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The mechanisms by which aldosterone increases Na+, K+ ATPase and sodium channel activity in cortical
collecting duct and distal nephron have been extensively studied. Recent investigations demonstrate that al-
dosterone increases Na–H exchanger-3 (NHE-3) activity, bicarbonate transport, and H+ ATPase in proximal
tubules. However, the role of aldosterone in regulation of Na+, K+ ATPase in proximal tubules is unknown.
We hypothesize that aldosterone increases Na+, K+ ATPase activity in proximal tubules through activation
of the mineralocorticoid receptor (MR). Immunohistochemistry of kidney sections from human, rat, and
mouse kidneys revealed that the MR is expressed in the cytosol of tubules staining positively for Lotus
tetragonolobus agglutinin and type IIa sodium-phosphate cotransporter (NpT2a), confirming proximal tubule
localization. Adrenalectomy in Sprague–Dawley rats decreased expression of MR, ENaC α, Na+, K+ ATPase
α1, and NHE-1 in all tubules, while supplementation with aldosterone restored expression of above proteins.
In human kidney proximal tubule (HKC11) cells, treatment with aldosterone resulted in translocation of MR
to the nucleus and phosphorylation of SGK-1. Treatment with aldosterone also increased Na+, K+

ATPase-mediated 86Rb uptake and expression of Na+, K+ ATPase α1 subunits in HKC11 cells. The effects of
aldosterone on Na+, K+ ATPase-mediated 86Rb uptake were prevented by spironolactone, a competitive
inhibitor of aldosterone for the MR, and partially by Mifepristone, a glucocorticoid receptor (GR) inhibitor.
These results suggest that aldosterone regulates Na+, K+ ATPase in renal proximal tubule cells through an
MR-dependent mechanism.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Aldosterone regulates extracellular fluid volume and potassium
metabolism by activation of the mineralocorticoid receptor in target
tissues, such as the distal tubule and the cortical collecting duct of
the kidney, where aldosterone increases sodium reabsorption and
potassium excretion [1–5]. Reabsorption of sodium ions through
NCC or ENaC on the apical membrane of the distal tubule or cortical
collecting duct results in a fall in transmembrane potential, thus
increasing the flow of positive ions, such as potassium, out of the
cell into the lumen. The reabsorbed sodium ions are transported out
of the tubular epithelium into the renal interstitial fluid through the
action of basolateral Na+, K+ ATPase. Several studies suggest that the
effects of aldosterone are not limited to distal and collecting tubules.
od, Louisville, KY 40202, USA.
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Hierholzer and colleagues [6,7] demonstrated that aldosterone stimu-
lates proximal tubular volume reabsorption in adrenalectomized rats
using micropuncture techniques. More recent studies demonstrate
that aldosterone increases NHE3 expression and function in the apical
membranes of proximal tubules under pathophysiological conditions
such as cirrhosis [8]. In adrenalectomized animals and in human
proximal tubule cells, aldosterone has been shown to increase proxi-
mal tubular fluid reabsorption and NHE3 expression [9,10]. Aldoste-
rone also increases NHE1 function [11], H+-ATPase activity [12] and
bicarbonate transport in renal proximal tubules [13]. The mechanisms
for aldosterone-mediated actions in the proximal tubule, including
the pathways stimulated by aldosterone in proximal tubule have not
been identified. Based on treatment time (15 min) and blockade of
the effects of aldosterone by RU486, the effects of aldosterone on bicar-
bonate transport and Na+/H+ exchange in renal proximal tubules were
shown to be dependent upon non-genomic actions through GR [12,13].
Whether other aldosterone effects on proximal tubule are mediated
through the classical mineralocorticoid/genomic pathway or through
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non-genomic mechanisms has not been determined. Several investiga-
tors have demonstrated the presence of MR and sodium and
glucocorticoid-dependent kinase (SGK-1), a major MR target signaling
molecule, in proximal tubules by quantitative PCR [14–16]. On the
other hand, type 2 β-hydroxysteroid dehydrogenase (11-βHSD), the
enzyme that confers specific tissue responsiveness to mineralocorti-
coid stimulation by metabolism of glucocorticoids, has not been identi-
fied in the proximal kidney tubule [17,18], while the type 1 form,
which facilitates activation of glucocorticoid receptors by glucocorti-
coids, has been found [19]. However, Bonvalet et al. [20] showed that
carbenoxolone completely prevented conversion of corticosterone to
dihydrocorticosterone in both proximal convoluted and cortical
collecting tubules suggesting expression of type-2 11-βHSD. Based on
these findings, we tested the hypothesis that aldosterone regulates
Na+, K+ ATPase activity and expression in human kidney proximal
tubule cells through MR-dependent mechanisms. Our studies demon-
strate the presence of MR in rat, mouse, and human kidney proximal
tubules and confirm an essential role of MR in regulation of proximal
tubule Na+, K+ ATPase by aldosterone.

2. Experimental procedures

2.1. Materials

Aldosterone, Mifepristone, spironolactone, Phosphatase inhibitor
cocktail-1, and protease inhibitor cocktail were purchased from
Sigma (St. Louis, MO). Antibodies against Na+, K+ ATPase α1 subunit
(α6F) developed by Dr. D.M. Fambrough and against mineralocorti-
coid receptor (rMR1-18 1D5) developed by Dr. C. Gomez-Sanchez
were obtained from the Developmental Studies Hybridoma Bank
developed under the auspices of NIHCD and maintained by the
University of Iowa, Department of Biological Sciences, Iowa City, IA
52242. Antibodies against phospho- and total SGK1 were purchased
from Cell Technologies, and monoclonal antibodies against NHE-1
were purchased from BD Biosciences. Polyclonal antibodies against
ENaCα, β and γ subunits were kindly provided by Dr. Carolyn
Ecelbarger (Georgetown University, Washington DC). Polyclonal anti-
bodies against mouse NpT2a were kindly provided by Dr. Moshe Levi
(University of Colorado, Denver) and against NKCC2were kindly provid-
ed by Dr. Mark Knepper (NIH). Polyclonal antibodies against human
NpT2a (NaPi3) were kindly provided by Dr. Robert Gunn (Emory
University). HRP-linked secondary antibodies were purchased from
Vector Laboratories. AlexaFluor antibodies were purchased from
Invitrogen (Carlsbad, CA). All other chemicals were purchased from
Sigma, unless otherwise specified.

2.2. Animal preparation

All animal protocols were approved by the Emory University Insti-
tutional Animal Care and Use Committee. Male Sprague–Dawley rats
(100–150 g, Charles River Laboratories, Wilmington, MA), received
free access to water and standard rat chow (Purina) containing 23%
protein. Rats were adrenalectomized as previously described [21] and
received 1/4 normal saline to drink thereafter. After 14 days, some
rats received aldosterone replacement (12 μg/rat/day) via a 14-day
minipump (Alzet, Durect). Paraffin blocks of mouse kidneys were kind-
ly provided by Dr. Barbara Clark (Department of Biochemistry, Univer-
sity of Louisville). Paraffin blocks of de-identified human kidneys were
provided by Dr. Susan Coventry (Department of Pathology, University
of Louisville) after IRB approval from the University of Louisville.

2.3. Immunohistochemistry

Immunohistochemistry of kidney slices was performed as described
previously [22] using monoclonal antibodies against rat mineralocorti-
coid receptor, Na+, K+ ATPase α1 subunit, NHE-1, polyclonal antibodies
against ENaCα, β, and γ subunits, NpT2a, NKCC2, or appropriate isotype
control IgG (negative control).

2.4. Basolateral membrane isolation

Kidney cortical BLMs were prepared from rats treated with or
without aldosterone for 14 days by the method of Sacktor et al. [23]
with slight modifications as described previously [22].

2.5. Western blot analysis

Western blot was performed exactly as described previously
[24,25].

2.6. ATP hydrolysis assay

BLM vesicles were quickly frozen in liquid nitrogen and were
slowly thawed on ice to make them permeable to ATP before mea-
surement of Na+, K+ ATPase activity. Na+, K+ ATPase activity in
basolateral membranes was assayed as ouabain (4 mM)-sensitive
ATP hydrolysis as previously described [26]. The inorganic phosphate
released was measured as described previously [26].

2.7. Cell culture

Human kidney cells (HKC-5 and HKC-11, a gift from Dr. Lorraine
Racusen, John Hopkins University Baltimore, MD), human kidney
proximal tubule cells (HK2, ATCC, Manassas, VA) and Madin–Darby
Canine Kidney cells (MDCK, ATCC, Manassas, VA) were cultured as
previously described [22]. Cells were maintained in DMEM-F12
(1:1) supplemented with 10% FBS, and 1% penicillin/streptomycin,
and cultured to 90–95% confluence. Cells were washed with serum-
free medium 24 h before use.

2.8. Confocal microscopy

Cells treated with vehicle or 10 nM aldosterone were fixed in 4%
paraformaldehyde and confocal microscopy was performed exactly
as described previously using antibodies against MR and phalloidin-
Alexa488 (actin).

2.9. Ouabain-sensitive 86Rb uptake

Ouabain-sensitive 86Rb uptake in human kidney cells was mea-
sured at 37 °C exactly as described previously [24,26]. Cells were
treated for 24 h at 37 °C with aldosterone at indicated concentra-
tions. Cells were then treated at 37 °C with 5 μM monensin and half
the cells were also treated with 4 mM ouabain 30 min prior to 86Rb
uptake. A trace amount of 86Rb (~1 μCi/ml 86Rb) in serum-free
DMEM-F12 (1:1) was added and uptake was carried out for 10 min.
The cells were washed 5–6 times with ice cold PBS and lysed over-
night in 0.5 N NaOH containing 0.1% Triton X-100 at 37 °C. An aliquot
(100 μl) of the lysate was used to measure radioactivity. The differ-
ence between 86Rb uptake measured in the presence or absence of
4 mM ouabain was used as a measure of Na+, K+ ATPase-mediated
transport activity. Uptake data are expressed as nanomoles rubidium
accumulated per milligram of protein per 10 min.

2.9.1. Protein determination
Protein concentration was determined using a bicinchoninic acid

protein assay kit (Sigma) using BSA standard.

2.9.2. Statistics
Data are shown as mean ± SE. The n values represent the number

of independent experiments. Each experiment was performed in trip-
licate. p values were calculated by Student's t-test or by one-way
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ANOVA, followed by Bonferroni analysis using GraphPad Prism soft-
ware. A p value b0.05 was a priori considered statistically significant.

3. Results

3.1. Expression of the mineralocorticoid receptor in kidney proximal
tubules

To determine if MR is expressed in kidney proximal tubules, we
performed immunohistochemistry on human, rat, and mouse kidney
sections and identified MR in both proximal and distal tubules. As
shown in Fig. 1, cytosolic expression of MR was observed in proximal
tubules of all the three species. Of note, staining was observed in the
proximal tubules only in the juxtamedullary cortex and more specif-
ically in the renal pyramids but not in the proximal tubules of the
superficial cortex. To confirm proximal tubule localization of MR
staining, human kidney sections were counterstained with Lotus
tetragonolobus agglutinin (a marker for proximal tubules, purple
stain). The arrows indicate proximal tubules showing the presence
of the MR. Additionally, to confirm the presence of MR in proximal tu-
bules, rat kidney sections were analyzed by immunofluorescence
using NpT2a (red staining) and MR (green staining) antibodies. As
shown in Fig. 1B, in juxtamedullary proximal tubules MR staining
was present in cytosol of tubules positively stained with NpT2a (ar-
rows) and nuclear staining was observed in cortical collecting ducts
negative for NpT2a staining (arrowheads).

3.2. Effect of adrenalectomy on expression of MR and sodium transporters

To determine the effect of loss of aldosterone on expression of MR,
rats were subjected to adrenalectomy (ADX) followed by treatment
with vehicle or aldosterone via minipump for an additional 14 days.

Kidney sections from sham operated, ADX, or ADX rats treated for
14 days with aldosterone were analyzed for MR expression by immu-
nohistochemistry. As shown in Fig. 2A, adrenalectomy decreased
expression of MR in all nephron segments. Aldosterone replacement
to ADX rats restored MR expression in all nephron segments. The im-
munohistochemistry findings were confirmed byWestern blot analysis
of homogenates fromkidney cortex. As shown in Fig. 2B, adrenalectomy
decreased MR expression in ADX rats. Aldosterone replacement to ADX
rats restored MR expression.

As a positive control, the effects of adrenalectomy and of aldoste-
rone replacement on ENaC expression were examined. Adrenalecto-
my decreased the expression of ENaCα without changing the
expression of ENaC β or γ subunits in the cortical collecting duct.
Aldosterone replacement to ADX animals restored ENaCα expression
(Supplementary Fig. 1).

3.3. Effect of aldosterone on Na+, K+ ATPase α1 subunit and NHE1
expression

Aldosterone increases expression of Na+, K+ ATPaseα1 subunit in
kidney collecting tubules [27,28] and activity of NHE1 in S3 segment
of proximal tubules [29]. We have previously demonstrated that
NHE-1 is required for regulation of Na–K ATPase activity and mem-
brane expression in proximal tubules [22]. We examined the effects
of adrenalectomy on Na+, K+ ATPase α1 subunit and NHE1 expres-
sion in kidney sections from sham operated, ADX, or ADX rats treated
with aldosterone by immunohistochemistry using antibodies against
Na+, K+ ATPase α1 subunit or NHE1. As shown in Fig. 3A, adrenalec-
tomy decreased Na+, K+ ATPase α1 subunit and NHE1 expression in
all tubules. Aldosterone replacement to ADX animals restored expres-
sion of Na+, K+ ATPase α1 subunit and NHE1 in all kidney tubules.
To confirm and quantify the immunohistochemistry data, expression
of Na+, K+ ATPase α1 subunits in kidney cortical basolateral
membranes was determined by Western blot. As shown in Fig. 3B,
basolateral membranes from ADX animals showed decreased expres-
sion of Na+, K+ ATPase α1 subunit and NHE1 which was largely
restored by treatment with aldosterone. To determine the effects of
adrenalectomy on Na+, K+ ATPase activity, we measured activity in
basolateral membranes from kidney cortex of the above rats. As
shown in Fig. 3C, activity decreased in basolateral membranes from
ADX animals. Aldosterone replacement to ADX animals restored
Na+, K+ ATPase activity in basolateral membranes.

To determine if adrenalectomy had a global effect on all Na+

transporters, we examined the expression of NKCC2 and NpT2a in
the described animal groups. In contrast to Na+, K+ ATPase and
NHE1, expression of NKCC2 or NpT2a did not change with adrenalec-
tomy or aldosterone replacement to ADX rats (Fig. 3D).

3.4. Effect of aldosterone on MR expression in human kidney proximal
tubule cells

The preceding animal studies demonstrate that MR is expressed in
human, rat, andmouse kidney proximal tubules. To examine themech-
anisms for aldosterone-mediated changes in proximal tubule sodium
transporter function and expression, we turned to a cell culture model
of renal proximal tubule, the human kidney cell line HKC11 cells [30].
Proximal tubular origin of HKC11 cells was confirmed by identification
of NpT2a (NaPi-3) and NHERF-1 expression by confocal microscopy
(Supplementary Fig. 2). To determine if MR is expressed and regulated
in proximal tubule cells, HKC11 cells were treated for 30 min with
10 nMaldosterone and expression ofMRwas examined by confocalmi-
croscopy. As shown in Fig. 4A, cytosolic expression of MRwas observed
under basal conditions. Treatment with 10 nM aldosterone for 30 min
resulted in a marked increase in nuclear translocation of the MR. The
aldosterone-stimulated increase in nuclear translocation of MR was
confirmed by Western blot of nuclear fraction in HKC11 cells (Fig. 4B).

To determine if aldosterone regulates SGK-1 in proximal tubule
cells similar to cortical collecting ducts [2,5], HKC11 cells were treated
with 10 nM aldosterone for different time intervals (0–6 h). As shown
in Fig. 4C, treatment with aldosterone initially increased SGK-1 phos-
phorylation but the phosphorylation status returned to the baseline
level after 1 h of aldosterone treatment. Total SGK-1 expression levels
did not change with aldosterone treatment.

Nuclear-free cytosolic fractions from the above cells were also used
to examine the effects of aldosterone on MR and Na+, K+ ATPase α1
expression. As shown in Fig. 4D, treatment with aldosterone for 4 h de-
creased cytosolic expression of MR consistent with the translocation of
the receptor to the nucleus seen in the confocal studies. Treatmentwith
aldosterone increasedNa+, K+ATPaseα1 andβ1 subunit expression by
4 h as expected (Fig. 4D and Supplementary Fig. 3). Studies by Bonvalet
et al. [20] suggested 11-βHSD2 activity in proximal convoluted tubules.
To determine if 11-βHSD2 is expressed in the proximal tubule cells, we
performed Western blot in whole cell homogenates from HKC-11 cells
before and after treatment with 10 nM aldosterone. As shown in the
Supplementary data, 11-βHSD2 is expressed in HKC-11 cells similar to
MDCK cells (Supplementary Fig. 3).

3.5. Effect of aldosterone on Na+, K+ ATPase-mediated 86Rb uptake in
human kidney cells

To determine if aldosterone stimulates Na+, K+ ATPase-mediated
ion transport as well as expression of the α subunit, HKC11 cells were
treated with 1 pM–10 nM aldosterone for 24 h and Na+, K+ ATPase-
mediated 86Rb uptake was measured. As shown in Fig. 5A, aldosterone
increased Na+, K+ ATPase-mediated 86Rb uptake in HKC11 cells in a
dose dependent manner. Of note, the increase reached significance in
cells treated with 10 pM aldosterone. The maximum increase in Na–K
ATPase-mediated 86Rb uptake was observed in cells treated with
1 nMaldosterone. 86Rb uptakedecreased in cells treatedwith 10 nMal-
dosterone compared to cells treated with 1 nM aldosterone but was
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significantly higher than the vehicle treated cells. To confirm that aldo-
sterone increases Na+, K+ ATPase-mediated 86Rb uptake in proximal
tubules we treated two other human kidney proximal tubule cell
lines, HK2, HKC-5, and a distal tubular cell line, MDCK cells. In all of
the above cell lines, 24 h treatment with aldosterone increased Na+,
K+ ATPase-mediated 86Rb uptake (Supplementary Fig. 4).

To determine if the effects of aldosterone are mediated through
MR or GR, cells were treated with aldosterone in the presence or ab-
sence of 1 μM spironolactone (MR antagonist) or Mifepristone
(RU486, a GR antagonist). As shown in Fig. 5B, aldosterone increased
Na+, K+ ATPase-mediated 86Rb uptake in human kidney proximal
tubule cells. Treatment with spironolactone completely prevented
the aldosterone-induced increase in Na+, K+ ATPase-mediated 86Rb
uptake. Mifepristone blocked the aldosterone-induced increase in
Na+, K+ ATPase-mediated 86Rb uptake by less than 25%. To deter-
mine if treatment with dexamethasone similarly increases Na+, K+

ATPase-mediated 86Rb uptake cells were treated for 24 h with 1 μM
dexamethasone in the presence or absence of Mifepristone (1 μM)
or spironolactone (1 μM). As shown in Fig. 5C, treatment with dexa-
methasone increased Na+, K+ ATPase-mediated 86Rb uptake which
was completely prevented by Mifepristone but not by spironolactone.

4. Discussion

In the present study, we report immunohistochemical demonstra-
tion of mineralocorticoid receptor expression in human, rat, and
mouse kidney proximal tubules. Specifically, the expression was ob-
served in the proximal tubules of the juxtamedullary cortex particularly
in the renal pyramids. The proximal tubule localization of MR is
confirmed by positive co-stainingwith the specific markers of proximal
tubule, L. tetragonolobus agglutinin (human kidney sections) and NpT2a
(rat kidney sections).

We have previously demonstrated that low dose ouabain, another
steroid hormone, stimulates sodium pump activity in an NHE-1
dependent manner [22]. Our current data showing that expression
of Na+, K+ ATPase and NHE-1 increases in ADX rats treated with
aldosterone in proximal tubule along with previous studies showing
aldosterone-stimulated upregulation of NHE3 [9,10] and increased
sodium bicarbonate transport [12,13] suggest that aldosterone
increases sodium uptake and transepithelial transport in proximal tu-
bules. This suggestion is strengthened by the demonstration that the
increase in alpha subunit expression corresponds to enhanced Na+,
K+ ATPase activity. Thus this represents an increase in functional Na
transport activity. The absence of an effect of aldosterone on expres-
sion of NKCC2 and NpT2a shows that the effects of aldosterone are
specific to the proximal tubule proteins involved in transepithelial so-
dium transport and not simply a nonspecific effect on all transporters.
Our results stand in contrast to previous reports suggesting no effect
of exogenous aldosterone on proximal tubule ion transport. Notably,
these prior studies were performed in adrenal-intact animals and
with a shorter duration of aldosterone treatment suggesting that per-
haps a major physiologic role for aldosterone in proximal tubule is in
tonic basal expression of these transporters [33,34].

In a recent study Ackermann et al. demonstrated the expression of
MR in the thick ascending limb, distal tubules, and cortical collecting
duct but not in the proximal tubules of Wistar rats and mice both by
PCR and immunohistochemistry [32]. In contrast, Leite-Dellova et al.
[31] and Pinto et al. [11] demonstrated the expression of MR mRNA in



Fig. 3. Effect of ADX on Na+, K+ ATPase and NHE1 expression in kidney. A, kidney sections from sham operated and vehicle treated (top panels), ADX and vehicle treated (middle
panels) and ADX rats treated with aldosterone (bottom panels) were analyzed by immunohistochemistry using antibodies against Na+, K+ ATPaseα1 subunit (left panels) or NHE1
(right panels). B, kidney cortical basolateral membranes from the above animals were analyzed by Western blot for Na+, K+ ATPase α1or β1subunit or NHE1 expression. Repre-
sentative histochemistry orWestern blots of kidneys from four individual animals in each group are shown. Bar graph shows arbitrary densitometry units as ratio of Na+, K+ ATPase
α1 subunit or NHE1 to actin in crude membranes from four individual animals (n = 4 in each group). *Indicates p b 0.05 by ANOVA followed by Bonferroni analysis from control
animals. C, Na+, K+ ATPase activity determined as ouabain-sensitive ATP hydrolysis in kidney basolateral membranes from sham operated, ADX or ADX rats treated with aldoste-
rone. Each bar represents activity as mean ± se from four individual animals performed in triplicate (n = 4 in each group). D, kidney sections from sham operated and vehicle
treated (top panel), ADX and vehicle treated (middle panel) and ADX rats treated with aldosterone (bottom panel) were analyzed by immunohistochemistry using antibodies
against NKCC2 (left panels) or NpT2a (right panels, n = 4 in each group).
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S3 segments of the proximal tubules fromWistar rats andWKYand SHR
animals. Our results demonstrating protein expression confirm the re-
sults of Leite-Dellova [31] and Pinto et al. [11]. Differences inmodel sys-
tems may explain these apparently disparate results. Additionally, our
studies together with studies by Leite-Dellova et al. [31] and Pinto et
al. [11] demonstratingMR expression in JG nephrons but not superficial
nephrons suggest heterogeneity of expression even within the popula-
tion of proximal nephrons which may also explain conflicting findings.

Our data suggest that aldosterone regulates sodium transport in the
proximal tubule through a classic mineralocorticoid receptor stimulated
pathway. Aldosterone increased translocation of MR to the nucleus,
stimulated SGK-1 phosphorylation, and increased expression of Na+,
K+ ATPase in a time dependent manner in human kidney proximal
cells similar to what is seen in cells from cortical collecting ducts
[35,36]. Aldosterone-mediated increase in Na+, K+ ATPase-dependent
86Rb uptake was completely prevented by pretreatment with
spironolactone. Interestingly, treatment with RU486, an antagonist of
GR partially prevented the increase in aldosterone-mediated increase
in Na+, K+ ATPase activity. Unlike aldosterone, treatment with dexa-
methasone increases Na+, K+ ATPase through the classical GRmediated
pathway. Although not all investigators have successfully demonstrated
SGK1 in proximal tubule [14–16,37] our study clearly shows not only the
presence of SGK1 but aldosterone-stimulated phosphorylation of SGK1
corresponding to the increase in sodium transporter expression. In
total, these studies suggest that the well-known effects of aldosterone
on Na, K, and acid base homeostasis may result from effects on proximal
aswell as distal tubules. Thus, inhibitors of aldosteronemay have amore
global effect on renal handling of these electrolytes than previously
appreciated. A major question raised by these studies is under what cir-
cumstances does aldosterone exert these effects? The significant de-
crease in sodium transporter expression in proximal tubule cells after
adrenalectomy and the subsequent resurgence of expression after
aldosterone treatment suggest a role for aldosterone in regulation of
chronic transporter expression. The ability of spironolactone to block
that resurgence confirms anMR-dependent mechanism for this aldoste-
rone action. However, the ability of the GR antagonist to partially block
aldosterone-stimulated sodium transporter expression also suggests a
role for chronic glucocorticoid regulation of proximal tubule sodium
transporters. As critically reviewed by Funder in 2009 [38], under normal
circumstances it is likely that up to 99% of proximal tubule MR is occu-
pied by glucocorticoids which may actually serve as MR antagonists.
There is evidence, however, that under pathologic conditions, the NAD/
NADH ratio may be altered and thus enhance MR effects of glucocorti-
coids. In addition, several kidney diseases including diabetic nephropa-
thy [39,40] or ischemia re-perfusion injury [41,42] show increased
intra-renal production of aldosterone which may then play a more
prominent role in regulation of proximal tubule function. Wang et al.
[43] and Turban et al. [44] have shown that chronic aldosterone treat-
ment in the presence of high sodium intake results in upregulation of
proximal tubuleNHE3 and sodiumbicarbonate transport during the pro-
cess of mineralocorticoid escape. These findings suggest that the
aldosterone-stimulated increase in NHE3 and sodium pump expression
could blunt the pressure-natriuresis response in proximal tubule trans-
port thus contributing to the sustained increase in sodium retention
and hypertension in individuals with mineralocorticoid excess.

Aldosterone is now recognized as a hormone with pleiotropic ef-
fects, not simply a regulator of Na and K homeostasis, and with effects
on multiple organs, not just those involved in electrolyte transport.
Specifically, aldosterone is increasingly seen as a mediator of progres-
sive fibrosis in chronic kidney disease. The current work suggests that
the deleterious effects of chronic elevations in aldosterone, as seen in
many chronic kidney diseases, may result in part from effects of aldo-
sterone on proximal tubule [45,46]. Further studies will be required
to determine if the profibrotic effects of aldosterone in proximal
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tubule are related to or dependent on the effects on electrolyte trans-
port or through completely separate mechanisms.

In summary, our results for the first time demonstrate the presence
ofMR in proximal tubules in human, rat, andmouse kidneys and the ev-
idence for regulation of the expression and function of sodium transport
proteins by aldosterone through a MR dependent mechanism. These
studies suggest an important role for the renal proximal tubule in
mineralocorticoid regulation of sodium homeostasis.
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