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Abstract

We introduce the notion of infinitary preorder and use it to obtain a predicative presentation of
sup-lattices by generators and relations. The method is uniform in that it extends in a modular way to
obtain a presentation of quantales, as “sup-lattices on monoids”, by using the notion of pretopology.

Our presentation is then applied to frames, the link with Johnstone’s presentation of frames is
spelled out, and his theorem on freely generated frames becomes a special case of our results on
gquantales.

The main motivation of this paper is to contribute to the development of formal topology. That
is why all our definitions and proofs can be expressed within an intuitionistic and predicative
foundation, like constructive type theory.
© 2005 Elsevier B.V. All rights reserved.

Keywods: Preentation of frames by generators and relations; Presentation of suplattices; Presentation of
guantales; Infinitary preorders; Pretopologies;dRraive mathematics; Formal topology; Locale theory

0. Introduction

The notion of pretopology, as ilp,16], is a natural generalization of that of formal
topology, introduced inJ4]. Formal topology is by now also the name of the field whose
aim is to develop topology within an intuithistic and predicative foundation, such as
Martin-L6f’s type theory LQ] (henceforth, simply type theory). To pursue this aim, one
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has to reformulate definitions and theorems of more traditional topology so that they can
be expressed in type theory. This often leads also to a sharpening of the mathematical
content. This is what happened, in our opiniaiith the topic of presentation of frames.

In this paper, which is the outcome afh engagement we undertook long agd [
we show how lie notion of formal cover, and its generalizations, allow one to obtain
a uniform presentation of sup-lattices, quaetablnd frames. Our treatment is centered
on the notion of infinitary preorder, thad & reléion between elements and subsets of
a set X which satisfies a suitable kind of reflexivity and transitivity. The biunivocal
correspondence between infinitary preorders, closure operat@¢Xn(the power ofX)
and congruences gR(X) allows one to construct in a simple way the sup-lattice which
is freely presented by a set génerators and by some relations, or conditions on them.
Falowing the same pattern, such results axeeaded to the case of quantales simply by
adding suitable conditions to deal with the monoidal operation; in particular, the notion of
precover (and hence of pretopology) is obtained by supplying infinitary preorders with an
extra stability condition which corresponds to dibutivity. Thus the slogan that quantales
are just sup-lattices over monoid§ pets furtter evidence. Finally, frames are treated as
particular quantales, simply by adding conditions which force the monoid operation to
coincide with the meet, and the precover to e formal cover. In particular, we obtain
a dharacterization of the frame freely generated by a monoid, which gives Johnstone’s
well-knownframe ofC-ideals over a site as a special caf Though our formal covers
correspond to Johnstone’s coverages, in the precise way shown in the last section here, it
is the choice of expressing conditions by inequalities (as with formal covers) rather than
equalities (as with coverages) which allows one to find a suitably weak form for conditions
and hence which makes our modular construction possible.

Our approach is uniform also in the sensatthll our results hold independently of the
foundational theory, in the following sense. On one hand, unless otherwise stated, all our
definitions and proofs are expressible in type theory; this is the main motivation for this
paper, whose origin, and hence also notation, is to be found in formal topology. On the
other hand, all arguments are compatible with a classical foundation like ZFC and with an
intuitionistic but impredicative foundation like topos theory; in particular, we never use in
this paper any argument which is valid in typedhy, like the choice principle, but which
would destroy constructivity of topos theory.

Developing mathematsdn type theory means that the logic used is intuitionistic, like in
topos theory, but it means also that the set theory is predicative. In particular, the collection
of all subsets of a set is not a set, and thus quantification over all subsets of a set is not
allowed. More precisely, a universal or existential quantification over subsets does not
produce a proposition, and so it cannot be usezbttstruct an object, like a set or subset,
while of course free parameters on subsets get a meaning by means of substitutions, and
so they can appear in a definition, like that of infinitary preorder.

One advantage of such a discipline lies in the fact that type theory is itself a functional
programming language (se&]), and ® all the mathematics developed within type theory
is ipso facto expressible and checkable inomputer. We hasten to note that this paper
remains a piece of mathematics, written in a language which is not too far from that usual
in mathematics. We can leave the details and problems of an actual formalization in type
theory, since this is automatic, as long as we use the methods develogdedi (w¢ will
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use definitions of17] even without mention, beginning with that of subset, since they are
equivalent to the traditional ones for a non-predicativist reati@iis is, in our opinion,
the best way to develop a deegnceptual iteraction between mathematics and computing
science.

We have put some effort into simplifying proofs and the structure of exposition, and this
often allows us to give detailed proofs; besides being a matter of taste, this has the purpose
of showing in practice that all our arguments fully preserve constructivity in the strongest
sense (an ipredicative treatment would bring us to a more abstract, and sometimes shorter,
exposition).

1. Infinitary termsand relations

We aregoing to describe structures equipped with an infinitary operation by means of
generators and relations. In the case of finitary operations, one simply defines inductively
the st of all terms, or polynomials, over a given set of generaxar$his is not possible
in the case of an infinitary operation (se@ fnd [L8]), and hence one has to look for
a different approach. We here describe our method on the simplest infinitary structure to
which it applies, namely that of the sup-Ilattice. The usual definition is THf. [

Definition 1.1. A sup-attice £ = (L, <,\/) is a partially ordered set_, <) provided
with an operation of infinitary join/, that is aroperation which applies to every subset of
L, andgives the supremum with respect to the order

A morphism between # sup-latices£ = (L, <,\/) and£’ = (L', <,\/) is a map
f: L — L' suchthat f (\/j, Xi) = V¢, f(xi) for every familyx; € L (i € I).

The above definition, taken literally, is definitely too restrictive if the notion of set is
interpreted as in type thep where for instanc®(X) is never a set (se8]). Therefore one
has to give up the fact thatis a set, ad requirelL to be a collectiondr category; se€ll)]).

The notion of subset (of which one requires shpremum to exist) is then replaced by that
of set-indexed family of elements € L (i € |). Then we reach the following definition
(see [L7], section 2.8):

Definition 1.1 (Predicativg. A supattice £ is a collectionL with a partial ordex such
that for any family of elements df indexed by a sdt, thatisx; € L (i € I), the sipremum
Vie) Xi exigsinL.

We must admit that this definition is not very satisfactory, since it contains reference to
all subsets and to all elements of a collection (this is implicit in the definition of supremum).
Thus by no means can it be used to construct sup-lattices, and rather it should be seen as
a requirement to be fulfilledBut it is a fact that itcan be fulfilled, that is, that there are
exampes of sup-lattices which are constructed fully within type theory. The main example
is of course the poweP(X) of a setX: theordering is inclusiorc between two subsets
and, for any set-indexed family of subsets= X (i € 1), the sipremum is simply the union
Uiel Ui (which is defined through an elementary existential quantificatioky see [L7]).

1 Areader acquainted with the notation ¥ should however be aware that in this paper we do not distinguish
typographically between an element of aget Sand an element of a subset, writter U.
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So we keep the definition, ankibk of it as a way to abstract some of the properties of the
exampes, and the examples will be obtained fully constructively.

A convenient characterization of the join of any famiy € L (i € I) of elements ofC
is that, foranyy € L,

\/x < yiffforeveryie l.x <.
iel
As a onsequence one obtains the usual link betweamd\/, thatisx < yiff xvy =1y,
wherex v y = \/{x, y}. This is why evey moiphism of sup-lattices (s€@efinition 1.])
preserves<.
Forour purposes, the following formulation of sup-lattices is more convenient:

Theorem 1.2. Sup-lattices can be characterized as pdiks \/) where\/ is an infinitary
operation on Lsatisfying

(i) V{x} = x forevery xe L;
(i) Viet VUi = V(Ui Ui) for every family(U;)ic| of subsets of 2.

Proof. It is immediate, by using the above characterization of joins, that a sup-littice
(L, <, V) satisfies conditions (i) and (ii).

Conversely, yen a m@ir (L, \/) satisfying (i) and (ii), one defines < y putting
V{x,y} = y. Conditions (i) and (ii) are enough to prove thatis a partial order (or
equivalently, that the binary operationv y = \/{x, y} is associative, commutative and
idempotent). W now see that/ U does indeed give the join of an arbitrary subdew.r.t.
the order< so defined. Indct, for everya € U, we havea < \/ U becausé/{a, \/U} is
equal to\/{\/{a}, \/ U} by condition (i), and hence also ¢ ({a} U U) by condition (i),
but{a} UU = U sincea € U. Now letb suchthata < b, i.e.\/{a, b} = \/{b} for every
ae U.Then\/,.,(\V{a b}) =,y (\V{b}). By condtion (i), the right member is equal
t0 \/ (Uaey {b}) which is the same ag'{b}, which isequal tob by (i). By condition (ii), the
left member is equal td/ (| U,y (@, b}) and hence t4/(U U {b}), thatis\/(\/ U, \/{b}),
again by condition (ii). So\/(\/ U, \/{b}) = b, thatis\/U <b. O

After the above characterizatiabis easy to prove the following:
Proposition 1.3. For any set X, the poweP(X) is the free sup-lattice generated by X.

Proof. P(X) is a sup-lattice, as we have seen above. Now, for any sup-latacel for any
g: X — L, defineg : P(X) — L by putting g(U) = \/,y 9(b), for everyU c X. The
mapg extendsg, in the sese thay = §oi wherei : x — {x} is the emledding ofX into
P(X). Infactd({x}) = g(x) for everyx € X by (i) of Theorem 1.2Moreover,§ is a sup-
lattice morphism, sinc§(U;¢; Ui = Ve, u 9 = Vier Ve, 90 = Ve GUi.
Theng is the unique sup-lattice morphism extendipgo the subsets oX. In fact, for

2 \Wethank Ales Pultr for observing that this propositian@unts to saying that sup-lattices are the (Eilenberg—
Moore)P-algebras wher® is the monad P, w, n) with P the powerset functaBet— Set ux = (U — UU) :
PP(X) - P(X), andnx = (x — {x}) : X = P(X). We donot spell out a similar translation into categorical
language for other propositions in this paper.
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everyU c X, we haveU = |J,y{b} and then a morphisni extending g satisfies
f(U) = Vpeu F(b) = Vpey 9b) =gU). O

We now see that the sup-latticB(X) can be considered as the sup-lattice of terms, that
is, arbitrary subsets of a given sétof generators take the place, in the case of infinitary
join, of the usual (finitary) terms. Since the arguments we give to this end have only the
purmpose o i ntuitively motivating our definitions, we will not be rigorous with expressibility
in type theory, up to the end of this section. We recall that the sup-laftisagenerated
by a setX if L is the closure ofX under the infinitary operatioky/. By condtion (ii) of
Theorem 1.2kove, X generateg iff every element ofL is the join\/ U for some subset
U of X. In other wordsthe first level(on subsets oK) of closure under joins is enough
to obtain every possible further join. Thus, every element of any sup-lattice generated by
X can be labelled by a subddtof X, so that sbsets ofX can be considered thefinitary
termson the seiX of generators.

The next question arising is: when are two terms identifiable? The usual extensional
equality between subsets, definedlbby= V iff Va € X(a € U < a € V), is now
a sort ofsyntctical equality between the two term$ andV, sinceit tells us that the
two terms have the same components (generators). On the other hand, two subsets may
contain different generators and denote the same element of a given supdatfeaeed
to conceive a new equality, identifying the terms denoting the same object: in this sense,
subsets get a new extension, that isdbject they denote as terms. So we put

U@ME{VU=VW)

whereU, W are subsets of a séX which generate. We now pove thato, is a
congruenceon the sup-lattice of term®(X), asone could expect, generalizing from the
finitary case.

We say thab is a congruence on a sup-latti€e= (L, \/) if itis an equivalence relation
on L which moreover respects the infinitary operatighn that is sich thatx; 6 y; for all
i €| implies\/j., Xi 0 Vi, Yi- Thenation of quotient sup-lattic&l /6 is then defined,
as usual, by considering the quotidntd with join defined by\/,., [Xilo = [\i¢ Xils-
Clearly, 6, is an equivalence refi@n; we see that it respects joins. In faot,6, W for
alli e | meansthaty/U; = \/W foralli e I; herce\/,.,(\VUi) = Vi (VW)
from which, by condition (ii) of Theorem 1.2 \/(Ui¢; Ui) = V(Ui W), that is
Ui Ui 0z Uier Wi

Congruences on the sup-lattice of terms permit us to obtain a presentation of sup-
lattices; in fact, it is easy to prove that:

Proposition 1.4. For anysup-lattice”, if L is geneated by a set X, theg is isonorphic
to P(X)/6,, whered is the congruence on the sup-lattigg X) defined by:

forany U W € X, Ug W iff \/U =\/W.

Proof. The mapr from the quaient sup-latticeP(X)/0, to L, defined byr : [Uls, +—

\/ U, is an isomophism: in fact,r is onto becausg is generated byX, andr is one—one
because by definitiom[U] = #[V] iff [U] = [V]. Findly, = preserves joins because
ﬂ(VieI (UiD = n[UieI Uil= \/(Uiel U = \/iel (\/ Ui = \/iel m[Uil. O
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A congruence on the sup-lattice of terms idafimitary relatiort in gereral, we describe
asinfinitary any relation on a set in which at least one of the arguments is a subset.
So Proposition 1.4above says that any sup-lattice can be impredicatively presented by
(infinitary) generators and (infinitary) relations. Unfortunately, the notion of congruence
is not very convenient to work with and moreover it is not well suited for an inductive
generation, which is necessary in a predicative approach. So we need a different kind of
infinitary relations. We dedicate the next three paragraphs to solving this problem; we will
then come back to the presentation of sugidas, using the mostiementay andhandy
notion we have been able find, namely that of infinitary preorder.

1.1. Infinitary preorders

We first give a full definition of the notion of congruence on the sup-Ilattice of terms
P(X):

Definition 1.5. A congruencé on a setX is a relation between two subsetsXfvhich is
closed under:

U:

0] T, (reflexivity);
(i) Uov_ VoW (transitvity);
Uow vy
uev _
(iii) vou (symmetry);
(iv) uigvi forall i €| (congruence property)
Uier Uif Uier Vi '

Note that reflexivity amounts to the requinent that the extensional equality between
subsets, that is the syntactical equality between terms, is preserved.

The first step towards a more convenient form is to replace equalities by inequalities,
that is to induce a relatior between subsets, where the intended meaning ef W is
that\/ U < \/ W, rathe than\/ U = \/ W. Theresulting definition is:

Definition 1.6. For any setX, a reldion < between subsets of is called a congruence
preordef if for all U, V, W, U;, W, C X it satisfies:

ucv -
(SRs) (global strong reflexivity)

U<V
U<V V<W e
(Te) TU=wW (global trangtivity)
Ui <V forall i el
Uy = ' €7 (union is respected)
Uiet Ui <V

Congruences and congruence preorders are linked in the same wagrak< are linked,
through\/, in anylattice:

3 We barow this name from [V].
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Proposition 1.7. Let X beany set. Ib is any congruence on X, the relatiety defined by
U<g W= UUW)W

is a congruence preorder. Vice versa~fis a congruence preorder on X, then the relation
6~ defined by

UOW = (U < W) & (W < U)

is a congruence on X. The two mappings so defined give a bijection between congruences
and congruence preorders.

Proof. Leto be a congruence. Thé€® Rs) holds for<y, sincel CV means that) UV =
V, from which by reflexivity(U UV)6V, thatisU <y V. Theproof of (Tg) is a kit longer:
assumel <y V andV <y W, thatis(U U V)0V and(V U W)W. From (U U V)oV
one derivegU UV UW)0(V U W), becausaVoW andé preserves joins, which, together
with (V U W)W, gives(U UV U W)W by trangtivity. Again, from (V U W)W one
derives(U U V) U WO(U U W), and sofinally (U U W)W, i.e.U <y W. To prove
(U), assumeU; <¢ V, foralli € I, thatis(U; U V)0V. TakingV; = V in (iv) of
Definition 1.5 one obtaing J; ., (UjuV)6oV; sincel J; ., (UiUV) = (Ui, Ui)UV, one has
Uil Ui UV)O (Ui, Ui UV, by reflexivity, andhence by transitivity (|J;; Ui)UV)6V,
i.e.Uid Ui <¢ V.

Let < be a congruence preorder. Frq®Rs) reflexivity of 6 follows immediately:
U =V meansthat) CV & VCU, andhence, bySRs),U <V &V < U, thatisUo_V.
From (Tg) it is straightforward to obtain transitivity af<. Symmetry of6. is olvious.
To see that. preserves joins, assunigo.V; for alli € |; thenU; < V;, andhence
Ui < Uje Vi, foralli e I, from which (i, Ui < Ui, Vi by (U), and sinilarly
Uier Vi < Uie Ui, sothat i) Uio< Uie Vi-

Finally, 6, is equal tod, becaus&Jo_,V =U <4 V&V <4 U = (U UV)OV&U U
V)oU iff UOV, and<g_ is equal to< becausd) <g. V= U UV)HLV = (U UV) <
V&V < UUuUV)iffu <V. O

Our aim is nav to reduce< to a relation« between elements and subsets. Recalling that
a = \/{a}, the claracterizing property of joins, given aftérl, can be rewritten in terms
of < as

(S (VaeU)({a} < V) iff U=<V.
Condition(S) can equivalently replace conditigb )*:

Proposition 1.8. A relation < between two subsets of a set X is a congruence preorder iff
it satisfies(SR), (Tg) and(S) above.

4 Condition(S) is actually stronger than conditiqt) ), in thesensehat, if (S) is asssumed(S Rs) is equivalent
to the apparently weaker condition of global reflexivity:

(Rg) U=<U

while (SRs) cannot be replaced byRg) in the original definition of congruee preorder. We leave the details
of the proof.



G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30-61 37

Proof. Itis enough to show that, assumii§Rs;) and(Tg), condtion (S) is equivalent to
(U). So asume(U). From(Ya € U)({a} < U), sinceU = (J,.y{a} by (U) it follows
thatU < V; vice versa, iU < V, thenfroma € U, i.e.{a}CU, it follows that{a} < U
by (SRs) and hencda} < V by (Tg), and ths means thatva € U)({a} < V).

Conversely, assum). If U; < V for everyi € |, then by he right-to-left direction of
(S it follows that(va € Uj)({a} < V) for everyi € |, thatis(va € | J;; U)({a} < V),
and then the conclusidn); ., U; < V follows by the left-to-right direction ofS). [

Now, the point is that we can red®) as a characterization of congruence preorders in
terms of a subrelation using only singletons at the left. So, for any congruence pregrder
we defire a relationa between elements and subsets by putting

a<U ={a} < U.

We now see that enough conditions amcan be found to get a notion equivalent to that of
congruence preorder. Frof® Rs) it follows that strong reflexivity:

aeU
S
SR a<Vyu

must be valid, because e U gives{a}CU, andhence{a} < U. Transtivity for < takes
the form

a<U VvVbeU(MbaV)
(SR a<xV '

In fact,vb € U(b < V), i.e.Vb € U({b} < V), is equivalent by(S) toU < V, which
together witha < U, i.e.{a} < U, gives bytransitivity of < the onclusion{a} < V, i.e.
a<\V.

We have thus reached the basic definition of our approach:

Definition 1.9. For any setX, a reldion < between elements and subsets<ak called an
infinitary preorder if it satisfie$S R and(T) alove.

A pair (X, <) is called an infinitary preordered setdfis an infinitary preorder on the
setX.

The notions of infinitary preorder and congruence preorder are actually interchangeable:

Proposition 1.10. Every congruence preordet gives rise to an infinitary preordesiL
defined by

a<<U={a} <U.
Viceversa, every infinitary preorder gives rise to a congruence preorder, defined by
U<,V=VaeU@aV).

Such a correspondence gives a bijection between congruence preorders and infinitary
preorders.

Proof. The remarks precedin@efinition 1.9 show that<< is an infinitary preorder
whenever is a mongruence preorder.
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Conversely, assumeis an infinitary preorder. To prou&s Rs) for <, assuméJ C V;
then for anya € U we havea € V; hercea <V by (SR and therefor&a € U(a< V),
i.,e.U <, V. (Tg) is easily seen to hold by definition. To progé), assumeJ; <. V for
everyi € |;thenranya € |J;., Ui we havea € U; for somei € |, andhencea <V,
which means tha¥a € | ;. Ui(a< V) holds, as wished.

Finally, sincea<< U = {a} <, U =Vb € {a}(b<U), we havea<-_ U iff a<U and,
sinceU <, . V=VbeU(b<V)=VbeU(b} <V), wehaved <, Viff U < V.
Hence the correspondence is bijective.]

By such proposition, any congruence preordssiitained in a uniquevay by extending
an infinitary preorder to subsets on the left, the intended meanind efV being
Va € U(a<V). So we can from now on leave out the notion of congruence preorder.
Finally, we define theategory of infinitary preordereskts. We need the notion of mor-
phism between two objects= (X, <¢) andC’ = (X', <) of the category, that is we need
maps which can transform the generators and preserve the relations. It is enough to put:

Definition 1.11. A morphism between the infinitary preordered séts= (X, <¢) and
C' = (X, <) isamapf : X — P(X’) suchthat

a<cU = f@ <z f(U)
for everya e X, UCX, whereweput f (U) = [y f(b).

It is easy to see that, giveh: (X, <¢) — (X', <¢) andg : (X', <¢/) — (X", <¢r), their
composition, defined bg o f (a) = g(f (a)), that isUbef(a) g(b) by the above definition,

is a mophism. Moreover, it is immediate that the morphism which maps eaegy X

into the singletorfa} € P(X) is the identity with respect to such composition. Hence the
infinitary preordered seferm a category, calletP.

1.2. Infinitary preorders and closure operators

We show thathe notion of infinitary preorder isquivalent also to a well known and
general notion, namely that of closure operator. This will be used in the next section
in the presentation of sup-lattices. To see the equivalence, the first step is to note that
infinitary relations on a seX correspond to operators 0t An operatorO on X is a map
O : P(X) — P(X); givena pairQ, O : P(X) — P(X) we say that) is finer than®’
whenO(U) € O'(U) for everyU C S. This defnes a partial order between operators on
X, as Beasy to see.

Proposition 1.12. For any set X, there is aijection between infinitary relations @, U)
and operatorsD on X, which is given by the mapst® Or andO — Ry defined by
putting

Or(U)={ae X: R(a, U)}
and
Ro(a,U) =aec OU).

Moreover, such a bijection preserves order.
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Proof. Straightforward, becausRp,(a, U) = a € Or(U) = R(a,U) andOgr, (U) =
{a: Rn(@a,U)}={a:ac OU)} =0O). Moreover, we haveR C R’ if andonly if, for
everyU C X,a e OU) impliesa € O'(U) for everya € X, thatisOU) < O'(U) for
everyU C X. O

The link between relations and operators is very convenient and will often be used; in
the following, we will jump from one notéon to theother simply by saying thatR(a, U)”
is rewritten as a € Or(U)” and conversely. As we have just seen, the rewriting technique
preserves the order. This simple fadtlwlay an important role in the following.

We now see that infinitary preorders correspond to closure operators. Recall that a
closure operato€ : P(X) — P(X) is any operator satisfying the conditiobs= CU
(reflexivity),UCV = CUC CV (monotonicity) and’CU € CU (idempotency), for every
U, VCX. Note tha from thelast and the first property the equal@¢U = CU follows.

Now we can see that:

Proposition 1.13. The aorrespondence given iaropositionl.12specializes to a bijection
between infinitary preorders and closure operators on a set X.

Proof. If < is a relation and’ is the associated operator, aslii2 one can see that the
conditions for< to be an infinitary preorder are rewritten into properties required fiar
be a closure opator.Rule (SR is rewritten as
aeU
aeCU’
that isVx(x € U = x € CU), which is a definition olJ CCU. So« satisfies(SR iff C
satisfies reflexivity. Rul€T) is rewritten as
acCU VbeUbecCV)
aecCV
which means that from the right premiss, which by definitiod iSCV, one can conclude
thata € CU = a € CV for arbitrarya, that is
ey )
. *
cuccev
Now (x) is easily seen to be equivalent to monotonicity together with idempotency for
C. In fact, if (x) holds, then fronlJ CV, andhenceU C CV by reflexivity, it follows that
CUC CV, so thatC is monotonic; idempotency follows by) from CU CCU. Conversely,

from the premis®&J CCV one has’UC CCV if C is monotonic, and henc@U C CV, if C
is idempotent, so thak{ holds. [

An additional characterization says tliat P(X) — P(X) is a closure operator if and
only if it satisfies the equivalence

ucev  iff cuccev. (+%)

In fact, one direction ofx) is () above, whilethe other is equivalent to reflexivity.
Putting togethelPropositions 1.71.10and 1.13 we can conclude that congruences,
infinitary preorders andlosure operators are all just different formulations of the same



40 G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30-61

mathematical content. That is, summing up, for anyXéhere is a bijection among the
following:

(i) congruences on the sup-latticB(X), |));
(i) infinitary preorders orX;
(i) closure operators oiX.

In spite of such a biunivocal correspondence, it is quite convenient to keep both the
notation (and intuition) of a closure operatdrand that of the corresponding infinitary
preorder, which we denote by (sometimes also without the subscript). In fact, the former
often allows shorter statements and proofsevine latter is necessary from the predicative
point of view, since it allows us to see thatan be generated inductively by some axioms
and rules, as we will see in the next section.

Moreover, it is useful to grasp the correspondences just summarized without the
intermediate step of congruence preorders. Gigeme have jusseen thata <¢ U is a
rewriting for a € CU, andhenceU «¢ V, tha is arewriting for U € CV, is equivalent to
the inclusionCU < CV, by (). So, in particular, if we denote by (instead off..!)
the congruence associated witly, then the congruence relatidh = V, whichis by
ddfinition U <¢ V&V <¢ U, is equivalent to the equalitfU = CV. Summing up, we have
the equivalences

U«V iff cuccev
U=V iff CU=cCV.

So =¢ is the finest quivalence turning the preorder relatiep between subsets into a
partial order. In fact, if- is an equivalence relation between subsets sucluthaV/ &V <¢

U impliesU ~ V, we have by definition thatU = V impliesU ~ V. Note in addition
that the equivalence:¢) can be rewritten also as

Va@eU —a< V) iff Va@<cU — a<¢V). (%)

So, given a relatiors between elements and subsets of aXseand puttingU <V =
Va € U(a«V), the rdation < is an infinitary preorder whebd <V holds if and only if
Va(a<U — a<V). We stress fidly thatU =, V can be written a8a(a<¢cU < a<¢V),
which has the form of an extensional equality, depending on the relatiaatherthan
membership. This is the extension of subsets considered as terms for the elements of a
sup-lattice, and in this sense the congrueageds the equality of the infinitary preordered
set(X, <¢).

In this setting, it is significant to observe that, for any morphitm C — C’ of the
categorylP, U =¢ V implies f(U) =¢ f (V). This means that a morphism respects
the equalities of the infinitary preordered sétandC’. Accordingly, we characterize a
morphism with respect to congruences, so that we consider two morphjsinsC — C’
equal when we havé (U) = f/'(U) in C’, for everyU < X. This amounts again to
considering the extension of the terms as the extension of the object that they denote, quite
independently from how the term is given. The two maps are then identified when “their
graphs are equal”, quite independently from how the maps themselves are given.
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2. Presentation of sup-lattices

A presention of sup-lattices by means of infinitary preordered sets is now easily
obtained, by way of the link with closure operators. The fixed points of the closure operator
C, i.e. thesubsetsJ of X suchthatU = CU, are usidly called closed; here we prefer
to call them(C-saturated or simply saturated subsets. Accordinglythe collection of
C-saturated subsets of is denoted bySat(C). SinceU is saturated ifty = CV for some
V e X, it follows that

Sa(C) = {CU : UCX).

SinceU «¢V is equivalentt&€U C CV, theorder<. between subsets becomes the inclusion
between saturated subsets. Moreover, the characterizatiprallows us to prove quite
easily the well known result that the partially ordered collec8atC) is indeed a sup-
lattice.

Theorem 2.1. For any closure operatof on the set X, the following hold:

(i) (SatC), \/), with join given by\/,, CU; = C(J;¢, CUi), is asup-lattice.

(i) The closure operata?, considered as a mapping from the sup-lattig& X), | J) onto
the sup-latticgSaiC), \/), is asup-lattice morphism, i.e. the equalif((_J;., Ui) =
C(Ui¢ CUj) holds.

(i) The family{C{b} : b € S} generdesSa((), thatisCU = \/,, C{b} for every
UcxX.

Proof. (i) By its definition, \/;.; C(Uj) satisfies the clracterization of supremum in
Sa{(C) given afteDefinition 1.1 In fact, if CU;, i € I, isafamilyin Sa(C), thenCU; CCV
foralli e | ifandonly if [ ;. CUjS CV, whichholds if and only ifC(_J;., CU)SCV
by ().

(i) C(U;e; Ui) is an upper bound of the familgU;, i < |, becauseJ; C | J;. Ui
implies CU;i € C(|U;¢, Ui) for everyi e I, andhenceC(lJ;; CU) S C(U;¢, Ui); the
opposite inclusion is immediate.

(i) One hasU = J, {b}, and hence, by (ii) and the definition of joinCU =
Vpeu C{b}. O

The sup-lattice5atC) described by means of the closure oper&tdas isomophic to
the sup-lattice obtained as a quotienffX) over the congruence corresponding t@.
This confirms the equivalence of the two approaches.

Proposition 2.2. The sup-latticeP (X) . is isomophic to SafC).

Proof. We denote by[U] the equivalace class of the subsét modulo=-. The map
¢ : [U] — CU is the isomorphism. In fact the equivalenge V iff CUCCV tells us both
thate is well defined and that it preserves the ordeidhence that it is injective. Obviously,
¢ isonto. Finallyp (\/i¢, [UiD) = C(Ui¢; Ui) =C(Uic) CUD) = Ve olUil. O

We say that a sup-lattic€ is basedon a setX if there is a functiorg : X — L such
that the image(X) generate&, thatis branya € L,

lga ={g(x) : g(X) < aandx € X}
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is a set-indexed family of elements ame= \/ | ga. We saythatL is setbasedf it is based
on someset (seel4] and [2]).

The typical example iSatC), whereC is any closure operator on a s¥t In fact,
consider the function: X — Sa{(C) defined byi (x) = C{x} for anyx € X. Then dearly
JiCU = {C{x} : C{X}CSCU} and sol;iCU is the image along the functianof the subset
CU; this is enough to allow us to conclude that it is a set-indexed family (s Now
CU = \/{C{x} : C{x}CCU} is immediate.

The next proposition says that thisdssentially the only example:

Theorem 2.3. If £ is any sup-lattice based on a set X via the functionX — L, then
the relation<y defined by putting

asgU=g@ = \/gb
beU

is an infinitary preorder and, writing 4 for the corresponding closure operator, §24) is
isonorphicto L.

Proof. The relation<g is an infinitary preorder. In fact, i € U, then we have
g@ < \pey 9(b), and so refleivity is satisfied. Assume that <g U andU <g V;
theng(@) < \/pey 9(b) andvb € U(g(b) < \/.cy 9(c)), which by definition of join
is equivalent to\/,.; 9(b) < .oy 9(0). Sog(a) < /.oy 9(c) by trangtivity of <, and
henceqy is transitive. Nowg : SatCq) — L, defined puttingd(CgU) = /oy 9(b), is
an isomorphism. In factj is well defined and one-one, sin€guU C CqV if and only if
d(CgU)C G(CqV); infactCqUC CqyV if andonly if U <9 V, which isequivalent tovb
U(g(b) < ey 9(0) by definition of <4, andhence also td/,., g(b) < \/ ey 9(0),
which by definition of§ is §(CgU)< §(CgV).

Moreover,§—! : £ — Satg defined puttingg—1(1) = Cgi{x € X : g(x) < |} is the
inverse ofg. In fact, one hag(g—1()) = Vbeixex:gix<iy 9(0) = | sinceL is based on
the setX via the functiong, andg—l(g(CgU)) =Cgi{x € X:9(X) < Vpey 9} =CgU
by definition of «g. [

When thecarrier L of a aup-attice £ is a set, following the definition contained in
the above theorem, orgbtains the infinitary preordered set induced by the identical map
onL, that isCig, = (L, <iq,), Wherea <ijg, U isa < \/,y b. We can consideCiq,

a sort of tanslation of the structurg into the language of the infinitary preordered sets:
the elements ol are translated into the infinitary terms, the order relation intd.et
us putTransk£) = Cig, . The above theorem amounts to saying thas isomophic to
Sa{(Transk£)). Such an isomigphism is given by the map, , defined by} | () = {x €

X :x < I} (itis the mapia[1 in the above not#on), whose inverse (nameiy ) maps
Cig U into\/ U.

The carrier ofL is always a set in an impredicative setting, where, hence, one can state
the following corollary:

Corollary 2.4. Every sup-latticeC is isomophic to SafTransk£)).

In the next section we deal with the predicative case.
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2.1. Sup-lattices presented by axioms

Fix a setX and an infinitary relatiorR(a, U), defined 6r anya € X andUcX. We
think of R(a, U) as giving conditions on an infinitary preorder, and thus we say that an
infinitary preorder satisfieR if it includes it, that is if it satisfies

R(a, U)
a<U -’

The nameR-ax should recall thaR is thought of as giving axioms. When the least
infinitary preorder satisfyingR exids, we call it «<g and say that the sup-lattice
corresponding t@X, <r) is presented through the set of generaddrand the conditions
given by therelaion R. Thus if Cr is the dosure operator corresponding i, the sup-
lattice presented b andR is Sat{Cr). So note that here the conditiorR(a, U) requires
an inequality to hold, namelgr{a}< \/,y Cr{b}, or equivalently Cr{a}< CrU, rather
than the equalitgr{a} = CrRU = \/},cy Cr{b} as in other approaches (liké][and [18]).
When«g exids, it must satisfy:

R-ax: for everya € X andU C X,

=

. <R is an infinitary preorder;
. <R satisfiesR;
3. aris the least infinitary preorder satisfyiig) that is, for any ifinitary preorder<,

R(a, U)
a<Uyu

N

if

a<rU
foranya € X andUCX, then also—a ¥
<

foranya € X andU CX.

To find a soltion, that is, to construct an infinitary relatioar satisfying the
requirements 1-3, it is useful to translate them in terms of the closure opéhator
corresponding tar. It is dso convenient to introduce the notation

RU = {a: R(a, U)}

for anyU C X. Then< satisfiesR can be rewritten adlRUC CU for anyU, whereC is the
closure operator corresponding<4oAnd thenit is also immediate that the following are
equivalent:

a. < satisfiesR, that is« is closed undeR-ax, that isRUC CU for anyU.
R, V) VU Vccu

b. «isclosed undeR-trax; ————, thatis————— for anyU, V.
< a<U RVC CU y

(The nameR-trax comes from “tranivity on axioms”; see 4].) This suggests the
following definition (which is the natural generalization of the notionCofdeal of [6];
cf. also Definition 5.2.1 off] and the lastsction here):

Definition 2.5. For any setX and infinitary relationR on X, a sibsetZ C X is called
R-saturated if
R@,U) uUcz
ae”Z
holds for everya € X andUcCX.

that is vez
’ RUcz
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The notion ofR-saturated subset allows us to ré@iconditions 1-3 easily into a simple
equivalent formulation in terms of the closure operatar

1'. Cris aclosure operator;
2'. for everyUCX, CrU is R-saturated;
3'. for any closure operatdat,

if CU is R-saturated for any € X, then alsacCrU C CU for anyU CX.

These conditions can be further simplified. In fact, suppose that theReseturated subset
containingU exigs, and isdenoted by’ rU. That is, &sume that

1". UCCRrU,
VCCrU
" RVC(CRrU’
3. ifUCZandVCZ = RVCZ, thenCRUCZ

hold for anyU € X. ThenCR satisfies 1'-3'. In factCr is a closure operator because it sat-
isfies ¢x), that isUC CrW iff CRU C CrW. In fact, one direction holds by 3” applied to
Z = CrW: sinceU C CrRW by assumption and C CRW = RVC CrW by 27, then by 3”
alsoCrU CCrW. Theother diection of é=x) holds by 1”. Moreover, 2’ and 3’ follow im-
mediately from 2” and 3" respectively. Now the pointis that, by the minimality property 3’,
if a olution of 1'-3’ exists, it is unique. So it is enough to fiGgU which satisfies 1"-3%
Since the intersection oR-saturated subsets is clearly-saturated, the common
solution is to defin€ rU simply as the intersection of dR-saturated subsets containidg

CrU = ﬂ{Z :U CZ and Z is R-satuated.

So, accepting the definition Gk, any set of gearators and any infinitary relatidR on X
present a sup-lattice, which 8aiCr).

The trouble with the above definition @lr is that it is not justified in type theory
since it inwlves quantifications over subsets in an essential way; more specifically, the
quantificaion over Z corresponding to intersection is not bounded, in the sense that it is
notindexed by a set, and moreover it is ndst&h the quantification on subsets needed to
expressR-saturation, which is also unbounded.

The solution is to requird itself to be given more explicitly, that is through families
of subsets indexed by sets. Followirg],[we say thaan infinitary rdation R on X has
an axiomsefif there exist a family of setd (a) set (a € X) and a family of subsets
C@@,i)SX (a e X,i € | (a)) such ttat, for anya € X and anyU C X,

R(a, U) ifandonlyif (3i € 1(a))(C(a,i)CU).

It is immediate that, whelR has an axiomselt, C, thenZ is R-saturated if and only if
foranya e X, Ji € 1 (@)(C(a,i)SZ) — a € Z. SoCR, or gquivaletly <R, is defined

5 0One can also formally prove that 1'-3" imply 1"-3"; eveave the etails, except for the remark that a
constructive proof of 3” from 3’ is possible because for any choice oResatuated subseZ <X, CZU =
fae X:UCZ — ae Z}is aclosure operator witd2Z = Z andCZU R-satuated for anyJ.
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inductively by the rules:

reflexivity: aeV
y: a<rU
iel(@ C(@,i U
infinity: 1@ @1) <R :
a<rU

This is an inductive definition of a kind vith is acceptable in type theory (ses)[
This means that proofs by induction on the generatioagoére justified:

if UCZand(Vi € 1 (@)(C(a,i)SZ > ac Z)
thena <r U impliesa € Z.

Note that this is exactly a rewriting of 3", wheR has an axiomset, C. It is easy to
prove by induction (seed]) that the relationar satisfies transitivityandhence that it is
an infinitary preorder. As a conclusion, the constructioBafCR) is possible within type
theory wheneveR has an axiomset.

We have devised exposition in such a way that from now on we do not need any
explicit reference to inductive definitions. What we will need is thatexigs, however
it is conceived ad defined. So from now on whenever we mentigg we mean that
it is the least infinitary preorder satisfying, and that it exists. It is understood that if
a predicative treatment is wished, one must understand also that the refatggiven
through an axiomset.

In the fdlowing theorem we extenéroposition 1.30 sets equipped with a relation,
and, moreover, we extend to sup-lattices a result proved for framé}s jm b8, Proposition
2.11. Given a paif X, R), and a aup-attice £, we say tlat a mapf : X — L preseves R
if andonly if R(a, U) implies f (a) < \/py f(b). We reed the following lemma:

Lemma 2.6. Let (X, R) be a set equipped with an infinitary relation R agdany sup-
lattice. Thenamap f X — L preseves R if and only if it preserves the preordey.

Proof. The “if” direction is obvious, sinceir containsR. Let f : X — L be a map which
preserveR. The infintary preordera < U = f(a) < \/ fU, defined as iMheorem 2.3
is exactly the maximum relation which is preserved byThen«s is a preoder which
includesR by hypothesis, and hence it includes aigg which isthe minimum infinitary
preorderincludingr. O

It is now gute easy to prove th&aiCR) is the sup-lattice freely generated oY, R):

Theorem 2.7. For any pair (X, R), where X is a seand R an infinitaryrelation on X,

the map i: X — SaiCr) defined by x— Cr{x} is universal among maps gX — L,
whereL is any sup-lattice and g is any map preserving R. That is, for any such g there is
a unique morphisng : Sa{Cr) — Lsuchhatg=§oi.

Proof. Notice that the canonical embedding: X — Sai{Cr) preservesR; in fact,
R(a, U) impliesa<rU, thatisCr{a} € CrRU, andCrU = \/,,.y Cr{b}, by Theorem 2.1
Since he diagram must be commutative, it mustdi€r{a}) = g(a) for anya € X. This
definesj on the image oX underCr. Such an imge generates the whoBaiCR), that is
CrU = \/pey Crib} for anyU, by Theorem 2.1so we put§(CrU) = \/py 9(b), and
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g is the onlypossible way to define a morphism making the diagram commute. So it only
remains to check thaj is indeed a rarphism. To see thaj is well defined that s that

CrU = CRrV impliesgCrU = GCRV, it is emough to see tha preserves inequalities: if
CrRUCCRV thenva € U(a <r V) and hence, sincg preservesk and so alsar by the
lemma, we havg(a) < \/,.y 9(b) for everya € U, thatis\/,., 9(@) < Vpey 9(b).

We can finally see tha§ preserves joins. Since we ha¥g ., CrUi = Cr(U;¢ Ui)

by 2.1, one has the equalities:g(\/;; CrUi) = G(Cr(U;c) Ui)) = \/bEUUi gb) =

Viet Wpey, 9(0)) = Vig G(CrUi). O

Note thatProposition 1.3an be obtained fromiheorem 2.71n fact, anyg : X — L
suchthatg(X) generates trivially preserves the empty set of axioms (thaRis= ¢) and
hence it extends in a unique way$a{Cy). Now SalCy) is justP(X) since the infinitary
preorder generated l#yis membership.

In Theorem 2.7§ is onto, in the strong sense that it has a right inverse defined by putting
§~1(a) = Cr{x € X : g(x) < a}, ifandonly if g(X), the image oK alongg, gererates.
Similarly, § is one—one if and only i&r coincides with the infinitary preordey defined in
Theorem 2.3In fact, by definitiong is one—one ifffCrU = GCrV impliesCrRU = CRrV.

This amounts to saying thaia) < \/..y 9(c) impliesa <r V for everya € U, that is
a<gU impliesa<rU. The converse implication holds becagsgreserves, sog is one—
one wherkr = <g. SoTheorem 2.Zould be obtained as a consequencélogorem 2.7

Let us say that a sup-latticé is predicatively presentable if there is a sétand an
infinitary relation R with an axiomset such thaf is isomophic to Sat{Cr). A natural
question now is: which sup-lattices are predicatively presentable? Bai{Cr) — L is
the isomorphisnthen dearly £ is based orX via the functiong = hoi : x > h(Cr{X});
in fact, this is the meaning dafheorem 2.{iii). So we certainly must restrict to set-based
sup-lattices. The we can defineqg as inTheorem 2.3andobtain thatl is isomophic to
SalCq). Theproof of such a theorem is all right, but it is related to the knowledge of the
ordering=< of L. In ather words, the difficulty for a predicativist is only that the definition
of «g relies on the order of, which in general is not given predicatively. This means
that we must add a condition which is satisfiedSBt{Cr) only whenR has an axiomset.

By a result of P. Aczel (see Theorem 3.2 df), when R has an axiomseygr also has

an axiomset. Recalling thatr is just the ordering oBatCr), we sy that a sup-lattice

L which is set-based oK via the functiong : X — L is alsoset-pregnted(see P]) if

<g has an axiomset. Then every predicatively presented sup-lattice is clearly set-based and
set-presnted. The converse also holds, sirgecoincides with the infinitary preorder it
generates, and s8aiCy) is predicatively presented. We thus have:

Theorem 2.8. A sup-attice £ can be presented predicatively if and only if it is set-based
and set-presented.

Impredicatively,Theorem 2.7eads to the equivalence between the categBgnd the
category of sup-lattices, here denotedshy

Proposition 2.9. The catgoriesIP andSL are equivalent.

Proof. By Theorem 2..we have a maat: Ob(IP) — Ob(SL) which maps any into
Sa((C); by Theorem 2.3and Corollary 2.4 Sathas a right inversdransl : Ob(SL) —
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Ob(IP), whereTransk£) = (L, <ig, ) is the infinitary preordr defined on the carridr of
the sup-latticeC putting a <ig, U = a < \/y b (cf. Theorem 2.3 We recall also that
the isomorphisnC — SaiTransk£)) of Corollay 2.4is obtained by mappinge L into
IlLh={xelL:x=<lI}.

Now one can defineSat on morphisms as follows: for any : ¢ — (' one can
first define a mag : X — Sa{(’) preserving«c, putting g(@) = C'(f(a)) for every
a € X. Then, by 2.7, onecan extend it to a sup-lattice morphigm Sa{C) — Sat(’).
So, put Sa(f) = §. By definition of § one hasSa( f)(CU) = \/ ., 9(b), that is
C'(Upeu C'(g(b))) in Sai(C’). Easycalculations show that this last is equalda fU),
soone hasSaf f)(CU) = C/'(fU).

To defineTranslon morphisms, put simplyranskm) = m, for any to objectsz, £’
and any morphisrm : £ — £'8; Transkm) is then extended to subsetslofs usual. We
see thaBaiTranslm)) = m: in fact, we havesa(Transkm)(JL (1)) = \V{ L m()) =
m(l) for everyl e L. Converselylet us conside€ = Transk£), C' = Transk£') and f :
C — C’ any morphism. ThefranskSat f))(CU) = C'(f (U)) = fU) = f(CU),
foreveryU C L; soTranskSat f)) = f as arrows of P. [

3. Pretopologiesand the presentation of quantales
3.1. Precovers and stable closure operators

We now etend our method to richer algebraic infinitary structures, namely quantales
(cf. [11,13)). The idea is to present quantales as “sup-lattices on monoids7{¢cp[7;
see also]]). In this way we can extend the results proved in the previous section, and then
apply such extension to frames, as we shall see in the next section. So we reach a good
modularity in the treatment of infinitary structures.

Even if most of our results on quantales could easily generalize to the non-
commutative case, we will dealith commutative quantales as ancestors of frames, that
are commutative. We recall here the basic definitions.

Definition 3.1. A (commutaive, unital) quardle is a structur@ = (Q, -, 1, \/) such that:

() (Q, V) is a sup-lattice,
(@i (Q, -, 1) isa mmmutative monoid,
(iii) infinite distributivity of - with respect td\/ holds, thatisp - \/i¢, ai = Vi (P- d),
foreverype Qandg € Q( < I).

Given twoquantalesQ and Q’, a mapf : Q — Q' is aquantale morphism if it is
a ap-lattice morphism and a monoid morphism, it&€\/,., ai) = ¢, f(qi) for every
family g e QG € 1), f(p-q) = f(p)- f(q) foreveryp,qge Qandf (1) = 1.

The following normal form lemma is the key which allows us to extend notions and

results concerning sup-lattices to queas. To simplify exposition, we say that is a
subset ofQ even ifactually itis X = g(X’) for some seX’ and some mag : X' — Q.

6o bepedantic,Transkm) () is the singletor{m(l)}.
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Lemma 3.2. For every quantaleQ and every subset X of its carrier Q, any element q of
the sub-quantaleQ(X) generated by X aabe expresed by g= \/ U for somesubset
UCS,where S is the monoid generated by X in Q.

Proof. By induction on the construction gf If q € X, the chim is trivial sinceq = \/{q}.

If g =1,then 1= \/{1} and{1}<S. If g = p-r, by the inductive hypothesis = \/ U and

r =\/V hold for someJ, VcSand therg = (\/U) - \/(V) =\{u-v:ueU,v eV}
by distributivity. If g = \/,, pi for somep; € S(i € ), by the inductive hypothesis for
everyi e | there exsts someéJ; CSsuchthatp; = \/ U; holds; hencg = \/,., (\/ Ui) =
VUie U O

Fromnow on, letS stand for a monoids, -, 1) whereSis a set. By the above lemma,
if two subsetdJ andV denote two elementyandq’ of a quantale2(X), then he subset
U-V ={a-b:aecU,be V}denotes the produgt- q’. Hence the subsets of a monoid
can be seen as the infinitary terms for a quantale.

The powerP(S) is itself a quantale, with the above operatldn V and with unit{1};
in fact, P(S) is a sup-lattice and distributivity holds, because by definitibnUi¢| Vi =
Uiel (U - V;). We always write U - b for U - {b}. In paticular,U - 1 = U is obvious.

By Proposition 1.3we obtain thatP(S) is actually the free quantale:

Proposition 3.3. For any monoid S, the pow@t(S) is the quantale freely generated by S.
Hence 6ér any set X P(CMon(X)) is the quantale freely generated by X, if CM@X) is
the mommutative monoid freely generated by X.

Proof. For anyg : S — Q preserving the monoid operation & the sup-lattice
morphismg, definedinl.3by §(U) = \/,,cy 9(b), preserves the pointwise defined monoid
operation ofP(S). In fact we havej(U - V) = V,cy.v 9X) = Vpeeuy 90 -0 =
Viceu.v 90) - 9(©) = VVpey 90) - Veey 9(€) = GU - gV. Note hat didributivity is
necessary ithe proof. As for the last statement, ahy X — Q extends in a unique way
toa monoid morphismf : CMon(X) — Q and then in a unique way ®(CMon(X)). O

So we have seen thatdhegguation “quantales= sup-lattices on monoids” is true for
the quantales of terms, in which distribwity holds by definition of product and join.
But, in general, generating a sup-lattice from a given monoid under some condRions
does not produce a quantale. So, in order to describe quantales by means of generators
and relations, the elements $fare enough as generators, but we need further conditions
on infinitary preorders (or closure operators, congruence relations, et&)torcapture
the characterizing propertyf @uantales, that is distributivity. We first need a technical
lemma:

Lemma3.4. Let (Q, -, 1,\/) be a struture with (Q, -, 1) a commutative monoid and
(Q, ) a wupHattice. Then the distributivity propert§\/;, ¢i) - b = \/j, (¢ - b) holds
(so that Q is a quantale) if and only if the rule:
as<\VigCi
a-b<\Vi (@b

isvalid in Q.
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Proof. If distributivity holds, then froma < \/,, ¢, i.e.av\/i. ¢ = V¢ G, itfollows
thata-b Vv \/i (G -b) = /i (G -b), thatisa-b < \/;. (¢ - b) as wished.

Conversely, if he above rule is valid, frory/; ., ¢ < \/j, G it follows that(\/;. G) -
b <V, (ci - b). To provethe other inequality, first note that, since= \/{c}, the rule

a<c
a-b<c-b

is obtained as a particular case of the rule assumed. Sodrom\/,, ¢; it follows that
¢ -b< (V) bforalli € I;hercealso\/;., (¢ -b) < (\/;¢ G)-b. O

By the above lemma, to extend the presentation of sup-lattices to the case of quantales,
closure under the rule of localization:
a<Uyu
L —
a-b<U-b
must be required, in addition to the rules of infinitary preorder. So the basic notion for
studying quantales via infinitary terms and relations will be the following:

Definition 3.5. A precover on a monoids, -, 1), is an infnitary preoreér satisfying
localization, that is a relatioa satisfying
aeUl a<U U<V a<Uyu
S T — Ly ——.
(SR a<xUu (M a<xV L a-b<U-b

A pretopology is a quadruplé = (S, -, 1, <x), where(S, -, 1) is a monoid, called the
base ofF, and<r is a preover onS.

An alternative definition of precovers (as ihq) requires closure under the apparently
stronger rule of stability

a<U baV

a-b<U.V

but actually an infinitary preordet is closed under localizatiofL) iff it is dosed under
stability (St). In fact, assuma <U andb < V. Then by(L) a- b <U - b and similarly
u-b<u-V foranyu e U; sinceu-V <U -V, by trandivity it follows thatu - b<U -V
foranyu e U, thatisU -b<U - V. Soa-b<U -V by trangtivity. Conversely, assuming
(St) closure underL) is obtained as a special case, when a premibsqib. Someimes
the versions wittsubsets on the left, that is

(St

Lle) — 92V
U-Z<«V-Z

and
Z<U WaV
(Se) Z-W<U -V

are more convenient. It is easy to see ttat) is equivalenttal), and(Sts) is equivalent
to (St), so also the guivalence of L) with (Stg) follows.

The bijection between infinitg preorders and closure operators can be specialized to
precovers once we obtain the condition onscle operators corresponding to stability.
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Simply by rewriting the stability ok~ in terms of the corresponding closure operatgr
one obtains
aeFU beFV
a-be FU - V)’

that is
FU-FVCFWU -V)

for anyU, VCS; we say tlat a closure operatgF on a monoidS is stable if it satisfies
such a condition. Note that stability is also equivalenfid - b € (U - b), whichis just

a rewriting of localization. The restriction of the bijection Bfoposition 1.13mmediately
gives:

Proposition 3.6. There is a bijection between precovers and stable closure operators.

In the following, we often need an equivalent formulation of stability/oin terms of
equality, namely:

F(U-V)=F(FU-FV).

To see thesquivalence, first note tha& (U - V)C F(FU - FV) holds for every closure
operator; in factU - VCFU - FV by reflexivity (and stability of membership, to be
pedantic) and the (U - V)C F(FU - FV) by monotonicity. So the equalitf (U - V) =
F(FU - FV) is equivalent toF (FU - FV)C F(U - V), tha is gability of 7, becauseF
is a closure operator.

Congruences on quantalegabtained by adding a condition on congruences on sup-
lattices:

Definition 3.7. For any monoidsS, a reldion 6 is called a quantale congruence 8iif it is

a wongruence on the quantal®(S), -, {1}, |)), that is if6 is a sup-lattice congruence on
S(as inDefinition 1.5 which moreover respects the monoid operation, i.e. is closed under
the rule

uev
Uu.-zev-.-z’
Recalling the bijection which associates a congrueagewith an infinitary preorder

<r (seeProposition 1.Y, it is now possible to see that quantale congruences are exactly
sup-lattice congruences which are induced by a precover:

V)

Proposition 3.8. For any monoid S, the bijection between infinitary preorders on S and
sup-lattice congruences on S restricts to gebtion between precovers and quantale
congruences on S.

Proof. If = satisfies(v), the hduced preordetir satisfies localization: i) <~ V, that
isUUV =xV,thenlUUV)-Z=U-ZUV.-Z =V - -Zwhichmeand) -Z<rV - Z.

Conversely, ifar satisfies localization, then frotd = V, i.e.U <x V andV < U,
by (L) itfollowsthatU - Z<«rV -ZandV -Z<rU - -Z,iieU-Z=xV.-Z. O
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3.2. Presentation of quantales

We gply the results already obtained for sup-lattices to quantales, and see that the
characterizing properties of quantales are satisfied. The analogtleeofem 2.1in the
case of quantalesis:

Theorem 3.9. For any pretopology* = (S, -, 1, <), the stucture(SatF), - =, F (1), \/),
where- ¢ is ddined by

FU .- g FV = F(FU - FV),
isaquantale.

Proof. After Theorem 2.1it is enough to see thatr is a monoid operation and that it
satisfies distributivity with respect to joins. Since by stabily - 7V = F(U - V), the
operation r is obviously commutative, and#1 isits unit becausé&U - r F1 = F(U-1) =
FU; moreover for anyU, V, WCSwe haveFU - (FV - FW) = FU - F(V - W)
= FU-(V-W)) and similarly(FU - s FV)- rW = F((U -V)-W), so that asocativity of
- follows by stability from associativity ofin S. Findly, sinceU - ;. Vi = Ui, (U-V)
for anyU andV;, distributivity follows by repeated use of stabilitzU -~ (\/;c; FVi)
= FU -z FlUig FVD) = FU -7 FUie) Vi) = FU - Ui V) = FUia U - W)
:-F(Uiel FU 'Vi)):\/iel FU-FFVi. O

As one can expecBroposition 2.becomes:

Proposition 3.10. Let =x be a quantale congruence on S. Then the quotient quantale
P(S)/ =F,where[U]-[V]=[U - V], 1= [1], is isanomphic to SatF).

Proof. The isomorphism oProposition 2.3s, in this casea quantale isomorphism since
olUl-FolVl=FU £ FV = FU -V)=¢[U -V]andp[l] = F1. O

We also have the analogue ©theorem 2.3that is apresentation of quantales by means
of pretopologies:

Theorem 3.11. For any monoid S, any quanta{e and any monoid morphism:gS — Q
suwchthat the monoid ¢S) generates Q, there is a pretopolog$, <) such hat SatF) is
isonorphicto Q.

Proof. By Theorem 2.3<«g is an infinitary preorder ang : Sa(¥) — Q gives a sup-
lattice isomorphism. Actuallyyg is a precover, since, #<g U, thatisg(a) < \/,cy 9(X),
then for anyb we haveg(a-b) = g(a)-g(b) < \/,y 9(X)-g(b) and hence by distributivity
a-b<gU -b. Moreover,§ is aquantale isomorphism; in fadi(FU - FV) = §F (U - V)
= Vzeu.v 9@ = Vyeu 900 - Vyey 9(y) = GFU - §FV. O

The functorTrans| already defined for sup-lattices in the impredicative case, can be
defined for quantales as well, leading to the translation of any quantale into a pretopology.

It follows that every quantal@ is impredicatively isomorphic t&a(F), where F =
Transl Q).

Corollary 3.12. Every quantale is isomophic to SafTransQ)).
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3.3. Quantales presented by axioms

It is now a reldively simple task to extend the presentation of sup-lattices by axioms
to obtain analogous results for quantales. In fact, we will see that the precover generated
by an infiritary relationR is the same as the infinitary preler generated by the closure
of Runder localization. Thus, in a certain sense, the equation “quartaap-lattices on
monoids” is satisfied not only by the generators, but also by the relations.

Let R be any infinitary relation on a monof If it exists, the least precover satisfying
R can be characterized by saying that the corresponding opéfateatisfies:

1. Fris a stable closure operator;
2. FrsatisfiesR;
3. Fristhe least stable closure operator satisfyitig

We now wish b find a ®lution to such requirements by reducing to the case of closure
operators (or sup-ttices) satisfying a relation, treated $ection 2.1 The new task is to
obtain thatF r satisfies localization, that is

FrU -bC Fr(U - b).

One idea is to force localization on the relation, that is consfRtas the least extension
of R which satisfies

R|OCU . bg R|OC(U . b),

then geerate goc as known fronSection 2.1and findly prove that actually goc = Fr.
We now pove thatthis is indeed so.

We first makesure that it is posbie to constructRI°¢ as required. Allowing a
quantification on susbets, one defifR% by

R, V)= 3a,be SAUCS)(c=a-b& V =U -b& R(, U)).

By a little logic, it is easy to see tha®!°® satisfies localization, and obviously it is the
least such. The sameéda is expressed in type theory by saying R4 is definedby the
introduction rule:

R(a,U) beS

Rloc@a-b,U -b)

In both cases, it is clear th&UC RI°°U for anyU, becauseS contains 1.

So the next step is to construCkec, that is tie least closure opator sdisfying Rloc,
Knowing that the relation is of the foriRI°¢, we can improve a bit on the characterization
given in Section 2.1First note that, by minimality oR/°¢, any stableclosure operatof
satisfyingR must aso satisfyRI°®; so FrU 2 CricU for anyU. Now it is not difficult to
show that fo any closire operato€, the @mnditions

a. R°°U C CU for anyU, that isCU is R°®-saturated for any,
V.-bccCU

L= f
RV bccu or anyU
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are equivalent. In fact, assume a. and suppdgsebc CU; then RVC RI°°V gives
RV -bC R¢V . hbc RO%(V . b) CC(V - b) CCU. Conversely, suppose e R°°V: then
there existd suchthatV = U -bandc € RU - b, soU -b = VCCV by b. gives
RU-bCCV, andhencec € CV as wished.

Thus the characterization 6f0cU as the leasR'°-saturated subset containibignow
brings us to characterizing the operafigyioc as follows. We writeF r for Cgioc, since we
will show immediately that it satisfies 1-3.

1. UC FRrU.
o V. .bc FrU
"RV.-bCFrU’

3. FRrU isthe least subset satisfying 1' and 2, that isJiE P andV-b P = RV-bCP,
thenFrUCP.

We nowcan see that suchrU is a olution to 1-3. The proof of transitivity faF g, that
isVC FrU = FrRVCFRU, is exatly as inSection 2.1So to prove 1 we need to show
localizationFrU - b C Fr(U - b). To this end, we must exploit minimality expressed by
3. We putP = {c:c-b e FrWU - b)}. ThenUCP becausdJ - bC Fr(U - b) by
1'.Also,V -cCP = RV.cCP because/ - cCP means thatV - c) - bC Fr(U - b);
hence by associativity - (c-b)CFRr(U -b), and soRV - (c- b)CFRr(U - b) by 2’, and so
finally RV - cCP. So 3’ givesFrU CP, which means exactly thatrU - bC Fr(U - b)
as wished. Clearly Fr satisfiesR by 2’, and so 2 holds. Finally, assume ttftis any
precover satifying R. Then RUC FU gives RU - bC FU - bC F(U - b), which is
immediately seen to be equivalent to b. above, alias 2. So by minimality, 3’, we have
FrUCFU foranyU, and so 3$ proved.

In this way we have proved that a solutiof 1-3 is given by the operatdrr associating
with anyU the leastR'°°-saturated subset containiblg As in Section 2.1such anFr is
easily defined impredicatively by putting

FrU = ﬂ{Z :UCZ andZ is R°°-saturated.

Predicatively, one must again assume tRdtas an axiomsdt, C; then<g is constructed
by an inductive definition with rules:

. aeU
reflexivity:
a<rU
joc-infinity:  L<!®  S@D:-borl

a-b«arU

7 This last step of the proof of localization ¢f g is more perspicuous if one defines
U->rV={a:a -UCFV}
from which it is immediate that
Z-UCFViff ZCU - £ V.
ThenP = {b} —» £ U -b, so @sumingV -cS{b} - U -bgivesV-c-bSF(U -b); hertceRV-c-bSF(U -b)

by 2', and henc&RV-c S{b} — £ U -b. This ems to show that the proof is essentially the same as that showing
that any complete lattice with a good implicaties sdisfies infinite distributivity.
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which dearly correspond to 1’ and 2’ above. It is then not difficult to prove, by induction
on the generation ofR, that it sdisfies localization, anddnce that it is a precover.
Itis now easy to prove th&ai(FR) is the quantale freely generated (8, R):

Theorem 3.13. For any pair (S, R), where S is a monoid and R an infinitary relation on
it, let Fr be the least pretopology on S satisfying R. Then the magi— SatFR)
defined by x»> FRr{x} is universal among maps gS — Q, whereQ is any quantale and
g is any monoid morphism preserving R. In other words(5a) is the quantale freely
generated byS, R).

In particular, if X is any set of generators and R any relation on it, then every map
f : X — Q preserving R factors through the quantale §g), where FR, is the
pretopology given by the precover generated by R on the free monoid on X.

Proof. It is immediate that any monoid morphisgn: S — Q preservingR preserves
also its closure under localizatid®l°®. Then, by Theorem 2.7g extends uniquely to the
sup-lattice morphisng : SaCroc — Q, WhereCric is the infinitary preordered set
given by the infinitary preorder generated B{f° on S. As sen above(gioc coincides
with the pretopologyFr. To conclude, it is enough to check that the mapand §
preserve the monoid operations 8fand of SatF R, resgectively. We havei(a - b) =
Fr@-b) = Fr(@) -r; Fr(b) =i(a) - i(b) by stability of the precovekigoc; and
§(FRU -7 FRV) = GFRU - V) = Vyey ey 9U - 1) = Viey 9W) - V,pey 90) =
§FRrU - §FRV, by didributivity of quantales.

In particular, ifCMon(X) is the monoid freely generated by, then any magf : X —
Q preservingR factors uniguely through a monoid morphidh: CMonX — Q and then
also through a quantale morphisih: SatFr) — Q as seen above.[]

In particular,Proposition 3.3s a consequence of the above theorem, putRng ¢, as
is the case of sup-lattices. Presentation of quant@lesdrem 3.1)lis another consequence
of the above theorem, as we have aé®ady discussed for sup-lattices.

As for a predicative presentation, let us say t@ais predicatively presentable if and
only if it is isomorphic toSai{FRr), whereR has an axiomset. One can see thaR Has an
axiomset, therR° has an axiomset (sed][ p. 25). So, sinc&alFr) = SalCruoc), as we
have seen above, a quantgles predicatively presentableaid only if it is predicatively
presentable as a sup-lattice (Sdeorem 2.8

We mnsider nowPretop, the aibcategory ofl P, whose objects are pretopologies.
A morphism f : F — F’ is a mophism of Pretop if it is @ morphism of IP (see
Definition 1.1) preserving the monoid operation, i.e. satisfying the clausds = 1
andf(a)- f(b) = f(a-b)foreverya, binthe base ofF. We see tht the equivalence
given in 2.9 restricts to an equivalence betweBretop and the category of quantales,
Quant:

Theorem 3.14. The catgoriesPretop andQuant are equivalent.

Proof. The functorSat : IP — SL, when resticted to Pretop, maps theobjects of
Pretop into the objects oQuant, by Theorem 3.9the functorTranslis its right inverse by
Corollay 3.12 Moreover, itis easy to see that, f, G are pretopologiesantl: 7 — G is
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a morphism of pretopologies, thedai f) : Sai(F) — SatG) is a mophism of quantales.
Hence he equivalence iRroposition 2.3estricts toPretop andQuant. [

4. Presentation of frames
4.1. Formal topologies and the presentation of frames

In the following we shall see that the results obtained for quantales are enough for
presenting frames as a particular case. The usual definition of frame (se@,g93P) is
the following:

Definition 4.1. A frameH = (H, A,\/) is a complete lattice in which distributivity of
meets with respedb infinitary joins holds, i.ea A \/i, bi = /i (@ A by), for every
acH,bjeHdel).

After the previous results, it is more convenient for our purposes to adopt the following
equivalent characterization:

Proposition 4.2. Frames can be characterized as those quanté®@s, 1, \/) in which
a-b=anbforalla, b € Q, wheren is the meet with respect to the ordeiinduced byy/.

By this chaacterization, given two frame¥ and+’, a mapf : H — H’is aframe
morphism if and only if it is a quantale morphism.

Sinceframes are particular quantales, to obtain a presentation of frames the first step
is to describehose precover rations which generate frames. Ldt= (S, -, 1,<4) be a
pretopology presenting a franté, i.e. H = Sat A). Then, by Proposition 4.2above, we
must havedU -4 AV = AU A AV for everyU, VCS. Actually, as in any sup-lattice
of the formSaiC), the neet operation irBai.A) is just intersectionsince he ordering is
inclusion, to show thadU A AV = AU N AV, it is enough to see thadU N AV is
A-saturated, a fact which is well known to ddlandeasy to see) for any closure operator.
So, by stability, the condition lich characterizes pretopol@gigiving rise to frames is

AU -V) = AU N AV,

that is AU - V)CAU N AV and AU N AVC AU - V). We give belowsome usful
equivalents of such inclusions, and for both we find an equivalent condition involving only
the elementsfahe base.

Proposition 4.3. For any infinitary preordek 4, the fdlowing are equivalent:

i AU -V)CTAUN AV forevery U, VCS,

(i) U-V<ayqUforeveryU,VCS,
(i) a-bwyaforeveryabesS,

a<q U
a-baqU’
Proof. SinceU -V =V -U, (i) is equivalentted(U - V)< AU for anyU, VCS, andhence
equivalence of (i) with (ii) follows fromA4(U - V)< AU iff U - V <4 U. (iii) is a special
case of (ii), obtained by taking = {a} andV = {b}. Assuming (iii), closure undet-L)

(iv) <y isclosed underthe rule (-L):
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is immediate by transitivity. Finally, to show that (iv) implies (ii), assume U - V; then
X = a-bforsomea € U andb € V and henca <4 U. By (-L) it follows thata-b< 4 U,
thatisx <4 U, soU -V <4 U as wished. O

Proposition 4.4. For any pretopologyd = (S, -, 1, <4), the fdlowing are equivalent:
i) AUNAVC AWMU -V) forevery UVCS,
a<xqU a<yuV

a<qU-V
Z<aqU Z<ayuV

ZaaU-v '

(i) <4 isclosed underthe rule R):

(i) <4 isclosed underthe rulé Rg):

(iv) U<4qU-U forevery UCS,
(v) a<yga-a foreveryae S.

Proof. (i) is equivalent to (ii), since (ii) is just a rewriting of (i) in terms &f 4; (ii) implies
(iii), since (iii) is just the variant with subsets on the left of (ii); (iii) implies (iv), taking
Z=U =V, and (v) implies (v) takingd = {a}. Finally, (v) implies (ii) because stability
applied to the premises of (ii) gives- a <4 U - V, from which we get the conclusion
a<4 U -V by (v) and trasitivity. [

So we adopt the following definition, thattlse most convenient in order to obtain the
presentation of frames as a corollary of thegangation of quantales. We recall that, since
(-L) and (-R) together imply stability, as one can easily see, covers can be equivalently
defined as infinitary preorders closed undén and(-R).8

Definition 4.5. A precver< satisfyinga-b <aanda <a-ais called a cover. A pretopology
A= (S -, 1,<4), whereqy is a ve, is called a formal topology.

By Theorem 3.9nd the discussion so far, we have:
Proposition 4.6. For any formal topology4, Sat.A) is a frame.

Conversely, byCorollay 3.12 everyframe is impredicatively isomorphic ®at.A), for
someA, sinceframes are particular quantales and morphisms of frames are morphisms of
gquantales.

Further, if we onsider the full subcategory dPretop whose objects are formal
topologies, called=Top, and thecategory of framesFrm, we obtain the following
immediate consequenceDfieorem 3.14

Theorem 4.7. The catgoriesFtop andFrm are equivalent.
4.2. Frames presented by axioms

The formal cover generated with conditions, or axioms, given by an infinitary relation
R is just the precover which is generated by the relafobtained fromR by adding all

8This is the course taken inlf]. Note that the full definition of formal topology includes an additional
predicateP os which isnecessary for expressing constructively gnédrmalopen is inhabited, but is not relevant
to present frames.
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pairs(a- b,a) and(a, a - a) for anya, b. In fact, in such a casd¢ precover generated
satisfies conditiond.3(iii) and 4.4(v). So we considr the relatiorP, defined by equiring
only thatP(a - b,a) and P(a, a - a) hold for anya, b, and for any infiitary relationR
we onsiderR U P, that is he relation obtained by joinin® with P. ThenFryp is the
least pretopology satisfyinB U P, and then it is the least formal topology satisfyify
Let us term itAr and consider the franfea{ Ar). We seg¢hatTheorem 3.13or quantales
specializes to frames as follows:

Theorem 4.8. For any pair (S, R), where S is a monoid and R an infinitary relation on
it, let Ar be the least formal topology on S satisfying R. Then the map + Sat ARr)
defined by x— AR{x} is universal among maps g S — H, where’H is any fame
and g is any monoid morphism preserving R. In other termg,4&gtis the frame freely
generated byS, R).

Proof. Any monoid morphismg preservesP, since the inequalitieg(a - b) = g(a) A
g(b) < g(a) andg(a) < g(a) Ag(a) = g(a- a) hold in a frame. SoTheorem 3.1%an be
appliedtoRU P. O

Finally, as for sup-latticeand quantales, by takinB to be empty in the statement of
Theorem 4.8one finds out what the free frame is: it is the fraBe(Fp). This, inturn,
coincides withSaiC pioc) whereP'°¢ is the closure oP under localization.

Can sucHrame be characterized more directly? Yes; indeed, we now see that the cover
generated by the empty set of axioms, that is the infinitary preorder genera®f byan
be described in terms of a natural preorder on the Bafer everya, b € S, we put

a<b iff forsomene Nandde S, a"=b-d.

It is easy to see thak is a preorder (sometimes callehe natural preorder on the
monoidS). In fact,a < a becaus@! = a- 1 andifa < bandb < ¢, thena” = b -d and
b™ = c.efor somem, n, d, e, from which(@")™ = (b-d)™ =c.e-d™, thatisaP =c- f
for somep, f,i.e.a<c.

We now see tht the infinitary preorder generated BYfC is the least infinitary preorder
extending the natural preorder on the base. We first need the following general result:

Lemma4.9. Let B be a binary relation betweeneshents of a set X. Then the infinitary
preorder generated by B on X satisfies:

() x<p y ifand only if x <g y, where<g is the preorder genated by B on X, that is
the reflexive and transitive closure of B.

(i) Ce(U) = Upey Ca{b}, and hence ap U if and only if there is be U sud that
a<gh.

Proof. (i) Since<p is reflexive and transitives <g y impliesx <g y. Conversel, assume
X <g Y, thatisx € Cpy. It is immediate tha g y = {z : z <g y} is B-saturated, and
henceCg(y) ClB Y. Sox €l Y, thatisx <g y as wished.

(ii) For every closure operatat we haveC(U) 2 [, C{b}. Here the equality holds
because J,,., Cs{b} is B-saturated: ilB(x, y) andy € (. Cs{b}, theny e Cg{b} for
someb e U, andhencex e Cg{b}< (Jpcy Cr{b}, becaus€p (b} is B-saturated. [
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Note that, for every binary relatioB on X, x <g Yy if and only if there exist
di,...dn € X suchthatd; = x, d, = y andB(d;, di+1) forevery 1< i < n. Applying
this to P'°¢, which is a linary relation, we see th&'°¢ generates the natural preorder on
S. In fact, thepreorder<pic generated byP'°¢ is contained in the natural preorder, since
for everya, b one getsaa - b < a by takingn = 1 andd = b in the definition of< above,
and for evenya, cone geta- ¢ < a-a-c by takingn = 2 andd = ¢ and by commutativity
of S. Converse}, assumex < vy, that isx" = y - d for some natural numberandd € S.
Then from P'°°(y - d, y) we haveP!°°(x", y), and moreoer clearly P'°°(x', x'*+1) for
1<i <n,sox <pic Y.

Then, by the aboveemma 4.9one hasa € CpicU if andonly if there isb € U such
thata < bin the natural preorder d&. So,by Theorem 4.8we have:

Theorem 4.10. The free frame generated by a monoid is the frame of downward closed
subsets with respect todimatural preorder.

4.3. Formal covers on semilattices and their connection with coverages

The &ove Theorem 4.10s usually stated when the base is a semilattice, let us say a
A-semilattice(T, A, 1). In such ecase, the natural preorderigoides with the partial order
induced by the infimum. In fact, sincea" = a for anyn € N and anya € T, we have
a < bifandonlyif a = b A c for somec, if andonlyifa=bA (bAc) =bAa. Then
Theorem 4.1@ives also the well-known (seé]):

Theorem 4.11. The free frame generated by a semilattice is the frame of its downward
closed subsets.

Precovers defined on a semilattice satisfy the conditioRsmfosition 4.4nd hence, in
such acase, any of the conditions Bfoposition 4.Zharacterize covers among precovers.

Proposition 4.12. Let (T, A, 1) bea smilattice. A relationa 4 defined on T is a formal
cover if and only if it is closed under the ruléSR), (T), and (AL).

The cover generated by an infinitary relatiBona milattice(T, A, 1) is the precover
generated byr joined with all pairs(a A b, a) (sincea A a = a, pairs(a A a, a) are not
necessary), that is with the semilattice ordering. Hence, by the resuftsdtion 3.3and
since obvously < is closed under localization, the cover generatedrlg the same thing
as the infinitary preorder generated BY° joined with <.

Then the frame freely generated Bywith conditions given byR is formed by all
subsets of T which are R°¢-saturated and downward closed (that is,&llC T s.t.
Rl¢@, V)& VCcU = aecUandaeU =| acU, where|, a= {b: b < a)}).

The well-knownC-ideals of a coverag€ (cf. [6], p. 58) are exactly th€-saturated
and downward closed subsets. We recalt theoverage is just an infinitary relatidd on
a £milatticeT which satisfies:

() if C(a,U)thenUC | a,
C@U) bx<a

(i) meet-stability: Ch.UAD)
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and it is easy to see that (sde]) in the presence of (i), meet-stability is equivalent to

C@,U)
C@nab,Uuab)’

namely localization. So a frame can be presented-&deals of a coverag€ if and only
if it can be presented as here,Rsaturated subsets of some relatien

A direct link between coverages and covers can be obtained by noting that coverages,
apart from condition (i), are just relations, tha axioms, closed under localization. So to
be able to compare them with our covers one must first close the axioms under deductions.
Because of the presence of (i), this is not as natural as with covers. However, one can do it,
and say that a coveragedbsedif it satisfies the following additional conditions:

aeU

C@uUna’
C@,U) (Vb e U)C(b, W A b)

C@a Waa

As the next proposition shows in detail, thereespondence between covers and closed
coverages is indeed a bijection:

(iii) reflexivity:

(iv) transtivity:

Proposition 4.13. Let T be any semilattice. For any closed coverage C on T, we put
a<®U=C@,UAa).

Then<C is a cover on T. Conversely, for any coveon T, we put
C'@,U)=a<U&UC| a.

Then C' is a doseal coverage. This gives a bijective correspondence between covers and
closed coverages.

Proof. Let C be a closed coverage. TheSR for <€ is exactly reflexivity forC.
To prove closire of <C under(T), assumea <€ U and (Vb € U)(b <C W), that is
C@,U Ana) and(vb € U)C(b, W A b) respectively. From the latter by localization we
obtain(vbAraeU Aa)C(bAara, WAbAa). PuttingU’ =U A aonehasC(a,U’) and
Vb’ € U C(b', WAD), so findly transitivity of C allows us to conclude th&(a, W Aa),
thatisa<CW. (L) and(AL) for <€ are both obtained by localization 6f in fact, ifa<C U,
thatisC(a, U Aa), one get(anb, U Aaab), thatisaab<CU; butalsoarb<CU Ab
because of the equality AaA b= (U Ab)A (@nb).

Vice vers, let< be a over relation onT. Condtion (i) is forced by the definition.
Localization follows from localization of: if C<(a, U), froma<U one getaAb<U A b,
while fromU C| aone hadJ Ab C| (aAb),soC%@a A b,U A b) holds. Reflexivity
for C< follows by (SR and becaus®) A a C| a. As for trangtivity, if C<(a,U) and
(Vb e U)C*(b, W A b),thena<U andU «W A U, sofromW AU <«W one geta<W
by (T), andfrom thisa<W A aby (L), soC“(a, W A a) follows.

The correspondence is bijective: @(a, U), thenC(a, U A a), that isa <€ U, so
c<° (a, U); vice versaC<" (a,U) meanC(a,U A a) andU C| a, thatisU Aa = U,
soC(a,U). Ifa<U, thena<U Ana,so(@a<UAa)&U rac] a)=C%a,UAa)
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= a <C" U; vice vesafrom a <C" U, by the samequivalences one gets< U A a, but
Uana<U,soa<U. O

The above results show that the two methodgfesenting frames are “quantitatively”
equivalent. There are mainly two reasons why (id]] changing Johrtsne’s definitions
has been chosen. The first reason is that in a predicative treatment it is necessary to generate
covers inductively, and thus one must keep both notions, that of axioms given by a relation
R and that 6 cover « (which is closed under deductions). That is why one is free to
consider arbitrary relationR, with no conditions like (i) or (ii) to be satisfied. The second
reason is that the presence of condition (i), and hence the interpretat@@of) ) as an
equality? makes it difficult to express weaker infinitary relations, corresponding to sup-
lattices or quatales. In fact, as the proof ¢froposition 4.1%hows,(AL) is implicit in
the definition of coverageaL), for <C is obtained by localization of, and conersely
(AL) of <« is not used to prove thaf< is a mverage. So itd not possible to express
a “pre-coverage” relation, analogous to precovers. Also note that, in the presence of (i),
localization is necessary to be able to express transitivity (see the proof above of the fact
that<C is closed under transitivity).

So an advantage of our infinitary relationghat they can express several conditions as
independent, which would be linked in the approach of coverages, and that is why they can
produce a uniform presentation of slgttices, quantales and frames.
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