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Abstrcrcr 

Verschelde, J., A. Haegemans, Homotopies for solving polynomial systems within a bounded 
domain, Theoretical Computer Science 133 (1994) 165-185. 

The problem considered in this paper is the computation of all solutions of a given polynomial 

system in a bounded domain, Proving Roucht’s theorem by homotopy continuation concepts yields 

a new class of homotopy methods, the so-called regional homotopy methods. These methods rely on 

isolating a part of the system to be solved, which dominates the rest of the system on the border of 
the domain. As the dominant part has a sparser structure, it is easier to solve. It will be used as start 

system in the regional homotopy. The paper further describes practical homotopy construction 
methods by presenting estimators to obtain bounds for polynomials over a bounded domain. 

Applications illustrate the usefulness of the approach. 

1. Introduction 

In many practical applications a polynomial system F(x) = 0, with F(f,, f2, . . , fn)T 

and x=(x1,x2, . . . . xn), has to be solved. It occurs very often in practice that only 

solutions in a bounded domain are desired. This paper is an attempt to attack this 

problem by homotopy continuation methods. This introduction is further organized 

as follows. First some related work and background material on the problem will be 

mentioned. Second, basics about polynomial systems and recent research develop- 

ments are explained. The third part introduces our approach. 

From the theory of complex functions [7] it is well known that for a closed curve 

C in the complex plane and an analytical functionf(x), the number of roots off(x) in 
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the interior of C can be computed as 

1 

-i 27ri 
f'(4d.x 

Jm ’ 

provided f(x)#O, VXEC. The generalization to the multivariate case can be found in 

[2, p. 1021. A review on quadrature methods for the determination of zeros of 

transcendental functions appeared in [9]. In [ 171, a homotopy continuation method 

has been presented for locating all zeros of an analytic function within a bounded 

domain. The problem of computing all real solutions of a system of nonlinear 

equations in some box has been considered in [ 11,121. For this purpose generalized 

bisection methods were developed, using interval arithmetic techniques. See [ 12,131 

for a comparison with continuation methods. 

Homotopy continuation methods consist of two parts. First, the system to be 

solved is embedded in a family of systems H(x, t), the so-called homotopy. Methods to 

construct this embedding are known as homotopy methods. A homotopy frequently 

used for solving polynomial systems is the artificial parameter homotopy 

H(x,t)=y(l-r)G(x)+tF(x), j’ECO=C\{Of, t:O+l. 

The continuation parameter t connects the target system F(x)=0 to the start 

system G(x)=O, whose solutions are known. Second, continuation methods are 

applied to trace the solution paths starting at the known solutions of G(x) =0 which 

end at the desired solutions of F(x)=O. See [l] for an introduction to these methods. 

In [27], the solution of polynomial systems by continuation methods is treated. See 

[44] for a tutorial. Also software has been developed, see [27,33,45]. 

Earlier homotopies, like in [27,44], relied on the total degree of the system, that is 

the product of all degrees of the individual polynomials in the system. For almost all 

practical applications, this leads to a lot of diverging paths, representing wasted 

computations. During the last decade, considerable research efforts have been spent in 

constructing homotopies which exploit the special structure of the polynomial system, 

in order to reduce the number of continuation paths to be computed. The use of 

a multihomogeneous Bezout number has been proposed in [28]. Coefficient-para- 

meter polynomial continuation has been introduced in [30,3 l] and put into practice 

in [32,34,42,43]. In [19,20] the random product homotopy has been presented. In 

[21], the cheater’s homotopy has been developed. Nonlinear homotopies are defined 

in [22]. Solving real polynomial systems by real homotopies have been developed in 

[23], while applications can be found in [18,24]. Homotopies based on generalized 

Bezout numbers have been constructed in [39,40]. Symmetric homotopies are pro- 

posed in [37]. 

Very recently, it has been (re)discovered that, when exploiting Newton polytopes to 

model the structure of the system, accurate upper bounds for the number of solutions 

can be computed. In [4], it has been proven that the mixed volume of the Newton 

polytopes of the system coincides with the number of isolated solutions of a system 

with the same structure but with randomly chosen coefficients. The mixed volume of 
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a polynomial system is also called the BKK bound, named after the three principal 

investigators, see also [16,14]. Recently, algorithms based on this bound have been 

implemented in [8,41] to solve sparse polynomial systems. Estimates for the number 

of real roots are presented in [15,35], where the proofs are algorithmic. One of the 

conclusions of this research is that the complexity of solving a polynomial system 

depends on the number of terms of each individual equation. The sparser the system, 

the easier it will be solved. This is of great importance for the following. 

The key idea of this paper is the application of the theorem of Rouche, which will be 

described in the next section. It is sufficient to isolate a dominant part of the system on 

the border of the domain, to solve it and use it as start system in the homotopy. The 

idea of considering only a part of a system in order to estimate the number of solutions 

in a certain domain, was already presented in the theory of fewnomials, see the work of 

Khovanskii [15]. In [15, p. 821, the notion of estimating spectrum is introduced, 

where a spectrum of a polynomial stands for its set of exponents. Estimating means 

that only part of the spectrum is considered. 

The third section presents the practical realization of this idea, by the description of 

techniques for the construction of a regional homotopy for solving polynomial 

systems in a bounded domain. The domains considered are product domains where 

each component domain consists of a band in the complex plane. When slices are 

taken out of the band, real domains are obtained, which help to compute only the real 

solutions of a polynomial system. The construction techniques use arithmetics in 

complex space which can be considered as analogues to interval methods. Applica- 

tions are considered in the fourth section. The last section contains our conclusion. 

2. The Theorem of Rouchi! 

The theorem of Rouche can be found in many classical books on complex 

analysis, see e.g. [46, p. 322; 7, p. 206; 3, p. 301. Note that analytic functions are 

considered, which is more general than working with polynomials. See [29] for the 

application of continuation to analytic systems. Before we can prove Rouche’s 

theorem by using concepts of homotopy continuation, we first need to recall some 

definitions. 

Definition 2.1. Let x* be a solution of a system of analytic functions F(x) = 0. Then x* 

is said to be an isolated solution, if there exists a neighborhood of x* containing no 

other solution of F than x*. 

Definition 2.2. A solution x* is a nonsingular or regular solution of a system of 

analytic functions F if the Jacobian matrix of F at x * has full rank. Otherwise x* is 

called a singular or nonregular solution of F. 
A nonsingular solution is always isolated, but the opposite is not true. 
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Definition 2.3. Consider an isolated and singular solution x* of a system F(x)=0 of 

analytic functions. Then x* has a multiplicity equal to m, if for a random perturbation 

of the system F (e.g. by adding random constants), m nonsingular solutions lie in the 

neighborhood of x*. 

The multivariate theorem of Rouchk can be stated as follows. 

Theorem 2.1. If 

(1) D is a multidimensional bounded domain in @“, aD its border; 

(2) F=(f,,f,, . . . . fn)* and G=(g,,g,, . . . . g,)T are systems ofanalyticalfinctions in 

x in the closure of D; 
(3) t/x&D: I/ G(x) jl < )/F(x) 11, for some norm II.11 on @“; 

then F + G and F have the same number of isolated solutions in D, counted with 

multiplicity. 

Its proof follows immediately from 

Theorem 2.2. Let F, G, and D be defined as in Theorem 2.1. Assume all isolated 

solutions of F in D are regular. Consider the homotopy 

H(x, t)=F(x)+tG(x), t&, Itl<l. 

For each isolated solution x*: (F + G)(x*)=O, x*ED, with multiplicity equal to m, 

m paths originating at isolated solutions of F(x)=0 in D and converging to x* exist. 

Furthermore, these paths are smooth, nonintersecting and strictly increasing in t, i.e. no 

path turns back to a solution sf F as t is incremented towards 1. 

In case F has isolated singular solutions in D, perturb F into F’, of which the isolated 

solutions in D are all regular. As the perturbations are small, llF’(x)ll > /I G(x)/I, 

VxdD. Theorem 2.2 can then be applied for F’ instead of F. Afterwards, the paths 

starting at isolated solutions of F’(x) = 0 in D can naturally be extended to the isolated 

solutions of F(x)=0 in D. 

Proof of Theorem 2.2. There are two parts in the proof. First the singularities of the 

solution paths will be investigated. The second part proves the boundedness of the 

paths. 

The solution paths start at t =0 at regular solutions and remain regular until some 

singularity is encountered. Singular solution paths are solutions of the system 

H(x, t) = 0, augmented with the determinant of the Jacobian matrix. 

The solution set to S(x, t)=O defines an analytic variety V in (n+ 1)-dimensional 

complex space. By elimination theory for analytic varieties, see [46, Lemma 4F, p. 481, 

its projection on the last component W= 7c, + 1 (V) is an analytic variety, provided 
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S(x, t)#O, VxeaD, V’teC, It1 d 1. This condition is satisfied, as will become clear in the 

second part of the proof. 

W is a one-dimensional complex variety, i.e. the solution set of an analytic function. 

It consists of all points t for which the solution of H(x, t)= 0 is singular. As F has only 

regular solutions, Wf @, as O$ W. By [ 10, Theorem 43, p. 931, W is a set of isolated 

points. W is bounded, so # WC co. Hence, when encountering a singularity during 

continuation, it is always isolated and can be circumvented by a procedure similar to 

the one proposed in [6], i.e. by moving in complex space around the singularity. So, 

the solution paths remain regular for ItI < 1. When F + G has an isolated singularity 

with multiplicity m, m regular solutions of a perturbed system lie in its neighborhood. 

Thus, m paths converge to it. As this proves the regularity of the solution paths, the 

first part is finished. 

In this second part of the proof, it will be proved that solution paths starting at 

solutions of F(x)=0 which lie in the domain D, remain in D, as the continuation 

parameter t changes from 0 to 1. Furthermore, no new solutions enter the domain 

during continuation. 

Consider a solution leaving or entering the domain, during continuation. This 

solution crosses the border of the domain, which can be expressed by 

3t0~@, It,ldl, 3x,,dD: H(x,,t,)=F(x,)+t,G(x,)==O. 

Consequently, 

FM= --toG(xJ * II~(xO)ll =ltol. llG(xO)/l and ld<L 

whence Ij F(x,) 11 d I/ G(x,) I(, which contradicts the third assumption of Theorem 2.1. 

Each isolated solution of F(x)=0 in D is connected to an isolated solution of 

(F + G)(x) = 0 in D. Assume the reverse does not hold. Then, a path originating at an 

isolated solution of (F + G)(x) in D, defined by the homotopy H(x, t) =O, for t : l-0, 

should leave D, which is impossible. 0 

The third assumption of Theorem 2.1 prevents a solution from leaving or entering 

the domain D. Hence, to compute all solutions to the system (F + G)(x)=0 in the 

domain D, the homotopy H(x, t) = F(x) + rG(x) can be used. Note that Theorem 2.2 

delivers also a homotopy for computing solutions outside a bounded domain, provid- 

ing F and G are also analytic outside the domain. 

3. Regional homotopy construction 

This section is concerned with the practical realization of Rouches theorem for 

computing all solutions to a Laurent polynomial system F(x) = 0 in a bounded domain. 

A regional homotopy continuation method can in general be described as: 

(1) Search for a dominant part F,, of F, so that the following holds: 

VxeaD: llF&II > II(F-Fm)(x)lI 
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This is the most crucial part of the method. Its effectiveness mainly relies on the 

estimators for finding lower and upper bounds for polynomials over some bounded 

domain. In the following subsections some product domains will be considered. 

(2) Solve F,,(x)=O. 

As F,, is only a part of F, its structure will be more sparse which makes it easier to 

solve. 

(3) Follow the continuation paths defined by the homotopy 

H(x,t)=F,,(x)+t(F-F,,)(x), TV@ for t:O-+l. 

Classical continuation methods can be applied. Theorem 2.2 assures that only those 

solution curves starting at the solutions of F,,(x)=0 in the domain aD need to be 

followed. It is important to note that the solutions of F,, in D should be well 

conditioned in order to start the continuation without numerical difficulties. To 

establish the condition of the homotopy, one should tear the system apart in a random 

way, by leaving for some terms a small portion of them to the rest of the system. For 

a constant term c, this can be realized as follows: c=cFD +(c- cer,). One has some 

freedom in choosing the constant c?n that will belong to the dominant part of the 

system. 

As the method will be applied for systems of Laurent polynomial systems, some 

notation is needed. A multivariate (Laurent) polynomial can be described as 

using a multiindex notation. As also negative exponents are allowed, more general 

polynomials are considered, the so-called Laurent polynomials. 

The following subsections propose a simple computational model which 

supports the automatic construction of a regional homotopy. Product domains 

will be considered: D = D, x D2 x ... x D, with aDk as border for the kth domain Dk. 

Then 

~D={x=(x~, x2, . . ..x.) 1 3k:xkEaDk] 

3.1. Estimutors bused on radius 

The first domain considered is a band centered around the origin of the complex 

plane. Fig. 1 pictures the domain for one component. For XED: R,j<lxjl < RMj, 

Xj being the jth component of x, for j= 1,2, , II. 
The following propositions are trivial to prove: 

Proposition 3.1. Letf‘(x)=y(x)+c~~, with 

VXED: Ig(x)I<A und ~cxYI>B=jci fi RY,; 
j=l 
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Fig. 1. XED: R,<~xl<R, 

Then 

>B-A if A<B, 

otherwise. 

Proposition 3.2. 

If(x 5 Ickjfi R$, VxeD. 
k=O j=l 

Algorithm 1 applies Propositions 3.1 and 3.2, to estimate a lower bound for If(x 

Algorithm 1. Computing a lower bound for If(x 

1. Search for a term cxq in f for which B = I c 1 flI= 1 R~j is maximal. 

2. Let f(x) = g(x) + cxq, as in Proposition 3.1. 

First apply Proposition 3.2 to compute A, an upper bound for g. 

Then Proposition 3.1 provides a lower bound for f: 

The algorithm for searching for a dominant part_& of a polynomialfover a domain 

D consists of considering all possible sums of k terms, starting at the term with the 

highest lower bound, for k = 1,2, . , m, where m equals the number of terms inf: When 

fD =f, f has no solutions in D, as IfD(x)I > 0, VXED. This case can be referred to as 

a negative result, i.e. as an automatic proof that no solutions exist in D. 
Computing a dominant part f&, on the border is presented in Algorithm 2. 

Algorithm 2. Computing a dominant part& on the border aD. 

for k= 1,2, . . ..n do 

1. Substitute xk once by Rmk and once by R,,, values obtained when XkEaDk. 

The resulting polynomials g (k) have n- 1 unknowns and are to be considered 

over (n - 1)-dimensional domains Dck’. 
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2. Compute gck) n’*, and collect the corresponding terms to construct f&2 

When all 2n dominant parts .f$i) are the same, fin =,fis, 

otherwise no dominant part can be found in this way. 

Example 3.1. Consider the following system: 

F(x) = 
i 

4 10m5xi5x;+2 10-3x,x;+2x:x2-2x2+0.75=0, 

3 10-4x,x;-7 10-6x:+2.xix:-2x1+o.75=o. 

According to Bezout’s theorem, there are 35 isolated solution in two-dimensional 

complex space, while the total degree equals 35. The BKK bound equals 25, which 

means that for a general choice of the coefficients, this system would have 25 isolated 

solutions. Assume only the solutions for which I.x~~< 1, k= 1,2 are wanted. Then the 

dominant part on the border of the domain is 

F,,(x) = 
{ 

2x:x2 -2x, + 0.75 =o, 

2x,.x:-2x, +0.75=0. 

This system is sparser than F and has better scaled coefficients, which makes it 

easier to solve. It has exactly 5 real solutions, where only 2 of them lie inside the 

domain. Note that the 2-homogeneous Bezout number equals 5. 

The norm II Fll= Ifi I + If2 I will be used in the demonstration that F,, is dominant 

on the border of the domain. The 5 real solutions of F,, are also zeros of the 

multivariate function 11 F,,(x) 11. This function, returning a real value, is monotone 

increasing as the distance of its argument x to the zeros is growing. All zeros are real, 

so the larger the imaginary parts of the components of x become, the larger 11 F,, 11 will 

be. As we search for a lower bound for 11 F,,(x) 11, XGCID, it is sufficient to consider the 

points on CID which lie closest to the real zeros. Then it turns out that only bounds for 

.x1 = f 1 or x2 = + 1 need to be computed, which results in /I F,,(x) II> 0.75. The rest of 

the system F ~ F,, is bounded by )I (F - F,,)(x)/1 ~3 x 10m3, VXED. 

Hence, F,, is a reliable start system. It has exactly 5 solutions where only 2 solutions 

lie in the domain. These 2 solutions will be used as start solutions in the regional 

homotopy to compute the wanted solutions of F. 

Note that a regional homotopy can be very appropriate to solve illconditioned 

polynomial systems. As in the example above, some terms can have coefficients that 

are very small compared to the other coefficients. Omitting these terms makes the 

system well conditioned and hence easier to solve and renders often the desired 

solutions, avoiding the computation of the spurious solutions. 

3.2. Estimators bused on rudius and argument 

The second domain consists of taking a slice of the band. In this way not only 

conditions on the radius can be imposed, but also on the argument of a solution. 

Fig. 2 pictures the domain for one component, using polar coordinates. In order to 

take advantage of the restrictions on the argument, 0 < OM - 8, < rc. 
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Fig. 2. x=Re” with R,<R<R,, U,,,<H<B, 

More precise lower and upper bounds can now be given: 

Proposition 3.3. 

Proposition 3.4. 

Va,bED: OdIa-bI<IR,eie~+R,eiB-I. 

These propositions introduce the line of thought for estimating bounds in the 

domain. Again, the proofs are visible. 

First lower and upper bounds will be given for pairs of multivariate terms. The idea 

is to consider the terms as ordinary numbers in the complex plane as follows. Consider 

a term cxq, with bounds on the kth unknown xk =R,e”“: Rmk < lxkl CR,, and 

Qmk<&<QMk, for k = 1,2, , n. When c = ICI eiy , then for radius R and argument d of 

the term cxq, one has the following bounds: 

ICI ir R~j<R<lCl ir R~j and y+ i qj&j<d<Y+ i $OMj. (1) 
j=l j= 1 j=l j=l 

The bounds (1) define a domain in the complex plane for a complex number 

a = Re’*, which can replace the term cxq. Computing lower and upper bounds for 

a multivariate polynomial is then transformed into estimating bounds for a sum of 

complex numbers. 

Fig. 3 pictures two different domains Dk = { Re” IRmk < R < RMkMkr drnk < 8 < 6,,}, 

k = 1,2. Lower and upper bounds are provided by 
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Fig. 3 Two different domains 

Proposition 3.5. VaED,, QbgD,: 

la+bl >R,,cR~+~ 

I 

> 1 ~lRmkeiRk~ 
if /dmk-HMJmkl<x, with tjmk<Hk<OMk, for 

k=1,2, so that 10,-8,1 is maximal, 

if I&,,c@Ms~/~T and Rmk>R.W3-k, for 

k=l or 2, 

30 otherwise 

Proposition 3.6. 

VaED,, QbED2: la+blci ~lR,,riRk~ 

with tlmk < Bk < aMk, k = 1,2, so that 10, - O1 I is minimal. 

The price for more precise bounds is the solution of an optimization problem. 

Propositions 3.5 and 3.6 can be generalized as follows: 

Proposition 3.7. Vu, ED,: 

R:k + ; 1 2R,kR,l cos(0, - 0,) 

>R-RR,, 

k=lk#l 

if &,k-&,ll<n, Qk,l=l,2 ,..., N, with &,k<&<&&., 

Qk= 1,2, . . . . N, so that the right-hand side becomes 

minimal; 

if 18,k-@Mll>n,for k,1E{1,2 ,..., N}, with 

I ~ 
Caj > R > RM; 
j#k 

otherwise. 
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Fig. 4. A positive real domain. 

Proposition 3.8. 

with Bmk < Ok < OMk, k = 1,2, . . ., N, so that the right-hand side becomes maximal. 

The formulas in Propositions 3.7 and 3.8 do not look very encouraging for 

implementation. Therefore, a particular case will now be investigated. When all 

coefficients are real numbers and when only real solutions in a certain domain are 

desired, then it is sufficient to consider real domains, where the slices are centered 

around the real axis. Fig. 4 shows a positive real domain in one dimension, i.e. 

8, = -GM and ) R, cos OM 1 z R,. By reflection around the complex axis a negative real 

domain is obtained. 

Proposition 3.9. Let D be a real domain and F = R, - (R, cos 8,,,I, then 

Va,bgD: 2(R,-&)<Ia+bl<2R,. 

Proposition 3.10. Let D1 and D2 be two different real domains, both negative or positive. 

Let E=max(R,,-~R,,cosO,,I, R,z-IRm2cosOMZI), then VaED1, VbED,: 

R,,+R,,-_&<la+bl<R,,+R,,. 

The generalization to sums of N terms is straightforward. 

Bounds for a polynomial f with real coefficients and unknowns belonging to the 

multidimensional real domain D can be estimated as proposed in Algorithm 3. 

Algorithm 3. Computing bounds for If(x) / over D. 

1. Apply transformations (1) to obtain new bounds which define one-dimensional 

real domains for the individual terms in the sum S. 

2. Write S as S = Sp + SN, where Sp groups the terms belonging to positive domains 

and SN contains those in negative domains. 
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3. By application of the generalized version of Proposition 3.10, lower and upper 

bounds can be computed, which results in A, < 1 SNI c BN and AP < lSpl < Bp. 

4. Then VXED: 

If(x)l<max(l4-.4~ I&-API) and If( 

1 

>IA,-B,l if Ap>BN, 

>lAN-BP1 if A.>&, 

20 otherwise. 

Algorithm 4 proposes a way for computing a dominant part of .f‘ over a real 

domain D. 

Algorithm 4. Computing a dominant part jI, over a real domain D. 
1. Apply transformations (1) and group the terms in the sum S as S= SP+SN, 

as in Algorithm 3, to obtain lower bounds AP and AN and upper bounds Bp 

and BN for Sp and SN respectively. 

2. If A,>& or A,>&, 

then a dominant part .fn consist of the terms which lie 

after transformation in the positive or the negative domains, 

otherwise terms should be moved from the one part into the other one. 

3. In case ,fD has been found, one can try to enumerate all possible subsets 

of its terms in order to find a dominant part with the smallest number of 

terms. 

Algorithm 2, proposed at the end of Section 3.1, can be applied for computing 

a dominant part ,&. But then only where the geometry of the border coincides with 

that of the first type of domain, as pictured in Fig. 1. Here the second type of domain, 

drawn in Fig. 2 for one dimension, is considered. A point on the border of the domain 

of the second type, denoted by x= Re”, belongs either to a circular part, when its 

modulus R remains constant (R E { R,, R,%,}), or lies on a diagonal part of aD, when its 

argument H is fixed (0~ [H,,,, H,)). In order to deal with these diagonal parts of the 

border, one has to work with real homotopies, as is explained next. 

The great advantage of real domains is the possibility of obtaining more precise 

estimates for the polynomials over a certain domain. The problem with real domains 

is the fact that estimating over the border aD can be real burden, when it comes to 

considering the diagonal parts close to the real axis. Applying real homotopies 

provides an effective solution. 

The behavior of the solution paths of real homotopies for solving real polynomial 

systems has been studied by Li and Wang, see 1231, and applied in 118,241. The main 

result of their paper shows that, generically, the solution set of a real homotopy 

contains no singular point other than a finite number of quadratic turning points. We 

refer to [23] for technical and theoretical details. Here only the practical importance 

of the result of Li and Wang will be discussed. 
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In a real homotopy, each complex solution path has a conjugate solution path. At 

a quadratic turning point, the two conjugate complex solution paths meet. When 

passing through such a point, the two complex paths turn into two real paths. The 

reverse process is sketched in Fig. 5, in the complex plane, for one unknown. 

As t : to-+tl, the two real solutions D and 4 approach each other along the real 

axis. They meet at the quadratic turning point, when t = t 1, and turn into the complex 

plane, where they move further as a conjugate pair, as t : tl +t2. 

In many practical applications, the components of real solutions are scattered in 

different real domains. Fig. 6 shows the behaviour of the paths for a real homotopy 

when the two real solutions lie initially in two different (one positive and one negative) 

real domains. 

There is only one way for the solutions to meet and to turn into the complex plane. 

Namely, by violating the circular inner borders of the domain. Which is impossible, as 

the start system is dominant on the border. 

In general, if the dominant part of the system has for each component at most one 

solution in a real domain, then all solutions will remain in their domain during 

continuation, provided of course that a real homotopy is used. Hence, when dealing 

with real domains, real homotopies are required. 

When two real solutions lie initially in the same domain, the two solutions can meet 

each other inside the real domain and turn over to the complex plane after crossing 

the diagonal lines close to the real axis. This case can be avoided, by applying a linear 

Fig. 5. Behavior at a quadratic turning point. 

Fig. 6. A real homotopy. 
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transformation on the system, which places the origin between the solutions, as 

in Fig. 6. 

3.4. Customizing the norm 11 11 

Recall that the third condition of the multivariate Rouche’s theorem has to be valid 

for some norm /I 11. This subsection is concerned about customizing the norm to the 

given problem by the solution of a linear program. 

Consider the following class of norms: 

IIFlI= &4.r,l> with a,>0 and fia,fO. 
I=1 I=1 

G-9 

Let the following bounds be given: Rmk </.u,l<RMk,for k=1,2 ,..., n, which define 

a domain D. Given a part F,, of the system F, one can formulate conditions on the 

constants a, in (2) so that F,, is dominant on the border of the domain D, w.r.t. the 

norm defined by those constants. 

In order that F,D is dominant on the border, the following conditions should be 

satisfied: 

vx~aD: II &D(X) II > II F(x) II (3) 

With the results of the previous subsection in mind, one has only to consider the 

circular parts of the domain. The conditions (3) are then equivalent to the following 

set of inequalities.: 

VXE~D: i allfaD1(x,, . . . . . u,=R, . . . . x,)1 
I=1 

> c alI(f;-~~,)oi.l,...,~k=R,...,~n)I, (4) 
I=1 

with RE(R~~, RMMk}, k-l,2 ,..., n, 1=1,2 ,..., II. 

Apply Algorithm 3 to compute estimates A~kj and Blkj for lower bounds for I_&,, I 

and for upper bounds for /,I; -hD1 I respectively. Let j = 1 when xk = R, and j = 2 when 

.xk=RM. The inequalities (4) can then be rewritten as 

i alAEfj> i alBlkj3 with k=1,2 ,..., n and j=1,2. 
I=1 1=1 

Equivalently, 

$ln,(Bi/cj- Al!fj)<O, with k=1,2 ,..., n andj=1,2. 

In order to keep the coefficients al bounded, add I:= 1 ul < C, C > 0 to the con- 

straints (6). Choose a small positive constant E. Then the following standard linear 
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program is left to solve: 

n 
max 1 al subject to 

I=1 

al(B*kj- Alkj)GF, k=1,2 ,..., n, j=l,2 

(71 

a,<C and a,>,O, 1=1,2 ,..., n 

If a feasible solution is found, F,, dominates the rest of F on the circular parts of the 

border. 

4. Applications 

Two classes of applications can efficiently be attacked by regional homotopy 

methods: illconditioned systems and systems with a special structure. The first class 

seems to be typical for chemical equilibrium problems, where the existence of some 

terms with extreme coefficients introduce spurious solutions making the system hard 

to solve. The second class consists of special structured systems, such as eigenvalue 

problems and matrix polynomials. The start system can here be either a linear system 

or a decoupled system of univariate polynomials. For both classes, the choice of the 

dominant part is obvious, but of course applications exist where the combinatorial 

dominant part computing algorithms presented in the previous section can lead to 

discoveries. 

The problems considered here have been taken out of the literature. So, no original 

problems will be solved. The importance of this section lies in the unifying approach of 

the methods presented. Regional homotopy methods seem to be applicable to differ- 

ent problem areas where polynomial systems occur. 

Before proceeding, let us take a look at the armament used in attacking the 

problems. First of all, a software package [38] providing a homotopy continuation 

environment and equipped with homotopy methods exploiting Newton polytopes, 

developed in [41], are at our disposal. The implementations of the algorithms for 

estimating bounds have been added to the software environment, as also some 

elementary LP routines. 

(1) Consider the following system: 

Fi (xl = 
i 

1.O691O-4x’:+21O4x:x2+x~-l.81O-1ox1-1.2831O-24=O, 

2 10’6x1x: + 1014x; - 1 = 0. 

This is a chemical equilibrium problem, known as Butler’s problem. See [27, Ch. 93 

for a general introduction to the derivation of polynomial systems out of chemical 

problems. In [25,26], a description of the solution list can be found. There are 7 real 

solutions and 2 complex solutions. 4 real solutions have a physical meaning and 

appear in a symmetrical pattern. They are bounded by 10-6<jxl( < 10m4 and 

10m9 < (x2 I c 10e6. The other 3 real solutions lie our of range: 2 too small, 1 too large. 
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The total degree equals 12, the BKK bound is 9. As this number is small, the system 

could be solved easily. However, the extreme coefficients cause great numerical difficul- 

ties to most path trackers. Therefore scaling the homotopy is a necessity. As the location 

of the roots is important, only equation scaling will be used, not variable scaling, see 

[27, Ch. 51. The first equation will be divided by 104, the second one by 1016. 

On the negative real domain, with bounds on radii lo-‘< Ixk(< 1, k= 1,2, the 

following system is dominant on the border: 

F;TD (x) = 
i 

2x:.x2+ 1o-4X:=o 

i 

X:(2x*+ 10_4)=0 

2x,x:+ Io-2x:=o 
or equivalently 

x:(2x, + 10~2)=o. 

This system has 7 real solutions: (0,O) with multiplicity 6 and (-0.5 10P3, 

-0.5 lo-‘). The last solution is the spurious solution that is too large. Note that the 

pair of complex solutions is already left out. But F iaD contains too few terms, as it is 

now impossible to distinguish the physical solutions from the two other solutions and 

moreover, the singular solution (0,O) cannot be used as a start solution. 

The dominant part of Fr should contain more terms. We can add more terms to 

FiaD, preserving the product structure, so that it remains trivial to solve it. On the 

positive real domain bounded by lO-‘j < /x1) < 1O-4 and 10m9 < (xzI< 10P6, consider 

the following: 

F,PD (x) = 
xl(x,-10-5)(x1+10-5)(2x2+10-4)=o, 

(x2-10~7)(X2+10-7)(2X1+10-2)=o. 

Then 

2 1O-‘ox,x2-O.8O 1O-‘4x1 - 1.283 10-28=0, 

F,?,, has again 7 real solutions, but now the 4 physical solutions are clearly separated 

from the other ones. To prove that F,,, dominates F, - Flao on the border of the 

domain, it is important to preserve the product structure of E&n while estimating. The 

implemented algorithms gave too low lower bounds, especially for the first equation, 

on the borders for x1. The start solutions are that good, that no continuation is 

needed, a couple of simple Newton-Raphson iterations are sufficient to calculate the 

desired solutions. 

(2) Another chemical equilibrium problem has been stated in [26]: 

X1X2+X-3X,=0, 

2x,x,+x1 +~R,,x~+x~x~+R~x~x~+R~x~x~+R~x~-R.~~ =O, 

Fz(x) = 

I 

2x,x: + R7x2x3 + 2R5x: + R,x, - 8x, =O, 

Rgx,x4 + 2x2 + 4Rx, = 0, 

x1x,+x, +Rlox;+x,x~+R7~2.~3+R9~2.~4 

+Rsx2+R,x~+R,x3+x~-1 =O. 

The total degree equals 108, but there are only 4 real and 12 complex solutions. 
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Table 1 

The coefficients for F2 

R 10 

R, 1.9300 10-l 
R6 4.1062 10m4 
R, 5.4518 10m4 
R8 4.4915 lo-’ 
&J 3.4074 1om5 

RIO 9.6150 lo-’ 

The BKK bound equals 16. The constants R and Rj, j= $6,. . ., 10 are listed in 

Table 1. 

Only the 4 real solutions have a physical meaning. Define a real domain D with the 

following bounds on the radii: 10-3<(xk1<102, Vk=1,2,...,5. 

Considering the system, given the coefficients in Table 1, one notes that the 

constants Rj, j = 6, . . . , 10, introduce coefficients in the system which are of a lower 

magnitude than the other ones. It is natural to eliminate those terms whose coeffi- 

cients are in modulus smaller than 10m3. The result is the system FzaD which is 

dominant on the border of the domain. 

XlX2+Xl-3X5=o, 

2x1~2+~1+~2~23-Rx5=0, 

F2adX)= 2x2x: + 2R5x: - 8x5 = 0, 

2x;+4Rx,=O, 

x1~2+~1+~2~:+R5~:+~~-l=0. 

The system FzaD has fewer terms and a BKK bound equal to 8. There are 4 real 

solutions, which serve as start solutions for computing the desired solutions to F. 

(3) Systems occurring in the analysis of nonlinear circuits and neural networks 

[36] have a typical structure like 

F(x)=AG(x)+Bx+c=O, with A,BEJW”~“, CER”, 

and gk(x) = gk(xk), where the polynomials gk are univariate, for k = 1,2, , n. 

One of the most simple examples [36, p. 741 is the following 

F3W= 

0.081x:-2.04x;+13.6x,+x,+x2-69=0, 

0.081x;-2.04x:+ 13.6x2+x1+xz-75=0. 

It has 1 real solution and 8 complex ones. A regional homotopy continuation 

method can provide a start solution, already very close to the real solution. It is 

natural to take the decoupled system of univariate polynomials as dominant part, 

leaving all terms xi, 1# k to the kth equation of the rest of the system. Solving 2 third 

degree equations yields a start solution. For F3, the considered real domain imposed 
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the following restrictions on the radius of the unknowns: lxkj ~50, k= 1,2. Over this 

domain, the linear program turned out to have feasible solution, hereby proving that 

the decoupled system is dominant on the border. By the choice of appropriate bounds, 

the first significant number of each solution component was already correct, which 

makes the continuation process fast and reliable. It has one real solution and 

8 complex ones. 

When the classical homotopy is used, based on the total degree, no diverging paths 

will occur, but for general II, the complexity of computing 3” paths is a cost too large 

for obtaining one real solution. As the univariate equations are symmetrical, one has 

only to solve one instead of n third degree equations. 

(4) Homotopy continuation methods for solving (generalized) eigenvalue problems 

were first presented in [S], the polynomial system can be described as 

,p 1 =o. 

For general matrices A,, there are kn eigenpairs. They can be computed by using the 

homotopy developed in [S]. For the classical eigenvalue problem Ax=ix, it only 

seldomly occurs that all eigenpairs are wanted. In [lS] the concept of Order Preserv- 

ing Property was introduced, stating that the real homotopies presented there pre- 

serve the order between different eigenvalues, as solution paths each other never cross 

during continuation. This line of thought has in [24] been generalized and applied to 

nonsymmetric matrices. In [23], the approach of real homotopies has been worked 

out in general for real polynomial systems. 

Consider the following simple eigenvalue problem: 

[ 

10 -1 0.5 

2x=Ax with A= -1 20 -4 

2 - 1.5 38 1 
Suppose only the largest eigenvalue is desired. As the elements on the diagonal of 

A are larger then the other entries, it is natural to take D = diag(lO, 20,38) as matrix 

for the initial eigenvalue problem. 

The largest eigenvalue of D equals 38 and can be associated with the third unit vector 

(O,O, 1). Take as norm 11 F/I = i,f31. Then on the border of the real domain, defined by 

O<Ii”l<30, o< l,Xkl< 1.001, k=1,2 and 0.999<lx,l<1.001, 

the system ix - Dx = 0 is dominant over the rest of the original eigenvalue problem. 

Assume the first or second eigenvalue becomes the largest during continuation. 

Then for some t-t,, Ito1 < 1, there is a solution path with L=30, because a real 

homotopy will be used. But on aD, H(x, t)#O. Hence, it is sufficient to compute only 

the path starting at the largest eigenvalue of /Zx-Dx=O. 
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5. Conclusion 

It is possible to construct homotopies for computing only the solutions in 

a bounded domain. This paper gives conditions on the homotopy and proposes 

homotopy construction methods. When it comes to computing the real solutions of 

real polynomial systems, the regional homotopy has to be a real homotopy. In this 

case, regional homotopies can on the one hand be considered as a general application 

of real homotopies. On the other hand, the conditions of RouchSs theorem provide 

a useful tool for the construction of a reliable real homotopy. 
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