116

achieved in 81.2% (13/16) of responders, and occurred a median 10 (2-34.7) months after ECP. Nine cases (56.2%) had recurrent cGvHD at 8.4 (3-19.3) months after achieving response and 1 (6.25%) had late primary disease relapse (>6 months after ECP initiation). Another non-responder had a late relapse. Factors associated with OR were younger age at cGvHD diagnosis and at ECP initiation (<50 years, P=0.046), while that with CR was early initiation of ECP within 18 months of cGvHD diagnosis (P=0.018). The 1-year, 2-year and 3-year post ECP initiation survival rates were 66.7%, 38.1% and 23.8%. Types of cGvHD onset and donor were associated with survival post ECP initiation (P=0.028 and P=0.05). The patients with non-progressive onset cGvHD and with HLA-MRD survived longer (1-year post ECP initiation survival rates of 88.9% and 78.6%) than those with progressive onset cGvHD and with HLA-MUD (50% and 33.3%). However, OR and CR to ECP were not associated with prolonged post ECP initiation survival. In summary, our results suggest that ECP is an effective second-line treatment option for cGvHD especially with early initiation. Progressive onset cGvHD and HLA-MUD were associated with poor survival rates in patients receiving ECP for cGvHD. Whether response to ECP would be translated to higher survival requires a larger study.

Table

Characteristics	Details
Sex: male/female (n/n)	9/12
Median age (median, range)	
At day 0	42.6 (26.5-60.1) year
At cGvHD diagnosis	42.8 (26.8-60.4) year
At ECP initiation	43.4 (28-60.4) years
Type: HLA-MRD/-MUD/-	
mismatched unrelated CBD	
(n)	4/6/
GvHD Prophylaxis (n)	
Calcineurin inhibitor and	
methotrexate	18
Calcineurin inhibitor and	
methylprednisolone	2
Triple regimen	1
Acute GvHD (n)	19
Clinical Grade: I/II/III/IV	5/12/1/1
ECP for aGvHD	I
Chronic GvHD (n)	21
Onset: De novo/Progressive/	
Recurrent (n)	1/13/7
CIBMTR Overall	
Severity at ECP	
initiation (n)	
Mild	2
Moderate	11
Severe	8
Maximum Grade (n)	
Limited	3
Extensive	18
Median duration of ECP	10.8 (1.3-58.8)
(median, range)	months
Median follow-up time	
after ECP initiation	15.5 (1.3-62.4)
(median,range)	months
Overall and complete	
response to ECP by	
CIBMTR Severity	
Mild (n (%))	I (50%), I (50%)
Moderate (n (%))	5 (45.4%), 4 (36.4%)
Severe (n (%))	5 (62.5%), 3 (37.5%)

319

INTERACTION BETWEEN HOST NATURAL KILLER T CELLS AND DONOR CD4 $^+$ CD25 $^+$ T_{REG} CELLS PROTECTS AGAINST GVHD AFTER TLI/ATS HOST CONDITIONING AND ALLOGENEIC BONE MARROW TRANSPLANTATION

Pillai, A.B.¹, Dutt, S.¹, George, T.I.¹, Strober, S.A.¹ Stanford University School of Medicine, Stanford, CA.

The murine non-myeloablative regimen of total lymphoid irradiation (TLI) and anti-thymocyte serum (ATS) prevents acute graft-versus host disease (aGVHD) and was recently successfully applied for human hematolymphoid malignancies (Lowsky et al, NEJM, 2005). To investigate GVHD protection, we transplanted (BMT) 50×10^6 bone marrow cells and 60×10^6 splenocytes from wild-type (WT), CD4^{-/-}, IL-4^{-/-}, or IL-10^{-/-} C57BL/6 (H-2^b) donor mice into wild-type (WT) or natural killer (NK) T cell deficient Ja18^{-/-} BALB/c (H-2^d) hosts following TLI/ATS. Controls were WT BALB/c mice given 800cGy total body irradiation (TBI) and ATS with BMT from WT C57BL/6 donors. TBI/ATS-conditioned WT hosts given BMT from WT donors and TLI/ATS conditioned WT hosts given BMT from CD4-'-, IL-4-'-, or IL-10-'- donors developed aGVHD, with marked donor CD8+ T cell accumulation in liver, mesenteric lymph nodes (MLN), and colon at day 6. Since GVHD protection depends on donor CD4⁺ cells, IL-4, and IL-10, we investigated the role of donor CD4⁺ T_{regs} in GVHD protection. TLI/ATS-conditioned WT hosts given BMT from WT donors survived without aGVHD and demonstrated a dramatic (p< 0.01) ten-fold increase in the absolute number of donor CD4⁺CD25⁺Foxp3⁺ T_{regs} in the spleen at day 6 after BMT relative to TBI/ATS-conditioned WT hosts or TLI/ATS-conditioned $J\alpha 18^{-/-}$ hosts that succumbed to aGVHD. These CD4⁺CD25⁺Foxp3⁺ T_{regs} secreted IL-4 and IL-10 and had the GVHD suppression capacity of conventional CD4+CD25+ T_{reg} Pre-transplant adoptive transfer of sorted WT host invariant NK T cells protected TLI/ATS-conditioned Ja18-'- hosts from day 6 donor CD8⁺ T cell accumulation and caused a significant (p < 0.01) increase in the absolute number of donor $CD4^+CD25^+Foxp3^+$ T_{regs}. Using congenic markers (CD45.1/ CD45.2), we found that these CD4⁺ T_{regs} arise from donor splenic (peripheral) T cells after BMT. CD25 depletion of WT donor cells before BMT into TLI/ATS-conditioned WT hosts or into TLI/ ATS-conditioned Ja18-'- hosts given adoptive transfer of WT host NK T cells resulted in loss of the donor CD4+CD25+Foxp3+ $T_{\rm regs}$ subsets in the spleen, and significantly increased day 6 donor CD8+ T cell accumulation in the host liver, MLN, and colon, accompanied by lethal aGVHD. These studies show that host invariant NK T cells are critical for GVHD protection and that they can facilitate the expansion of donor CD4+CD25+Foxp3 Tregs, which protect TLI/ATS treated hosts from lethal GVHD after allogeneic BMT.

320

IN VIVO ACTIVATION OF APCS WITH TLR LIGANDS AND TISSUE DAM-AGE RATHER THAN AMOUNT OF HOST APCS ARE CRITICAL FACTORS THAT DETERMINE DLI-MEDIATED GVL REACTIVITY AND GVHD IN MHC-MATCHED MINOR HISTOCOMPATIBILITY ANTIGEN (MHAG)-MIS-MATCHED CHIMERAS

Radojcic, V.¹, Skarica, M.¹, Murphy, G.F.², Luznik, L.¹¹Division of Hematologic Malignancies, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; ²Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.

We recently found that residual host CD11c⁺ DCs persist in the skin of MHC-matched chimeras after myeloablative conditioning and transplantation of T cell-repleted BM, and that those residual host APCs are insufficient for the induction of optimal DLI-mediated alloreactivity (J Immunol.,2006). Since the latter observation in established C3H.SW \rightarrow B6 chimeras differs from the current paradigm in freshly irradiated MHC-matched chimeras, we hypothesized that in established chimeras, beside host APCs and donor T cells, the induction of DLI-mediated GVL reactivity and GVHD requires two additional factors: (a) TLR-mediated activation of APCs and (b) tissue damage. *In vivo* coadministration