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Carbon Sequestration:
Photosynthesis and Subsequent

Processes

The increase in the global atmospheric CO, concentration projected
for 2050 increases the productivity of temperate forests by a quarter;
but it is by no means clear that such increased productivity will lead to
more long-term carbon sequestration.

John A. Raven! and
Alison J. Karley?

Man’s activities have increased,
and will continue to increase, the
fraction of the atmosphere
composed of CO,. From values of
about 280 umol mol-! between the
end of the last glaciation and
about 1750, atmospheric CO, has
increased to about 380 pmol mol-1
today, and the value in 2050 will
be about 550 umol mol-1. Small-
scale experiments show that
these higher CO, levels increase
the rate of photosynthesis and
plant productivity. Field
enrichments with CO,, also show
increases in plant productivity. In
a recent paper, Norby et al. [1]
report a meta-analysis of four
Free Air Carbon dioxide
Enrichment (FACE) studies on
temperate forests. They conclude
that the primary productivity of
these communities at predicted
2050 CO, levels is 23 = 2%
(median = error derived from
regression analysis) higher than at
today’s CO, level; however, such
increases in productivity do not
necessarily mean an increase in
long-term sequestration of
carbon.

We need to know how plants
will respond to the inevitable
increase in CO, over the next few
decades and beyond. Such
knowledge is important in
understanding the influence of
global environmental change on
plants and the biota dependent on
them, and is needed to analyze
the role of vegetation in

sequestering part of the
anthropogenic input of CO, to the
atmosphere. About half of the CO,
released since 1750 remains in the
atmosphere, with much of the rest
sequestered in the ocean and the
remainder sequestered in
terrestrial ecosystems for periods
of decades to centuries [2,3]. With
an estimated 60% of terrestrial
carbon stored in forest
ecosystems [4], it is vital that we
get indications of whether such
terrestrial sequestration will
continue with further increases in
CO, production.

We need FACE experiments
because work in growth cabinets
can never really mimic the real
world environment either in
variability or scale. FACE
experiments permit comparisons
to be made between present day
conditions and the predicted CO,
level for 2050 (or whenever) for
natural stands of vegetation.
Initially confined to low-growing
vegetation (pastures or arable
crops), FACE experiments have
subsequently been extended to
forests [1]. FACE experiments
involve a ring of CO,-release
points; points are activated
depending on wind speed and
direction. This enables the
experimenter to maintain the
required mean CO, level, although
there can be changes in CO,
concentrations of 200-300 umol
mol-1 over periods of 5-20 s [5].

The results of experiments in
which such fluctuations were
mimicked in controlled
environment conditions in

comparison with the same,
invariant, mean CO, concentration
showed that the fluctuating
environment in FACE experiments
could significantly under-estimate
the effects of steady increased
CO, concentrations [5]. There is
also the problem that some FACE
experiments economize on CO,
by not applying CO, enrichment at
night, although non-
photosynthetic effects of CO, (on
respiration) may not be as large a
problem as was initially thought
[6,7]. Despite these problems,
FACE is rightly the method of
choice for studying the effect of
enhanced CO, on terrestrial
communities.

Perhaps the most surprising
outcome of Norby et al.’s [1]
meta-analysis is the consistency
among the four studies in the
degree of stimulation of
productivity by increased CO,.
This similarity occurred despite
differences in tree species,
including evergreen conifers and
annually deciduous dicotyledons,
absolute productivity, soil type,
age of the stand, and local
climate. The independence of
absolute productivity is important:
to the extent that it is imposed
environmentally rather than by
tree genotype, it is consistent with
demonstrations that enhancement
of productivity by augmenting
CO, can occur even when
productivity is constrained in the
present atmosphere by the
availability of some other resource
[3,8].

Gifford [8] specifically
addressed limitation by water
supply in semi-arid and arid areas,
and by the supply of
photosynthetically active radiation
in the humid tropics, in modelling
the response of global terrestrial
productivity to increased CO,.
Future work could profitably
integrate CO, effects with the
change from nitrogen to
phosphorus limitation with time
after colonization of ‘new’
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Figure 1. Annual carbon

Ambient CO, Elevated CO, fluxes (g C tree! year™)

g C tree-'year- 350 umol mol! 700 pmol mol-! for young birch trees

Gross photosynthesis 2087 4054 (94%) during th? fourth.year of

Leaf respiration 332 361 (9%) growth in ambient or
elevated CO,.

Stem respiration 178 282 (37%) Numbers in  brackets
denote the percentage
increase in carbon flux,

Root respiration 285 604 (112%) compared to ambient con-
ditions, when atmospheric

Net fixed carbon 1292 2807 (117%) CO, concentrations are

Current Biology

doubled. Note that a
higher concentration of
CO, used in the ‘elevated

CO,’ treatment, together with differences in canopy closure and mode of CO, applica-
tion, are likely to explain the disparity between this example and Norby et al. [1] in stim-
ulation of net carbon flux. (Adapted with permission from [6].)

terrestrial habitats by, for
example, retreat of ice after
glaciation, or cooling of lava flows
[9,10]. Given that productivity
responses to elevated CO, might
be constrained by the availability
and transpirational delivery of
mineral nutrients to the root [11], it
would be interesting to examine
decreased productivities with
lower atmospheric CO, in the last
glaciation [12] in the context of
the availability of other resources.

Increased primary productivity
under elevated CO, has
implications for the food-web.
Although organic carbon
availability might be improved, the
dilution of other plant components
by carbon in high-CO,
environments might reduce the
nutritional quality of plant tissues
for consumers [13]. Furthermore,
changes in resource allocation to
physical and allelochemical
defences might occur, particularly
if tissue nitrogen levels are
altered. The interaction of these
effects with changes in nutritional
value might elicit a range of
herbivore behavioral and growth
performance responses to altered
food quality: even within one
herbivore group, the phloem
feeders, plants grown under
elevated CO, had positive, zero
and negative impacts on the
population growth of five aphid
species [14].

The consequences of tissue
carbon-enrichment for herbivores
and other trophic groups have
implications for the extent of
carbon sequestration in response
to increased atmospheric CO,.
The long-term sequestration of
some of the additional CO, fixed

as organic carbon requires that
there is neither a more than
proportionate increase in CO, loss
in ecosystem respiration with
increasing primary productivity
(Figure 1), nor a stoichiometric
(with plant content) sequestration
of nutrients such as nitrogen and
phosphorus which would limit the
use of these nutrients in further
primary productivity [13].

Norby et al. [1] wisely caution
against extrapolating from their
demonstration of increased
productivity in the four forest
areas to a prediction of increased
long-term carbon sequestration.
One reason is uncertainty over the
impact of climate change on
respiration. Although
photosynthesis does not appear
to acclimatize in a range of tree
species after several years of CO,
exposure, respiratory responses
are not entirely clear [6,7], and
long-term effects on carbon
sequestration might be influenced
by acclimatization of either
process to changes in additional
factors, such as temperature [15],
that accompany CO, increases.

One potential outcome of plant
responses to elevated CO, is an
improved capacity to capture
energy and nutrients as allocation
is increased to leaf and fine root
tissues (Figure 1), and to root
exudates [4]; this will be
particularly true if the
accompanying architectural
changes allow more effective
radiation interception or mining of
the substrate, or improved
interaction with microbial
symbionts. The impact of
increased CO, on plant
architecture, and also on plant

development and phenology —
effects that have often
confounded the interpretation of
CO, enrichment studies — are
likely to be crucial to our
understanding of carbon
sequestration in forest
ecosystems. Although changes in
plant phenology in response to
elevated CO, can be variable [6],
plant development tends to
accelerate under CO, enrichment
[16], while net carbon fixation rate
can vary with the plant
developmental stage at the time
of CO, enrichment [6,16].

What is known of the terrestrial
carbon sink which is responsible
for some of the discrepancy
between known anthropogenic
CO, emissions and the sum of
accumulation of CO, in the
atmosphere and in the ocean
[2,3]? Gielen et al. [17] have
shown net carbon storage during
a three year FACE study on
Populus; but further longer-term
studies are needed. Even
recycling of any increased below-
ground productivity into soil CO,
could become sequestered by
increased rock weathering [18]
rather than escaping back to the
atmosphere.

Much remains to be discovered
about the links between increased
terrestrial primary productivity
resulting from higher atmospheric
CO, and carbon sequestration.
The same applies to the
possibility of greater carbon
sequestration in the ocean as a
result of higher biological
productivity, in addition to the
solution of atmospheric CO, in the
surface ocean [12,19,20].
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Visual Optics: The Shapes of

Pupils

The eyes of many terrestrial vertebrates have slit-shaped pupils. A new
hypothesis links this pupil shape to the way that vertebrate lenses
compensate for chromatic aberration.

Michael F. Land

Human eyes have circular pupils,
but a great many animals have
pupils that are oval or slit-shaped.
These slits/ovals may be oriented
vertically (as in crocodiles, vipers,
cats and foxes), or horizontally (as
in some rays, flying frogs,
mongooses and ungulates such
as sheep and hippopotami). The
explanation usually given for the
use of a slit pupil is that it can
exclude light more effectively than
a circular pupil, and so slit pupils
tend to be found in the eyes of
animals with a crepuscular or
nocturnal lifestyle that need to
protect their eyes during daylight
[1]- The slit pupil of a cat, for
example, can change the intensity
on the retina 135-fold, compared
to 10-fold in man [2]. This has
never seemed to be an entirely
convincing explanation, however,
as some animals (such as the
tarsier) have circular pupils that
can close down very effectively, to
a diameter of about half a

millimeter [1], and in many
ungulates the rather rectangular
pupils do not close to a narrow slit
in bright light. A recent paper by
Malmstrom and Kroger [3] offers a
much more intriguing explanation
of the oval pupil; it relates to the
way that vertebrate lenses have
evolved to handle color.

It has been known at least since
James Clerk Maxwell, who
famously contemplated the eye of
his breakfast herring [4,5], that
spherical fish lenses are well
corrected for spherical aberration
— the tendency for peripheral
rays to be focused too close to
the lens. This correction results
from the lens having a particular
near-parabolic gradient of
refractive index [5,6]. Chromatic
aberration, however, in which blue
light is focused substantially
closer to the lens than red light,
was thought until recently to be
uncorrected. This is because
protein solutions cannot be
produced with different chromatic
dispersions, and thus achromatic

lens combinations cannot be
made from biological lens
material.

Fish lenses, however, have
found another way round the
problem. In 1999, Kréger and his
colleagues [7] showed that the
gradient in fish lenses is not
exactly that predicted for perfect
spherical correction. It has a
systematically lumpy profile, which
results in the lens having several
different focal lengths for
concentric zones at different
distances from the center. Each of
these focal zones produces an
image at a different distance from
the lens, and each such image has
its own chromatic aberration,
which one would think would make
a bad situation even worse. But the
beauty of the arrangement is that
the red image from one zone
actually coincides with the green
image from another zone and the
blue image from the third zone,
meaning that there is one plane in
which there is a sharp image for all
the wavelengths relevant to the
fish’s color vision system (Figure
1A). Of course much of the light is
not well focused in this plane and
this will reduce image contrast, so
this is not a perfect solution, but it
is much better than the alternative
of having a single focal length with
a sharp image for only one
wavelength.
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