS and YS . The analytical results of our simplified model are for arbitrary representations of F
and S, and they can be applied to many new physics models. The requirement of having the dark 
matter component in S is taken into account in our numerical discussion given in Sec. 3.

2.1. Anomalous couplings induced by the Yukawa interaction

2.1.1. The Sμ̄LF coupling scenario
When IF = IS ±1/2, F and S couple to the SM left-handed doublet μL through the following 

Yukawa interaction,

LYuk = yCijkS
iμ̄k

LF j + h.c. , (3)

where y is the coupling strength and Cijk = 〈IμL
k|ISIF ; ij 〉 are the Clebsch–Gordan (CG) co-

efficients to render �L invariant under the SU(2)L gauge group. The indices i, j , k label the 
T 3 components of the S, F and μL fields, respectively. At one-loop level, the e+e− → μ+μ−
process receives corrections from the diagrams in Fig. 1. Notice that the Yukawa interaction only 
enters into the self-energy correction of the muon μ−, but does not enter into the self-energy 
corrections of the weak gauge bosons. Therefore, it does not renormalize the weak sector.

We parameterize the loop corrections to the CP conserving anomalous couplings of V μ+μ−
with V = γ, Z as following [31,32]
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Fig. 1. Feynman diagrams of Yukawa corrections (a, b, c) and the muon self-energy diagram d.

−ieū (k−)
(
αV γ ν + iβV σνρqρ + ξ1,V γ νγ5 + ξ2,V qνγ5

)
v (k+) , (4)

where e is the electrical coupling strength and q = k− + k+. Among the four interaction terms, 
only the vector and axial vertices γ μ and γ μγ5 are renormalized by the vertex counterterms. The 
remaining loop-induced Lorentz structures are ultra-violet (UV) finite by themselves, therefore, 
we decompose Eq. (4) by,

αV = αV,
 + δαV , βV = βV,
, ξ1,V = ξ1,V ,
 + δξ1,V , ξ2,V = ξ2,V ,
, (5)

where the couplings with subscriptions 
 denote the contributions from the triangle loop cor-
rections, and the δαV , δξ1,V terms represent the contributions from the vertex counterterms, as 
depicted in Fig. 1c. They are given by

δαγ = −1

2
Q
(
δZR

μ + δZL
μ

)
, δαZ = 1

2

(
gRδZR

μ + gLδZL
μ

)
,

δξ1,γ = −1

2
Q
(
δZR

μ − δZL
μ

)
, δξ1,Z = 1

2

(
gRδZR

μ − gLδZL
μ

)
, (6)

where δZL/R
μ are the wave function renormalization constants of μ−

L/R, and

gL = T 3 − s2
WQ

−cW sW
, gR = −s2

WQ

−cW sW
, (7)

with Q = −1 and T 3 = −1/2 being the electroweak quantum numbers of μ−
L . The renormaliza-

tion constants δZL/R
μ are determined from the muon self-energy corrections (see Fig. 1d),


 (/p) = /p
[

L

(
p2
)

PL + 
R

(
p2
)

PR

]+ mμ
S

(
p2
)

, (8)

where PL/R are the left/right-handed chirality projectors and mμ is the muon mass. In the on-
shell scheme, the finite parts of the counterterms are determined by the requirement that the 
residue of the fermion propagator at the mass pole is equal to one [27,28]. Therefore, the wave 
function renormalization constants are fixed by,

δZL,R
μ = −m2

μ

∂

∂p2
�
[

L(p2) + 
R(p2) + 2
S(p2)

]∣∣∣
p2=m2

μ

− �
L,R(m2
μ), (9)

where � denotes taking the real part.
Now we turn to the triangle loop contributions. We first evaluate the W 3μ+μ− and Bμ+μ−

triangle integrals, and derive the γμ+μ− and Zμ+μ− vertices using the defining relations Zν =
cWW 3

ν − sWBν and Aν = sWW 3
ν + cWBν . Taking the W 3μ+μ− loop diagram in Fig. 1a as an 

example, upon summing over the loop particle components (Si, Fj , Fk), it is factorized into a 
generic one-loop integral, multiplied by
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JF3 =
∑
ijk

C
ik− 1

2
T 3

F,kjC
∗
ij− 1

2
=
∑
ijk

〈
1

2
− 1

2

∣∣∣∣ISIF ; ij
〉 〈

IF k

∣∣∣Ĵ 3
F

∣∣∣IF j
〉 〈

ISIF ; ij
∣∣∣∣12 − 1

2

〉

≡
〈

1

2
−1

2

∣∣∣∣Ĵ 3
F

∣∣∣∣12−1

2

〉
, (10)

where Ĵ 3
F is the third angular momentum operator of the F field. The Bμ+μ− loop is obtained 

by substituting T 3
F,kj with YF δkj in the formula above, yielding simply YF . The evaluation of 

the triangle loop diagram in Fig. 1b is similar, giving JS3 and YS as group factors. Note that 
ĴF + ĴS = ĴμL

, we thus have the relation JS3 + JF3 = JμL3 = T 3
μ−

L

= −1/2. We also have YS +
YF = YμL

= −1/2 due to the U(1)Y invariance. Here we choose JS3 and YS as the independent 
model parameters, and JS3 is worked out to be

JS3 =

⎧⎪⎪⎨
⎪⎪⎩

1

3
IS, for IF = IS + 1

2
,

−1

3
(IS + 1), for IF = IS − 1

2
.

(11)

The generic one-loop triangle integrals are evaluated by reducing them fully into the B0 and C0
scalar functions [29,30]. After summing the triangle loop contributions with the counterterms 
according to Eq. (5), we obtain the full results in terms of scalar functions, which are listed in 
App. C.1. To manifest the cancellation of the UV-divergences, and also to show the decoupling 
effect explicitly when the loop particles mass MF = MS = M is large, we derive those anoma-
lous couplings in the approximation of large mass expansion. See App. B for the approximate 
expressions of the B0 and C0 scalar functions. The results are given as follows,

αγ = + |y|2
768π2

s

M2 (2JS3 + 2YS + 3) ,

αZ = + |y|2
768π2cW sW

s

M2

(
2c2

WJS3 − 2s2
WYS − 3s2

W + 3

2
+ m2

μ

s

)
,

βγ = + |y|2
768π2

mμ

M2 (4JS3 + 4YS + 2) ,

βZ = + |y|2
768π2cW sW

mμ

M2

(
4c2

WJS3 − 4s2
WYS − 2s2

W + 1
)
,

ξ1,γ = − |y|2
768π2

s

M2 (2JS3 + 2YS + 3) ,

ξ1,Z = − |y|2
768π2cW sW

s

M2

(
2c2

WJS3 − 2s2
WYS − 3s2

W + 3

2
− m2

μ

s

)
,

ξ2,γ = + |y|2
768π2

mμ

M2 (4JS3 + 4YS + 6) ,

ξ2,Z = + |y|2
768π2cW sW

mμ

M2

(
4c2

WJS3 − 4s2
WYS − 6s2

W + 3
)
. (12)

The ξ1,γ and ξ2,γ terms are correlated with respect to the electromagnetic current conserva-
tion [31,32] and appear as

ξ1,γ γ νγ5 + ξ2,γ qνγ5 = ξ1,γ (γ ν − 2mμ/s qν)γ5,
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which is the so-called anapole moment term. The anapole moment ξ1,γ vanishes at s = q2 = 0. 
We also see that the correction to γμ+μ− vertex in Eq. (4) vanishes in the Thomson limit, i.e., 
qμ → 0 (and thus s = q2 → 0), as consistent with the electrical charge renormalization.

2.1.2. The Sμ̄RF coupling scenario
Now we consider the case that F and S couple to the SM right-handed singlet μR through the 

following Yukawa interaction,

LYuk = yCijS
iμ̄RF j + h.c. , (13)

where Cij = 〈IμR
0|ISIF ; ij 〉, with IF = IS . The loop-induced anomalous couplings therefrom 

are similar to the Sμ̄LF coupling scenario, because they come from the same sort of diagrams 
in Fig. 1. Now JF/S3 ≡ 〈00|Ĵ 3

S/F |00〉 = 0, since W 3μ+
Rμ−

R vertex does not conserve the SU(2)L
quantum number. We have YS + YF = −1 by the U(1)Y gauge symmetry. Choosing YS as the 
independent quantum number, we present the full result of the anomalous couplings in terms of 
scalar functions in App. C.2. In the approximation of large mass expansion, they become

αγ = + |y|2
768π2

s

M2 (2YS + 3) ,

αZ = + |y|2
768π2cW sW

s

M2

(
−2s2

WYS − 3s2
W − m2

μ

s

)
,

βγ = + |y|2
768π2

mμ

M2 (4YS + 2) , βZ = + |y|2
768π2cW sW

mμ

M2

(
−4s2

WYS − 2s2
W

)
,

ξ1,γ = + |y|2
768π2

s

M2 (2YS + 3) ,

ξ1,Z = + |y|2
768π2cW sW

s

M2

(
−2s2

WYS − 3s2
W + m2

μ

s

)
,

ξ2,γ = − |y|2
768π2

mμ

M2 (4YS + 6) , ξ2,Z = − |y|2
768π2cW sW

mμ

M2

(
−4s2

WYS − 6s2
W

)
. (14)

Note that the remarks following Eq. (12) also apply to the results above.

2.2. Anomalous couplings induced by the purely gauge interaction

The gauge interactions enter into the loop corrections of the s-channel propagators, as shown 
in Fig. 2. For convenience, we collect Fig. 2a through Fig. 2e and also parametrize the parts apart 
from the initial state matrix element as the Vμ+μ− anomalous couplings,

−ieū (k−)
(
αV γ ν + iβV σνρqρ + ξ1,V γ νγ5 + ξ2,V qνγ5

)
v (k+) , (15)

where V = γ , Z. As in Eq. (5), we decompose the couplings into the loop and counterterm parts,

αV = αV,© + δαV , βV = βV,©, ξ1,V = ξ1,V ,© + δξ1,V , ξ2,V = ξ2,V ,© + δξ2,V ,

(16)

where the couplings with subscriptions © denote the contributions from the two-point loop 
corrections. The counterterm parts of the anomalous couplings are given as,
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Fig. 2. Feynman diagrams of loop corrections to the e+e− → μ+μ− process from the gauge interaction.

δαγ = Cγ
v +

(
− gv

s − m2
Z

CAZ + Q

s
CAA

)
,

δαZ = CZ
v +

(
− gv

s − m2
Z

CZZ + Q

s
CAZ

)
,

δξ1,γ = Cγ
a +

(
− ga

s − m2
Z

CAZ

)
, δξ1,Z = CZ

a +
(

− ga

s − m2
Z

CZZ

)
,

δξ2,γ = 0 +
(

ga2mμ

s − m2
Z

C′
AZ

)
, δξ2,Z = 0 +

(
ga2mμ

s − m2
Z

C′
ZZ

)
, (17)

where gv = (gR +gL)/2, ga = (gR −gL)/2, and the terms in the brackets come from the vector–
vector counterterms depicted in Fig. 2d, while the Cγ /Z

v/a terms are from the vertex counterterms 

shown in Fig. 2e. Writing Cγ /Z
v = (Cγ /Z

R + Cγ /Z

L )/2, Cγ /Z
a = (Cγ /Z

R − Cγ /Z

L )/2, they are given as 
follows:

Cγ

L/R = −Q

(
1

2
δZAA + δZe

)
+ gL/R

1

2
δZZA,

CZ
L/R = gL/R

(
δgL/R

gL/R

+ 1

2
δZZZ

)
− Q

1

2
δZAZ,

CAA = sδZAA, CAZ = δZZA

(
s − m2

Z

)
+ sδZAZ,

CZZ = δZZZ

(
s − m2

Z

)
− δm2

Z,

C′
AZ = 1

2
(δZAZ + δZZA) , C′

ZZ = δZZZ, (18)

with
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δgL = T 3

−cW sW

[
δsW

(
s2
W − c2

W

)
c2
WsW

+ δZe

]
+ δgR, δgR = sW

cW

Q

[
δsW

c2
WsW

+ δZe

]
, (19)

where δZAA, δZZA, δZAZ , δZZZ , δZe , δsW/sW and δm2
Z are the renormalization constants of 

wave function, electrical charge, weak mixing angle and the Z-boson mass, respectively. Since 
e− and μ− carry the same electroweak quantum numbers, the initial state counterterms in Fig. 2f 
equal those in Fig. 2e, and can be written as,

−ieγ ν[Cγ /Z

L PL + Cγ /Z

R PR], (20)

which are UV finite by themselves.
To renormalize the weak sector parameters, in the on-shell mass scheme we fix the mass 

and wave function renormalization constants by requiring that the renormalized parameters of 
the theory actually be equal to the physical parameters, i.e., the renormalized mass parameters be 
equal to the real parts of the poles of the corresponding propagators, and the residues of the prop-
agators of the renormalized fields be equal to one. We further renormalize the electrical charge 
by equating it with the eeγ -coupling for on-shell external particles in the Thomson limit. In the 
on-shell scheme the weak mixing angle is a derived quantity. We follow Sirlin’s definition [33]
to define it as c2

W = m2
W/m2

Z using the renormalized gauge boson masses. To the one-loop order 
we obtain

δcW

cW

= 1

2

(
δm2

W

m2
W

− δm2
Z

m2
Z

)
. (21)

Now we evaluate the loop diagrams in Fig. 2a through 2c. Upon summing over the loop 
particle components, they are factorized into the corresponding generic self-energy integrals, 
multiplied by the group factors CF , CS and DF Y 2

F , DSY 2
S , where

CS = 1

3
IS(IS + 1)(2IS + 1), CF = 1

3
IF (IF + 1)(2IF + 1), (22)

are the Casimir invariants in representation IS and IF of the scalar S and the fermion F , and 
DS = 2IS + 1 and DF = 2IF + 1 are their dimensions. As before, the generic self-energy in-
tegrals are reduced to one-loop scalar functions. We present the full result of the anomalous 
couplings in terms of scalar functions in App. C.3. In the approximation of large mass expan-
sion, they become

αγ = − e2

3840π2

s

M2

2

c2
Ws2

W

[
c2
W (8CF + CS) + 3s2

W

(
8DF Y 2

F + DSY 2
S

)]
,

ξ1,γ = + e2

3840π2

s

M2

2

c2
Ws2

W

[
c2
W (8CF + CS) − s2

W

(
8DF Y 2

F + DSY 2
S

)]
,

ξ2,γ = − e2

3840π2

mμ

M2

4

c2
Ws2

W

[
c2
W (8CF + CS) − s2

W

(
8DF Y 2

F + DSY 2
S

)]
,

αZ = − e2

3840π2

s

M2

1

c3
Ws3

W

[
2c4

W (8CF + CS)

− s2
W

(
8DF Y 2

F + DSY 2
S

)((2c2
W − 3

)
m2

Z

s
+ 6s2

W

)]
,
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ξ1,Z = + e2

3840π2

s

M2

1

c3
Ws3

W

[
2c4

W (8CF + CS)

+ s2
W

(
8DF Y 2

F + DSY 2
S

)((2c2
W − 1

)
m2

Z

s
+ 2s2

W

)]
,

ξ2,Z = − e2

3840π2

mμ

M2

4

c3
Ws3

W

[
c4
W (8CF + CS) + s4

W

(
8DF Y 2

F + DSY 2
S

)] s − 2m2
Z

s − m2
Z

,

CZ
L = − e2

3840π2

m2
Z

M2

2

c3
Ws3

W

[
2c4

W (8CF + CS) +
(

2c2
W − 1

)
s2
W

(
8DF Y 2

F + DSY 2
S

)]
,

CZ
R = + e2

3840π2

m2
Z

M2

4

c3
Ws3

W

[
s4
W

(
8DF Y 2

F + DSY 2
S

)]
, (23)

and βγ = βZ = 0. Notice that the purely counterterm corrections to eeγ vertex Cγ

L/R = 0 ex-
actly, since the electrical charge is renormalized to the eeγ coupling strength at zero momentum 
transfer.

3. Numerical results

We choose our observable to be the deviation from the SM tree-level cross section 
�σ(≡ σ − σ0), where σ0 stands for the SM tree-level cross sections2 and σ is the sum of the 
SM cross section and the new physics one-loop virtual corrections. Therefore, �σ is the cross 
section of the interference between the SM and the new physics virtual corrections. Note that 
this is both theoretically consistent, as the corrections to the cross sections are complete to this 
order in the perturbation series, and also numerically robust because the new physics one-loop 
amplitude squared is negligible compared to the interference contribution. Ignoring the electron 
mass, the correction �σ is given below in terms of the anomalous couplings,

d�σ

dt
= πα2

EM

s2

∑
ij

[
AL

ij

(
g

γ

i + gLgi

s

s − m2
Z

)

×
(

FL
γ,j + FL

Z,j

s

s − m2
Z

)
+ (L → R)

]
. (24)

The terms in the first round brackets come from the SM amplitudes, while those from the second 
round brackets come from the new physics loop corrections. L and R label the chirality of the 
initial state electrons (positrons). The index i, running through {v, a}, labels the SM vector and 
axial-vector couplings of the final state μ+μ− pair with γ /Z. Note that gγ

v = 1, gγ
a = 0. The 

index j , running through {α, ξ1, β}, labels the new physics loop-induced contributions, with

FL
γ,j = 2�{αγ + Cγ

L, ξ1,γ , mμβγ

}
,

FL
Z,j = 2�

{
gLαZ + CZ

Lgv, gLξ1,Z + CZ
Lga, gLmμβZ

}
,

FR
γ,j = 2�{αγ + Cγ

R, ξ1,γ , mμβγ

}
,

2 The SM corrections to σ0 have been calculated in Refs. [29,34,35].
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FR
Z,j = 2�

{
gRαZ + CZ

Rgv, gRξ1,Z + CZ
Rga, gRmμβZ

}
. (25)

Note that in the formula above, αV , βV , ξ1,V , ξ2,V include both the Yukawa and the gauge 
corrections to the V μ+μ− matrix elements; see Eqs. (4) and (15). CV

L/R are from the counterterm 
corrections to the initial state V e+e− matrix elements; see Eqs. (20). The A functions are given 
by

AL
v,α = +AR

v,α = 6m4
μ − 4m2

μ(t + u) + t2 + u2

s2
, AL

v,ξ1
= −AR

v,ξ1
= u − t

s
,

AL
v,β = +AR

v,β = 2,

AL
a,α = −AR

a,α = u − t

s
, AL

a,ξ1
= +AR

a,ξ1
= −2m4

μ + t2 + u2

s2
,

AL
a,β = −AR

a,β = 2(u − t)

s
,

where s = (p− +p+)2, t = (p− −k−)2, and u = (p− −k+)2 are the usual Mandelstam variables.
Now we are ready to discuss our numerical results. The SM input parameters are chosen as 

follows [36]:

Gμ = 1.1663787 × 10−5 GeV−2, αEM(0) = 1/137.035999139,

mZ = 91.1876 GeV, mW = 80.385 GeV,

mμ = 105.6583745 MeV,

while the weak mixing angle is fixed by cW = mW/mZ . The loop corrections are calculated with 
the help of LoopTools package [37,38]. We choose the independent model parameters to be the 
Yukawa coupling strength y, the loop particle mass MF = MS = M , and the quantum numbers 
of the S field (IS, YS).

First of all, we examine some possible experimental constraints on our model parameters. 
Consider the SS̄ or FF̄ pair productions at the LHC. In the degenerate-mass scenario, the SM 
decay products of S or F , being very soft, can not be observed by detectors. To detect the SS̄

or FF̄ pairs, one has to make use of the jet (j ) or the photon (γ ) radiated out from the ini-
tial state partons, e.g. examining the process of pp → j + SS̄(F F̄ ) or pp → γ + SS̄(F F̄ ). 
That gives rise to a collider signature of one hard jet plus large /ET (named as mono-jet) or 
one hard photon plus large /ET (named as mono-photon), where the /ET originates from the SS̄

and FF̄ pairs. Therefore, the quantum numbers of S and F are constrained by the mono-jet or 
mono-photon data [39–42]. We perform a simulation of the mono-jet and mono-photon produc-
tions using MadGraph5 [43] with model files generated by FeynRules [44], and find that the 
most stringent constraint comes from mono-jet experimental data, when /ET > 400 GeV. The un-
folded upper limits of new physics cross sections depend on the dark matter mass; for example, 
σ(j + /ET ) ≤ 0.76 pb for a 150 GeV scalar dark matter particle. We choose M = 150 GeV as 
a benchmark point, and apply the simulation results to constrain the quantum numbers (IS, YS). 
The 95% C.L. exclusion bounds are displayed in Fig. 3; see the blue regions. The yellow regions 
enclose the model representations having an electrically neutral component as the dark matter 
candidate; see Eq. (2). The contour lines attached with relative correction values help to esti-
mate the cross section corrections at the CEPC for the various model representations, with the 
Yukawa coupling strength chosen as y = 1. Note that IS must be half integers, therefore, only 
those parameter points with box symbols represent realistic new physics models. The contour 
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Fig. 3. Mono-jet data exclusion (blue region) of model quantum numbers of F and S fields with M = 150 GeV: (a) the 
Sμ̄LF coupling scenario with IF = IS + 1/2, (b) the Sμ̄LF coupling scenario with IF = IS − 1/2, (c) the Sμ̄RF

coupling scenario. The yellow region encloses the model representations allowing for a scalar dark matter candidate. The 
contour lines help to estimate �σ/σ0 at CEPC for the various model representations with y = 1. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Dependence of �σ/σ0 on M at the CEPC with y = 1: (a) the Sμ̄LF coupling scenario with IF = IS + 1/2, 
(b) the Sμ̄LF coupling scenario with IF = IS − 1/2, (c) the Sμ̄RF coupling scenario. The gray bold part of each curve 
is ruled out by the mono-jet data. (For interpretation of the colors in this figure, the reader is referred to the web version 
of this article.)

curves serve for the purpose of comparisons. We see that only a few lowest quantum numbers 
are allowed by the mono-jet data while the higher representations are excluded as they yield too 
much corrections. In the Sμ̄LF coupling scenario, the highest allowed representation is a triplet 
scalar (IS = 1) and a doublet fermion (IF = 1/2), while in the Sμ̄RF coupling scenario, the 
highest allowed representation is a double scalar and a doublet fermion (IS = IF = 1/2). An-
other important experimental constraint might come from the relic abundance measured by the 
Planck experiment [45], with �h2 = 0.1186 ± 0.0020, or equivalently, the thermally averaged 
annihilation cross section should be larger than 〈σv〉Relic � 0.83 pb. In our interested parameter 
space region, the relic abundance constraint is easily satisfied [12,46–49].

In order to investigate the dependence of the loop particle mass, we choose y = 1 as a bench-
mark point, and show in Fig. 4 the corrections as a function of new physics particle mass M , for 
a few representations of F and S. We have chosen M > 50 GeV to eliminate the new physics 
correction to the weak gauge boson decay widths. The gray bold part of each curve is ruled out 
by the mono-jet data. In the parameter space allowed by the mono-jet data, the largest correc-
tion comes from the Sμ̄RF coupling scenario (IF = IS ) at M = 120 GeV, increasing the SM 
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Fig. 5. The relative corrections from the purely gauge part (a) and the Yukawa part (b) in the Sμ̄RF coupling scenario.

prediction by about 6‰. The Sμ̄LF coupling scenarios can increase the cross sections by 4‰. 
Assuming an accuracy of 2‰ at the CEPC, we notice a few points as follows:

1. in the Sμ̄LF coupling scenario with IF = IS + 1/2 shown in Fig. 4(a), only the model with 
IS = 0, YS = 0 (the red curve) can be testable at the CEPC; for example, a narrow mass 
window of about 30 GeV around M = 130 GeV can yield a cross section deviation larger 
than 2‰;

2. in the Sμ̄LF coupling scenario with IF = IS − 1/2 displayed in Fig. 4(b), relative positive 
corrections up to 3‰ ∼ 4‰ can be yielded for IS = 1/2, YS = ±1/2 (the blue curves), 
whereas IS = 1, YS = ±1 (the orange curves) give negative corrections up to about −4‰;

3. in the Sμ̄RF coupling scenario depicted in Fig. 4(c), the model of IF = IS = 0, YS = 0 (the 
red curve) can be probed at the CEPC in the mass range of 90 GeV ≤ M ≤ 140 GeV and a 
maximal correction of 6‰ is achieved at 120 GeV.

Therefore, we observe that the CEPC has a modest power to test certain model parameter space 
if 2‰ precision in the σ(e+e− → μ+μ−) measurement is achieved, but we point out that im-
proving the accuracy to 1‰ shall enable us to probe a larger range of new physics mass.

The peak at the M = √
s/2 = 120 GeV for each curve in Fig. 4 is due to the threshold effect 

from producing the intermediate on-shell FF̄ pairs (cf. Figs. 1a and 2a). The absence of such 
a peak for IS = 1/2, IF = 0, YS = −1/2 in the Sμ̄LF coupling scenario, on the other hand, is 
because in this case only the scalar S is coupled to s-channel gauge bosons (cf. Figs. 1b and 2b), 
and the threshold effect is less pronounced, with the maximum shifted to a lower M value. The 
sign of the cross section corrections exhibits a dependence on IS and YS . That is due to the 
interplay between the purely gauge correction and the purely Yukawa correction (to visualize the 
interplay, we display in Fig. 5 both parts individually for the Sμ̄RF coupling scenario IF = IS

as an example). Nevertheless, we also observe in addition to that a unanimous trend of negative 
corrections as the representations go higher, or as IS and Y 2

S are larger. In such region of model 
parameter space, the gauge interaction corrections dominate over the Yukawa corrections, as can 
be readily seen from their power dependence in IS and YS (cf. Eqs. (11), (12), (22) and (23)); 
therefore, the corrections approach to the (negative) purely gauge limit.

It is worth pointing out that, the corrections are sensitive to the Yukawa coupling strength 
y through quadratic dependence |y|2. We choose M = 150 GeV and plot in Fig. 6 the relative 
corrections versus y for those IS and YS allowed by the mono-jet data; see Fig. 4 for details. 
We observe that, except the model with IS = IF + 1/2 = 1, YS = −1 which has a negative 
contribution from the Yukawa part, the rest of the curves exhibit cancellation between the posi-
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Fig. 6. The y dependence of the relative corrections for the model quantum numbers allowed by mono-jet data in Fig. 4
with M = 150 GeV: (a) the Sμ̄LF coupling scenario, (b) the Sμ̄RF coupling scenario. (For interpretation of the colors 
in this figure, the reader is referred to the web version of this article.)

tive Yukawa part corrections and the negative gauge part corrections. For small values of y, the 
Yukawa part corrections become insignificant. The relative cross section corrections are domi-
nated by the gauge corrections. The higher representations yield larger gauge corrections, which 
reaches −6‰ for IS = 1/2, YS = 1/2 in the Sμ̄RF coupling scenario (cf. the blue dashed curve 
in Fig. 6(b)). On the other hand, when y is large, say y ∼ 2, the Yukawa part corrections dom-
inate, and �σ/σ0 can reach above 1% for both coupling scenarios (cf. the red solid curves in 
Figs. 6(a) and 6(b)).

4. Conclusion

In this work, we addressed a “nightmare” scenario in which the dark matter and its parent 
particles are nearly degenerate, so that the new physics signal would be difficult to probe at the 
LHC directly. However, the new physics particles affect the SM processes through quantum loop 
corrections, no matter whether they are degenerate or not, therefore, we proposed to explore their 
loop effects on σ(e+e− → μ+μ−) at the CEPC (

√
s = 240 GeV), with an expected accuracy 

of 2‰.
In this work we payed our attentions to the case that one neutral component of the scalar parti-

cle S serves as the dark matter candidate. A vector-like fermion multiplet F has been introduced 
to facilitate the coupling of S to the SM muon leptons through the Yukawa interaction. Various 
constraints from the mono-jet (photon) data and relic abundance are also discussed.

We have calculated the one-loop induced anomalous couplings of γμ+μ− and Zμ+μ− for 
general SU(2)L × U(1)Y multiplets of F and S. Our analytical results can be applied to many 
new physics models. Choosing Yukawa coupling strength y = 1, the relative cross section cor-
rections at the CEPC can reach above 2‰ for moderate new physics mass intervals and can be 
probed. For example, when the loop particle mass is around 120 GeV, the Sμ̄RF coupling sce-
nario with IS = YS = 0 can raise the SM cross section by +6‰, and the Sμ̄LF coupling scenario 
with IS = YS = 1/2, IF = 0 can raise the SM cross section by +4‰. Furthermore, improving the 
accuracy to 1‰ would enable us to probe a larger range of new physics mass. We also discussed 
the relevance of the magnitude of y and found that, for M = 150 GeV, when y � 1, a negative 
correction of −6‰ can be reached in the Sμ̄RF coupling scenario with IS = 1/2, YS = 1/2. 
When y is large, say y ∼ 2, a positive correction of 1% can be reached, for example, in the 
Sμ̄LF coupling scenario with IS = YS = 0, IF = 1/2. Therefore, the nightmare scenario can be 
potentially examined at the CEPC.
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Fig. 7. Feynman rules of the Sμ̄LF (a) and Sμ̄RF (b) couplings in Eqs. (3) and (13) respectively.
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Appendix A. Feynman rules

The Feynman rules for the Yukawa couplings in Eq. (3) and Eq. (13) are displayed in Fig. 7(a) 
and (b), respectively. The CG coefficients are given explicitly as follows,

C
ij− 1

2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)IS−i

√
IS + i + 1

2I 2
S + 3IS + 1

δ
i+j,− 1

2
, for IF = IS + 1

2
,

(−1)IS−i−1

√
IS − i

IS(2IS + 1)
δ
i+j,− 1

2
, for IF = IS − 1

2
,

(A.1)

and

Cij = (−1)IS−i 1√
2IS + 1

δi+j,0 . (A.2)

Appendix B. Large mass expansion of scalar integrals

With the Taylor series of Feynman integral denominator in large mass

1

(l + p)2 − M2
= 1

l2 − M2

∞∑
n=0

(
−2l · p + p2

l2 − M2

)n

, (B.1)

we can expand the Passiano–Veltman scalar functions [29,30] B0, C0, with degenerate masses, 
as below, as appropriate for our anomalous couplings up to order O(M−2):

B0(p
2;M2,M2) = B0(0;M2,M2) + p2

6M2
+ p4

60M4
+O(M−6),

C0(p
2
1,p

2
2,p

2
3;M2,M2,M2) = − 1

2M2
− p2

1 + p2
2 + p2

3

24M4
+O(M−6). (B.2)
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Appendix C. Anomalous couplings in terms of scalar integrals

C.1. Anomalous couplings induced by the Sμ̄LF interaction

By introducing the following shorthand notations,

B0

(
p2
)

≡ B0

(
p2;M2,M2

)
, B ′

0

(
q2
)

≡ ∂

∂p2
B0

(
p2;M2,M2

)∣∣∣
p2=q2

,

C0 ≡ C0

(
s,m2

μ,m2
μ;M2,M2,M2

)
, (C.1)

the Yukawa part anomalous couplings a = αV , βV , ξ1,V , ξ2,V induced by the Sμ̄LF interaction, 
with V = γ, Z, are given by

a ≡ |y|2
16π2

[
a1 + a2B0 (s) + a3B0

(
m2

μ

)
+ a4B ′

0

(
m2

μ

)
+ a5C0

]
. (C.2)

The nonzero ai = αi
V , βi

V , ξ i
1,V , ξ i

2,V , i = 1, · · · , 5, are listed below,

α1
γ = − s (2YS + 2JS3 + 1)

4
(
s − 4m2

μ

) , α2
γ = −α3

γ = 16m4
μ − 2s (6JS3 + 6YS + 7)m2

μ + s2

4
(
s − 4m2

μ

)2 ,

α4
γ = −m2

μ

2
,

α5
γ = − sm2

μ

[
s (JS3 + YS + 1) − 4M2 (2JS3 + 2YS + 1)

]+ sm4
μ (2JS3 + 2YS − 3) + M2s2 (2JS3 + 2YS + 1) + 8m6

μ

2
(
s − 4m2

μ

)
2 ,

β1
γ = mμ (2JS3 + 2YS + 1)

2
(
s − 4m2

μ

) , β2
γ = −β3

γ = mμ

(
2m2

μ + s
)
(2JS3 + 2YS + 1)

2
(
s − 4m2

μ

)2 ,

β5
γ = −mμ (2JS3 + 2YS + 1)

[
m4

μ + m2
μ

(
4M2 − s

)− M2s
]

(
s − 4m2

μ

)2 ,
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1,γ = 1
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(2JS3 + 2YS + 1) , ξ2
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μ + s

4
(
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μ
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μ

[
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μ
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(
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μ
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μ
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μ
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μ

(
s − 8M2

)
+ 2M2s

](
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W
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W
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W

)[
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μ

(
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)
− 3sm4
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]

4c s
(
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W W μ
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β1
Z = mμ

[
4JS3c

2
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W + 1
]

4cW sW
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μ

) ,

β2
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W YS)
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(
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μ

(
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]

4cW sW
(
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μ

) ,

with ξ i
2,V = −2mμ

s
ξ i

1,V for V = γ , Z and i ∈ {1, 2, 3, 4, 5}, with the exception of ξ4
2,Z = 0.

C.2. Anomalous couplings induced by the Sμ̄RF interaction

Following the notations in C.1, we list the nonzero scalar function coefficients of the anoma-
lous couplings αV , βV , ξ1,V , ξ2,V induced by the Sμ̄LF interaction, with V = γ, Z, as follows,

α1
γ = − s (2YS + 1)

4
(
s − 4m2

μ
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with ξ i
2,V = −2mμ

s
ξ i

1,V for V = γ , Z and i ∈ {1, 2, 3, 4, 5}, with the exception of ξ4
2,Z = 0.

C.3. Anomalous couplings induced by purely gauge interaction

Following the shorthand notations in Eq. (C.1) for the scalar functions, the gauge part anoma-
lous couplings a = αV , βV , ξ1,V , ξ2,V , CV

L/R , with V = γ, Z, are given by

a ≡ e2

16π2

[
a1B0 (s) + a2B0

(
m2

W

)
+ a3B0

(
m2

Z

)
+ a4B0 (0) + a5B ′

0

(
m2

Z

)
+ a6B ′

0 (0)
]
.

(C.3)

The nonzero ai = αi
V , βi

V , ξ i
1,V , ξ i

2,V , CV i
L/R , i = 1, · · · , 6, are listed below,

α1
γ = −

(
s − 4m2

Zs2
W

) [
4CF

(
2M2 + s

)+ CS

(
s − 4M2

)]
12ss2

W

(
s − m2

Z

)
−
(
3s − 4m2

W

) [
4DF Y 2

F

(
2M2 + s

)+ DSY 2
S

(
s − 4M2

)]
12sc2

W

(
s − m2

Z

) ,

α3
γ = s

(
4s2

W
− 1
){

c2
W

[
4CF

(
m2

Z
+ 2M2

)
+ CS

(
m2

Z
− 4M2

)]
− s2

W

[
4DF Y 2

F

(
m2

Z
+ 2M2

)
+ DSY 2

S

(
m2

Z
− 4M2

)]}
12m2

W
s2
W

(
m2

Z
− s
) ,

α4
γ = CF

{
4s2

W

[
m2

Z

(
2M2 + s

)+ 2M2s
]− 2M2s

}+ CS

{
s2
W

[
m2

Z

(
s − 4M2

)− 4M2s
]+ M2s

}
3sm2

Zs2
W

+ 2DF Y 2
F

[
2m2

W

(
2M2 + s

)+ M2s
(
1 − 4s2

W

)]+ DSY 2
S

[
m2

W

(
s − 4M2

)+ M2s
(
4s2

W − 1
)]

3sm2
W

,

α6
γ = 4

3
M2
(

2CF − CS + 2DF Y 2
F − DSY 2

S

)
,

ξ1
1,γ = c2

W

[
4CF

(
2M2 + s

)+ CS

(
s − 4M2

)]− s2
W

[
4DF Y 2

F

(
2M2 + s

)+ DSY 2
S

(
s − 4M2

)]
2 2

(
2
) ,
12cW sW s − mZ
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ξ3
1,γ = s

{
c2
W

[
4CF

(
m2

Z + 2M2
)+ CS

(
m2

Z − 4M2
)]− s2

W

[
4DF Y 2

F

(
m2

Z + 2M2
)+ DSY 2

S

(
m2

Z − 4M2
)]}

12m2
W s2

W

(
m2

Z − s
) ,

ξ4
1,γ = M2

[
c2
W (2CF − CS) + s2

W

(
DSY 2

S − 2DF Y 2
F

)]
3m2

Ws2
W

,

α1
Z = −cW

(
s − 4m2

Zs2
W

) [
4CF

(
2M2 + s

)+ CS

(
s − 4M2

)]
12ss3

W

(
s − m2

Z

)
+ sW

(
3s − 4m2

W

) [
4DF Y 2

F

(
2M2 + s

)+ DSY 2
S

(
s − 4M2

)]
12sc3

W

(
s − m2

Z

) ,

α2
Z =

(
2s2

W + 1
) [

4CF

(
m2

W + 2M2
)+ CS

(
m2

W − 4M2
)]

24cWm2
Ws5

W

,

α3
Z = c3

WCS

[−m2
Z

(
16M2 + s

)+ 3m4
Z + 8M2s

]
24m2

Ws3
W

(
s − m2

Z

)
− cWCS

(
m2

Z − 8M2 + s
)

6sW
(
s − m2

Z

) − c3
WCS

(
m2

Z − 4M2
)

24m2
Ws5

W

+ c3
WCF

[
m2

Z

(
2m2

W + 5M2 − s
)− 3M2s

]
3m2

Ws3
W

(
s − m2

Z

)
− c5

WCF

(
m2

Z + 2M2
)

6m2
Ws5

W

− 2cWCF

(
4M2 + s

)
3sW

(
s − m2

Z

)
+ DSY 2

S

{
c2
W

(
4M2 − m2

Z

) (
s − m2

Z

)+ 2s2
W m2

Z

[
2m2

W + 2
(
8M2 − s

)
s2
W − 10M2 − s

]+ 12s2
W M2s

}
24cW m2

W sW
(
s − m2

Z

)
− DF Y 2

F

{
c2
W

(
m2

Z + 2M2
) (

s − m2
Z

)+ 2s2
W m2

Z

[−2m2
W + 2

(
4M2 + s

)
s2
W − 5M2 + s

]+ 6s2
W M2s

}
6cW m2

W sW
(
s − m2

Z

) ,

α4
Z = CS

s2
W

{
m2

W

[−4ss2
W − 32M2c2

W + s
]+ 4M2s

(
3 − 2s2

W

)}+ 8M2s

24scWm2
Ws3

W

+ CF

s2
W

{
m2

W

[−4ss2
W + 16M2c2

W + s
]+ 2M2s

(
2s2

W − 3
)}− 4M2s

6scWm2
Ws3

W

+ 4DF Y 2
F

{
m2

W

[
s − 4

(
4M2 + s

)
s2
W

]+ 2M2s
(
2s2

W + 1
)}

24scWm2
WsW

+ DSY 2
S

{
m2

W

[
s − 4

(
s − 8M2

)
s2
W

]− 4M2s
(
2s2

W + 1
)}

24scWm2
WsW

,

α5
Z = cW

(
1 − 4s2

W

) [
4CF

(
m2

Z + 2M2
)+ CS

(
m2

Z − 4M2
)]

24s3
W

− sW
(
4s2

W − 1
) [

4DF Y 2
F

(
m2

Z + 2M2
)+ DSY 2

S

(
m2

Z − 4M2
)]

24c3
W

,

α6
Z = −M2

(
4s2

W − 1
) (

2CF − CS + 2DF Y 2
F − DSY 2

S

)
,

6cW sW
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ξ1
1,Z = c4

W

[
4CF

(
2M2 + s

)+ CS

(
s − 4M2

)]+ s4
W

[
4DF Y 2

F

(
2M2 + s

)+ DSY 2
S

(
s − 4M2

)]
12c3

W s3
W

(
s − m2

Z

) ,

ξ2
1,Z =

(
2s2

W − 1
) [

4CF

(
m2

W + 2M2
)+ CS

(
m2

W − 4M2
)]

24cWm2
Ws5

W

,

ξ3
1,Z =

(
c4
WCS + s4

WDSY 2
S

) c2
W

(
4M2 − m2

Z

) (
s − m2

Z

)+ 2s2
W

[
m2

Z

(
s − 2M2

)− 2M2s
]

24c3
Wm2

Zs5
W

(
m2

Z − s
)

+
(
c4
WCF + s4

WDF Y 2
F

) 2s2
W

[
m2

Z

(
M2 + s

)+ M2s
]− c2

W

(
m2

Z + 2M2
) (

s − m2
Z

)
6c3

Wm2
Zs5

W

(
m2

Z − s
) ,

ξ4
1,Z = CS

(
20M2 − c2

Wm2
Z

)− 4CF

(
c2
Wm2

Z + 10M2
)

24c3
Wm2

ZsW
+ M2

(
s4
W + 1

)
(2CF − CS)

3c3
Wm2

Zs3
W

− 4DF Y 2
F

[
c2
Wm2

Z + 2M2
(
1 − 2s2

W

)]+ DSY 2
S

[
c2
Wm2

Z + 4M2
(
2s2

W − 1
)]

24c3
Wm2

ZsW
,

ξ5
1,Z =

(
4M2 − m2

Z

) (
c4
WCS + s4

WDSY 2
S

)
24c3

Ws3
W

−
(
m2

Z + 2M2
) (

c4
WCF + s4

WDF Y 2
F

)
6c3

Ws3
W

,
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1,Z = M2

(−2CF + CS − 2DF Y 2
F + DSY 2

S

)
6cW sW

,

ξ1
2,Z = −mμ

(
s − 4M2

) (
c4
WCS + DSY 2

S s4
W

)
6sc3

Ws3
W

(
s − m2

Z

) − 2mμ

(
2M2 + s

) (
c4
WCF + s4
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F

)
3sc3

Ws3
W

(
s − m2

Z

) ,

ξ3
2,Z = mμ

[
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W (4CF + CS) + s4

W

(
4DF Y 2

F + DSY 2
S

)]
6c3

Ws3
W

(
s − m2

Z

) ,

ξ4
2,Z = 2M2mμ

[
c4
W (2CF − CS) + s4

W

(
2DF Y 2

F − DSY 2
S

)]
3sc3

Ws3
W

(
s − m2

Z

) ,

ξ5
2,Z = mμ

(
m2

Z − 4M2
) (

c4
WCS + DSY 2

S s4
W

)
6c3

Ws3
W

(
s − m2

Z

) + 2mμ

(
m2

Z + 2M2
) (

c4
WCF + s4

WDF Y 2
F

)
3c3

Ws3
W

(
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Z

) ,

CZ2
L = 4CF

(
m2

W + 2M2
)+ CS

(
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W − 4M2
)

12cWm2
Ws5

W

,

CZ3
L = −c3

W

4CF

[
m2

Z

(
2s4
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(
4s4

W + 1
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[
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Z

(
2s4
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(
4s4
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W

+
(
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F
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W
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S

[
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(
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W − 1
)]
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,
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(
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4M2 − m2
Z

) (
c4
WCS + s4

WDSY 2
S

)
12c3 s3
W W



216 Q.-H. Cao et al. / Nuclear Physics B 909 (2016) 197–217
+
(
2s2

W − 1
) (

m2
Z + 2M2

) (
c4
WCF + s4

WDF Y 2
F

)
3c3

Ws3
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,

CZ6
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(
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) (
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F − DSY 2

S

)
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,
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R = 4CF

(
m2
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)
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Ws3

W

,
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R = −c3

W
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[
m2

Z

(
s2
W

+ 1
)

+ 2M2
(

2s2
W

+ 1
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[
m2

Z

(
s2
W

+ 1
)

− 4M2
(

2s2
W

+ 1
)]

6m2
W

s3
W

+ sW
4DF Y 2

F

[
m2

W + 2M2
(
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W

)]+ DSY 2
S

[
m2

W + 4M2
(
2s2

W − 1
)]

6cWm2
W

,

CZ4
R = sW

CS

[−m2
W + 4M2

(
3 − 2s2

W

)]− 4CF

[
m2

W + 2M2
(
3 − 2s2

W

)]
6cWm2

W

+ sW
4DF Y 2

F

[−m2
W + 2M2

(
2s2
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)]+ DSY 2

S

[−m2
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(
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W

)]
6cWm2

W

,
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R = c4

W

[
4CF

(
m2

Z + 2M2
)+ CS

(
m2

Z − 4M2
)]+ s4

W

[
4DF Y 2

F

(
m2

Z + 2M2
)+ DSY 2

S

(
m2
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)]

6c3
W sW

,
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F + DSY 2

S

)
3cW

,

with ξ i
2,γ = −2mμ

s
ξ i

1,γ for i ∈ {1, 2, 3, 4, 5}.
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