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Abstract

We introduce the notion of infinitary preorder and use it to obtain a predicative presentation of
sup-lattices by generators and relations. The method is uniform in that it extends in a modular way to
obtain a presentation of quantales, as “sup-lattices on monoids”, by using the notion of pretopology.

Our presentation is then applied to frames, the link with Johnstone’s presentation of frames is
spelled out, and his theorem on freely generated frames becomes a special case of our results on
quantales.

The main motivation of this paper is to contribute to the development of formal topology. That
is why all our definitions and proofs can be expressed within an intuitionistic and predicative
foundation, like constructive type theory.
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0. Introduction

The notion of pretopology, as in [15,16], is a natural generalization of that of formal
topology, introduced in [14]. Formal topology is by now also the name of the field whose
aim is to develop topology within an intuitionistic and predicative foundation, such as
Martin-Löf’s type theory [10] (henceforth, simply type theory). To pursue this aim, one
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has to reformulate definitions and theorems of more traditional topology so that they can
be expressed in type theory. This often leads also to a sharpening of the mathematical
content. This is what happened, in our opinion,with the topic of presentation of frames.

In this paper, which is the outcome ofan engagement we undertook long ago [3],
we show how the notion of formal cover, and its generalizations, allow one to obtain
a uniform presentation of sup-lattices, quantales and frames. Our treatment is centered
on the notion of infinitary preorder, that is a relation between elements and subsets of
a set X which satisfies a suitable kind of reflexivity and transitivity. The biunivocal
correspondence between infinitary preorders, closure operators onP(X) (the power ofX)
and congruences onP(X) allows one to construct in a simple way the sup-lattice which
is freely presented by a set ofgenerators and by some relations, or conditions on them.
Following the same pattern, such results are extended to the case of quantales simply by
adding suitable conditions to deal with the monoidal operation; in particular, the notion of
precover (and hence of pretopology) is obtained by supplying infinitary preorders with an
extra stability condition which corresponds to distributivity. Thus the slogan that quantales
are just sup-lattices over monoids [7] gets further evidence. Finally, frames are treated as
particular quantales, simply by adding conditions which force the monoid operation to
coincide with the meet, and the precover to become a formal cover. In particular, we obtain
a characterization of the frame freely generated by a monoid, which gives Johnstone’s
well-knownframe ofC-ideals over a site as a special case [6]. Though our formal covers
correspond to Johnstone’s coverages, in the precise way shown in the last section here, it
is the choice of expressing conditions by inequalities (as with formal covers) rather than
equalities (as with coverages) which allows one to find a suitably weak form for conditions
and hence which makes our modular construction possible.

Our approach is uniform also in the sense that all our results hold independently of the
foundational theory, in the following sense. On one hand, unless otherwise stated, all our
definitions and proofs are expressible in type theory; this is the main motivation for this
paper, whose origin, and hence also notation, is to be found in formal topology. On the
other hand, all arguments are compatible with a classical foundation like ZFC and with an
intuitionistic but impredicative foundation like topos theory; in particular, we never use in
this paper any argument which is valid in type theory, like the choice principle, but which
would destroy constructivity of topos theory.

Developing mathematics in type theory means that the logic used is intuitionistic, like in
topos theory, but it means also that the set theory is predicative. In particular, the collection
of all subsets of a set is not a set, and thus quantification over all subsets of a set is not
allowed. More precisely, a universal or existential quantification over subsets does not
produce a proposition, and so it cannot be used toconstruct an object, like a set or subset,
while of course free parameters on subsets get a meaning by means of substitutions, and
so they can appear in a definition, like that of infinitary preorder.

One advantage of such a discipline lies in the fact that type theory is itself a functional
programming language (see [12]), and so all the mathematics developed within type theory
is ipso facto expressible and checkable in a computer. We hasten to note that this paper
remains a piece of mathematics, written in a language which is not too far from that usual
in mathematics. We can leave the details and problems of an actual formalization in type
theory, since this is automatic, as long as we use the methods developed in [17] (we will
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use definitions of [17] even without mention, beginning with that of subset, since they are
equivalent to the traditional ones for a non-predicativist reader).1 This is, in our opinion,
the best way to develop a deep conceptual interaction between mathematics and computing
science.

Wehave put some effort into simplifying proofs and the structure of exposition, and this
often allows us to give detailed proofs; besides being a matter of taste, this has the purpose
of showing in practice that all our arguments fully preserve constructivity in the strongest
sense (an impredicative treatment would bring us to a more abstract, and sometimes shorter,
exposition).

1. Infinitary terms and relations

We aregoing to describe structures equipped with an infinitary operation by means of
generators and relations. In the case of finitary operations, one simply defines inductively
the set of all terms, or polynomials, over a given set of generatorsX. This is not possible
in the case of an infinitary operation (see [6] and [18]), and hence one has to look for
a different approach. We here describe our method on the simplest infinitary structure to
which it applies, namely that of the sup-lattice. The usual definition is (cf. [7]):

Definition 1.1. A sup-latticeL = (L,≤,
∨

) is a partially ordered set(L,≤) provided
with an operation of infinitary join

∨
, that is anoperation which applies to every subset of

L, andgives the supremum with respect to the order≤.
A morphism between the sup-latticesL = (L,≤,

∨
) andL′ = (L ′,≤,

∨
) is a map

f : L → L ′ suchthat f (
∨

i∈I xi ) = ∨
i∈I f (xi ) for every familyxi ∈ L (i ∈ I ).

The above definition, taken literally, is definitely too restrictive if the notion of set is
interpreted as in type theory, where for instanceP(X) is never a set (see [9]). Therefore one
has to give up the fact thatL is a set, and requireL to be a collection (or category; see [10]).
The notion of subset (of which one requires thesupremum to exist) is then replaced by that
of set-indexed family of elementsxi ∈ L (i ∈ I ). Then we reach the following definition
(see [17], section 2.8):

Definition 1.1 (Predicative). A sup-latticeL is a collectionL with a partial order≤ such
that for any family of elements ofL indexed by a setI , that isxi ∈ L (i ∈ I ), the supremum∨

i∈I xi exists in L.

We must admit that this definition is not very satisfactory, since it contains reference to
all subsets and to all elements of a collection (this is implicit in the definition of supremum).
Thus by no means can it be used to construct sup-lattices, and rather it should be seen as
a requirement to be fulfilled.But it is a fact that itcanbe fulfilled, that is, that there are
examples of sup-lattices which are constructed fully within type theory. The main example
is of course the powerP(X) of a setX: theordering is inclusion⊆ between two subsets
and, for any set-indexed family of subsetsUi ⊆X (i ∈ I ), the supremum is simply the union⋃

i∈I Ui (which is defined through an elementary existential quantification onI ; see [17]).

1 A reader acquainted with the notation of [17] should however be aware that in this paper we do not distinguish
typographically between an element of a seta ∈ Sand an element of a subset, writtena ε U .
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So we keep the definition, and think of it as a way to abstract some of the properties of the
examples, and the examples will be obtained fully constructively.

A convenient characterization of the join of any familyxi ∈ L (i ∈ I ) of elements ofL
is that, for anyy ∈ L,

∨
i∈I

xi ≤ y iff for every i ∈ I , xi ≤ y.

As a consequence one obtains the usual link between≤ and
∨

, that isx ≤ y iff x ∨ y = y,
wherex ∨ y ≡ ∨{x, y}. This is why every morphism of sup-lattices (seeDefinition 1.1)
preserves≤.

Forour purposes, the following formulation of sup-lattices is more convenient:

Theorem 1.2. Sup-lattices can be characterized as pairs(L,
∨

) where
∨

is an infinitary
operation on Lsatisfying

(i)
∨{x} = x for every x∈ L;

(ii)
∨

i∈I (
∨

Ui ) = ∨
(
⋃

i∈I Ui ) for every family(Ui )i∈I of subsets of L.2

Proof. It is immediate, by using the above characterization of joins, that a sup-latticeL =
(L,≤,

∨
) satisfies conditions (i) and (ii).

Conversely, given a pair (L,
∨

) satisfying (i) and (ii), one definesx ≤ y putting∨{x, y} = y. Conditions (i) and (ii) are enough to prove that≤ is a partial order (or
equivalently, that the binary operationx ∨ y ≡ ∨{x, y} is associative, commutative and
idempotent). We now see that

∨
U does indeed give the join of an arbitrary subsetU w.r.t.

the order≤ so defined. In fact, for everya ∈ U , we havea ≤ ∨
U because

∨{a,
∨

U} is
equal to

∨{∨{a},∨U} by condition (i), and hence also to
∨

({a} ∪ U) by condition (ii),
but {a} ∪ U = U sincea ∈ U . Now letb suchthata ≤ b, i.e.

∨{a, b} = ∨{b} for every
a ∈ U . Then

∨
a∈U (

∨{a, b}) = ∨
a∈U (

∨{b}). By condition (ii), the right member is equal
to

∨
(
⋃

a∈U {b}) which is the same as
∨{b}, which isequal tob by (i). By condition (ii), the

left member is equal to
∨

(
⋃

a∈U {a, b}) and hence to
∨

(U ∪ {b}), that is
∨

(
∨

U,
∨{b}),

again by condition (ii). So,
∨

(
∨

U,
∨{b}) = b, that is

∨
U ≤ b. �

After the above characterization,it is easy to prove the following:

Proposition 1.3. For any set X, the powerP(X) is the free sup-lattice generated by X.

Proof. P(X) is a sup-lattice, as we have seen above. Now, for any sup-latticeL and for any
g : X → L, defineg̃ : P(X) → L by putting g̃(U) ≡ ∨

b∈U g(b), for everyU ⊆ X. The
mapg̃ extendsg, in the sense thatg = g̃ ◦ i wherei : x �→ {x} is the embedding ofX into
P(X). In fact g̃({x}) = g(x) for everyx ∈ X by (i) of Theorem 1.2. Moreover,g̃ is a sup-
lattice morphism, sincẽg(

⋃
i∈I Ui ) ≡ ∨

x∈⋃
i∈I Ui

g(x) = ∨
i∈I

∨
x∈Ui

g(x) = ∨
i∈I g̃Ui .

Then g̃ is the unique sup-lattice morphism extendingg to the subsets ofX. In fact, for

2 Wethank Ales Pultr for observing that this proposition amounts to saying that sup-lattices are the (Eilenberg–
Moore)P-algebras whereP is the monad(P, µ, η) with P the powerset functorSet→ Set, µx = (U �→ ∪U) :
PP(X) → P(X), andηx = (x �→ {x}) : X → P(X). We donot spell out a similar translation into categorical
language for other propositions in this paper.
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everyU ⊆ X, we haveU = ⋃
b∈U {b} and then a morphismf extending g satisfies

f (U) = ∨
b∈U f ({b}) = ∨

b∈U g(b) ≡ g̃(U). �

We now see that the sup-latticeP(X) can be considered as the sup-lattice of terms, that
is, arbitrary subsets of a given setX of generators take the place, in the case of infinitary
join, of the usual (finitary) terms. Since the arguments we give to this end have only the
purpose of intuitively motivating our definitions, we will not be rigorous with expressibility
in type theory, up to the end of this section. We recall that the sup-latticeL is generated
by a setX if L is the closure ofX under the infinitary operation

∨
. By condition (ii) of

Theorem 1.2above,X generatesL iff every element ofL is the join
∨

U for some subset
U of X. In other words,the first level(on subsets ofX) of closure under joins is enough
to obtain every possible further join. Thus, every element of any sup-lattice generated by
X can be labelled by a subsetU of X, so that subsets ofX can be considered theinfinitary
termson the setX of generators.

The next question arising is: when are two terms identifiable? The usual extensional
equality between subsets, defined byU = V iff ∀a ∈ X(a ∈ U ↔ a ∈ V), is now
a sort ofsyntactical equality between the two termsU and V , sinceit tells us that the
two terms have the same components (generators). On the other hand, two subsets may
contain different generators and denote the same element of a given sup-latticeL. We need
to conceive a new equality, identifying the terms denoting the same object: in this sense,
subsets get a new extension, that is theobject they denote as terms. So we put

U θL W ≡
(∨

U =
∨

W
)

where U, W are subsets of a setX which generatesL. We now prove thatθL is a
congruenceon the sup-lattice of termsP(X), asone could expect, generalizing from the
finitary case.

We say thatθ is a congruence on a sup-latticeL = (L,
∨

) if it is an equivalence relation
on L which moreover respects the infinitary operation

∨
, that is such thatxi θ yi for all

i ∈ I implies
∨

i∈I xi θ
∨

i∈I yi . Thenotion of quotient sup-latticeL/θ is then defined,
as usual, by considering the quotientL/θ with join defined by

∨
i∈I [xi ]θ ≡ [∨i∈I xi ]θ .

Clearly,θL is an equivalence relation; we see that it respects joins. In fact,Ui θL Wi for
all i ∈ I means that

∨
Ui = ∨

Wi for all i ∈ I ; hence
∨

i∈I (
∨

Ui ) = ∨
i∈I (

∨
Wi )

from which, by condition (ii) of Theorem 1.2,
∨

(
⋃

i∈I Ui ) = ∨
(
⋃

i∈I Wi ), that is⋃
i∈I Ui θL

⋃
i∈I Wi .

Congruences on the sup-lattice of terms permit us to obtain a presentation of sup-
lattices; in fact, it is easy to prove that:

Proposition 1.4. For anysup-latticeL, if L is generated by a set X, thenL is isomorphic
toP(X)/θL, whereθL is the congruence on the sup-latticeP(X) defined by:

for any U, W ⊆ X,UθLW iff
∨

U =
∨

W.

Proof. The mapπ from thequotient sup-latticeP(X)/θL to L, defined byπ : [U ]θL �→∨
U , is an isomorphism: in fact,π is onto becauseL is generated byX, andπ is one–one

because by definitionπ[U ] = π[V] iff [U ] = [V ]. Finally, π preserves joins because
π(

∨
i∈I [Ui ]) ≡ π[⋃i∈I Ui ] ≡ ∨

(
⋃

i∈I Ui ) ≡ ∨
i∈I (

∨
Ui ) ≡ ∨

i∈I π[Ui ]. �
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A congruence on the sup-lattice of terms is aninfinitary relation; in general, we describe
as infinitary any relation on a set in which at least one of the arguments is a subset.
So Proposition 1.4above says that any sup-lattice can be impredicatively presented by
(infinitary) generators and (infinitary) relations. Unfortunately, the notion of congruence
is not very convenient to work with and moreover it is not well suited for an inductive
generation, which is necessary in a predicative approach. So we need a different kind of
infinitary relations. We dedicate the next three paragraphs to solving this problem; we will
then come back to the presentation of sup-lattices, using the most elementary andhandy
notion we have been ableto find, namely that of infinitary preorder.

1.1. Infinitary preorders

We first give a full definition of the notion of congruence on the sup-lattice of terms
P(X):

Definition 1.5. A congruenceθ on a setX is a relation between two subsets ofX which is
closed under:

(i)
U = V

UθV
(reflexivity);

(ii)
UθV VθW

UθW
(transitivity);

(iii)
UθV

VθU
(symmetry);

(iv)
Ui θVi for all i ∈ I⋃

i∈I Ui θ
⋃

i∈I Vi
(congruence property).

Note that reflexivity amounts to the requirement that the extensional equality between
subsets, that is the syntactical equality between terms, is preserved.

The first step towards a more convenient form is to replace equalities by inequalities,
that is to induce a relation≺ between subsets, where the intended meaning ofU ≺ W is
that

∨
U ≤ ∨

W, rather than
∨

U = ∨
W. Theresulting definition is:

Definition 1.6. For any setX, a relation ≺ between subsets ofX is called a congruence
preorder3 if for all U, V, W,Ui , Wi ⊆ X it satisfies:

(SRG)
U⊆V

U ≺ V
(global strong reflexivity)

(TG)
U ≺ V V ≺ W

U ≺ W
(global transitivity)

(U)
Ui ≺ V for all i ∈ I⋃

i∈I Ui ≺ V
(union is respected).

Congruences and congruence preorders are linked in the same way as= and≤ are linked,
through

∨
, in anylattice:

3 We borrow this name from [V].



36 G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30–61

Proposition 1.7. Let X beany set. Ifθ is any congruence on X, the relation≺θ defined by

U ≺θ W ≡ (U ∪ W)θW

is a congruence preorder. Vice versa, if≺ is a congruence preorder on X, then the relation
θ≺ defined by

Uθ≺W ≡ (U ≺ W) & (W ≺ U)

is a congruence on X. The two mappings so defined give a bijection between congruences
and congruence preorders.

Proof. Let θ be a congruence. Then(SRG) holds for≺θ , sinceU⊆V means thatU ∪ V =
V , from which by reflexivity(U ∪V )θV , that isU ≺θ V . Theproof of(TG) is a bit longer:
assumeU ≺θ V andV ≺θ W, that is(U ∪ V)θV and(V ∪ W)θW. From(U ∪ V)θV
one derives(U ∪ V ∪ W)θ(V ∪ W), becauseWθW andθ preserves joins, which, together
with (V ∪ W)θW, gives(U ∪ V ∪ W)θW by transitivity. Again, from (V ∪ W)θW one
derives(U ∪ V) ∪ Wθ(U ∪ W), and sofinally (U ∪ W)θW, i.e. U ≺θ W. To prove
(U), assumeUi ≺θ V , for all i ∈ I , that is (Ui ∪ V)θV . Taking Vi = V in (iv) of
Definition 1.5, one obtains

⋃
i∈I (Ui ∪V)θV ; since

⋃
i∈I (Ui ∪V ) = (

⋃
i∈I Ui )∪V , one has⋃

i∈I (Ui ∪V)θ(
⋃

i∈I Ui )∪V , by reflexivity, andhence by transitivity((
⋃

i∈I Ui )∪V)θV ,
i.e.

⋃
i∈I Ui ≺θ V .

Let ≺ be a congruence preorder. From(SRG) reflexivity of θ≺ follows immediately:
U = V means thatU⊆V & V⊆U , andhence, by(SRG), U ≺ V & V ≺ U , that isUθ≺V .
From (TG) it is straightforward to obtain transitivity ofθ≺. Symmetry ofθ≺ is obvious.
To see thatθ≺ preserves joins, assumeUi θ≺Vi for all i ∈ I ; thenUi ≺ Vi , andhence
Ui ≺ ⋃

i∈I Vi , for all i ∈ I , from which
⋃

i∈I Ui ≺ ⋃
i∈I Vi by (U), and similarly⋃

i∈I Vi ≺ ⋃
i∈I Ui , so that

⋃
i∈I Ui θ≺

⋃
i∈I Vi .

Finally, θ≺θ is equal toθ , becauseUθ≺θ V ≡ U ≺θ V & V ≺θ U ≡ (U ∪ V)θV& (U ∪
V)θU iff UθV , and≺θ≺ is equal to≺ becauseU ≺θ≺ V ≡ (U ∪ V)θ≺V ≡ (U ∪ V) ≺
V& V ≺ (U ∪ V) iff U ≺ V . �

Our aim is now to reduce≺ to a relation� between elements and subsets. Recalling that
a = ∨{a}, the characterizing property of joins, given after1.1, can be rewritten in terms
of ≺ as

(S) (∀a ∈ U)({a} ≺ V) iff U ≺ V.

Condition(S) can equivalently replace condition(U)4:

Proposition 1.8. A relation ≺ between two subsets of a set X is a congruence preorder iff
it satisfies(SR), (TG) and(S) above.

4 Condition(S) is actually stronger than condition(U), in thesense that, if (S) is assumed,(SRG) is equivalent
to the apparently weaker condition of global reflexivity:

(RG) U ≺ U

while (SRG) cannot be replaced by(RG) in the original definition of congruence preorder. We leave the details
of the proof.
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Proof. It is enough to show that, assuming(SRG) and(TG), condition (S) is equivalent to
(U). So assume(U). From(∀a ∈ U)({a} ≺ U), sinceU = ⋃

a∈U {a} by (U) it follows
thatU ≺ V ; vice versa, ifU ≺ V , thenfrom a ∈ U , i.e. {a}⊆U , it follows that{a} ≺ U
by (SRG) and hence{a} ≺ V by (TG), and this means that(∀a ∈ U)({a} ≺ V).

Conversely, assume(S). If Ui ≺ V for everyi ∈ I , then by the right-to-left direction of
(S) it follows that(∀a ∈ Ui )({a} ≺ V) for everyi ∈ I , that is(∀a ∈ ⋃

i∈I Ui )({a} ≺ V),
and then the conclusion

⋃
i∈I Ui ≺ V follows by the left-to-right direction of(S). �

Now, the point is that we can read(S) as a characterization of congruence preorders in
terms of a subrelation using only singletons at the left. So, for any congruence preorder≺,
we define a relation� between elements and subsets by putting

a � U ≡ {a} ≺ U.

We now see that enough conditions on� can be found to get a notion equivalent to that of
congruence preorder. From(SRG) it follows that strong reflexivity:

(SR)
a ∈ U

a � U

must be valid, becausea ∈ U gives{a}⊆U , andhence{a} ≺ U . Transitivity for � takes
the form

(SR)
a � U ∀b ∈ U(b � V)

a � V
.

In fact, ∀b ∈ U(b � V), i.e. ∀b ∈ U({b} ≺ V), is equivalent by(S) to U ≺ V , which
together witha � U , i.e. {a} ≺ U , gives bytransitivity of ≺ the conclusion{a} ≺ V , i.e.
a � V .

We havethus reached the basic definition of our approach:

Definition 1.9. For any setX, a relation � between elements and subsets ofX is called an
infinitary preorder if it satisfies(SR) and(T) above.

A pair (X, �) is called an infinitary preordered set if� is an infinitary preorder on the
setX.

The notions of infinitary preorder and congruence preorder are actually interchangeable:

Proposition 1.10. Every congruence preorder≺ gives rise to an infinitary preorder�≺
defined by

a �≺ U ≡ {a} ≺ U.

Viceversa, every infinitary preorder� gives rise to a congruence preorder≺� defined by

U ≺� V ≡ ∀a ∈ U(a � V).

Such a correspondence gives a bijection between congruence preorders and infinitary
preorders.

Proof. The remarks precedingDefinition 1.9 show that�≺ is an infinitary preorder
whenever≺ is a congruence preorder.
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Conversely, assume� is an infinitary preorder. To prove(SRG) for ≺�, assumeU ⊆ V ;
then for anya ∈ U we havea ∈ V ; hencea � V by (SR) and therefore∀a ∈ U(a � V),
i.e.U ≺� V . (TG) is easily seen to hold by definition. To prove(U), assumeUi ≺� V for
everyi ∈ I ; then for anya ∈ ⋃

i∈I Ui we havea ∈ Ui for somei ∈ I , andhencea � V ,
which means that∀a ∈ ⋃

i∈I Ui (a � V) holds, as wished.
Finally, sincea �≺� U ≡ {a} ≺� U ≡ ∀b ∈ {a}(b� U), we havea �≺� U iff a � U and,

sinceU ≺�≺ V ≡ ∀b ∈ U(b �≺ V) ≡ ∀b ∈ U({b} ≺ V), we haveU ≺�≺ V iff U ≺ V .
Hence the correspondence is bijective.�

By such proposition, any congruence preorder isobtained in a uniqueway by extending
an infinitary preorder to subsets on the left, the intended meaning ofU � V being
∀a ∈ U(a � V). So wecan from now on leave out the notion of congruence preorder.

Finally, we define thecategory of infinitary preorderedsets. We need the notion of mor-
phism between two objectsC = (X, �C) andC′ = (X′, �C ′) of the category, that is we need
maps which can transform the generators and preserve the relations. It is enough to put:

Definition 1.11. A morphism between the infinitary preordered setsC = (X, �C) and
C′ = (X′, �C ′) is a mapf : X → P(X′) suchthat

a �C U ⇒ f (a) �C′ f (U)

for everya ∈ X,U⊆X, wherewe put f (U) ≡ ⋃
b∈U f (b).

It is easy to see that, givenf : (X, �C) → (X′, �C′) andg : (X′, �C ′) → (X′′, �C ′′), their
composition, defined byg ◦ f (a) ≡ g( f (a)), that is

⋃
b∈ f (a) g(b) by the above definition,

is a morphism. Moreover, it is immediate that the morphism which maps everya ∈ X
into the singleton{a} ∈ P(X) is the identity with respect to such composition. Hence the
infinitary preordered setsform a category, calledIP.

1.2. Infinitary preorders and closure operators

We show thatthe notion of infinitary preorder isequivalent also to a well known and
general notion, namely that of closure operator. This will be used in the next section
in the presentation of sup-lattices. To see the equivalence, the first step is to note that
infinitary relations on a setX correspond to operators onX. An operatorO on X is a map
O : P(X) → P(X); givena pairO,O′ : P(X) → P(X) we say thatO is finer thanO′
whenO(U) ⊆ O′(U) for everyU ⊆ S. This defines a partial order between operators on
X, as iseasy to see.

Proposition 1.12. For any set X, there is a bijection between infinitary relations R(a,U)

and operatorsO on X, which is given by the maps R�→ OR andO �→ RO defined by
putting

OR(U) ≡ {a ∈ X : R(a,U)}
and

RO(a,U) ≡ a ∈ O(U).

Moreover, such a bijection preserves order.
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Proof. Straightforward, becauseROR(a,U) ≡ a ∈ OR(U) ≡ R(a,U) andORO (U) ≡
{a : RO(a,U)} ≡ {a : a ∈ O(U)} = O(U). Moreover, we haveR ⊆ R′ if andonly if, for
everyU ⊆ X, a ∈ O(U) impliesa ∈ O′(U) for everya ∈ X, that isO(U) ⊆ O′(U) for
everyU ⊆ X. �

The link between relations and operators is very convenient and will often be used; in
the following, we will jump from one notation to theother simply by saying that “R(a,U)”
is rewritten as “a ∈ OR(U)” andconversely. As we have just seen, the rewriting technique
preserves the order. This simple fact will play an important role in the following.

We now see that infinitary preorders correspond to closure operators. Recall that a
closure operatorC : P(X) → P(X) is any operator satisfying the conditionsU⊆ CU
(reflexivity),U⊆V ⇒ CU⊆ C V (monotonicity) andCCU⊆ CU (idempotency), for every
U, V⊆X. Note that from the last and the first property the equalityCCU = CU follows.
Now we can see that:

Proposition 1.13. The correspondence given inProposition1.12specializes to a bijection
between infinitary preorders and closure operators on a set X.

Proof. If � is a relation andC is the associated operator, as in1.12, one can see that the
conditions for� to be an infinitary preorder are rewritten into properties required forC to
be a closure operator.Rule(SR) is rewritten as

a ∈ U

a ∈ CU
,

that is∀x(x ∈ U ⇒ x ∈ CU), which is a definition ofU⊆ CU . So� satisfies(SR) iff C
satisfies reflexivity. Rule(T) is rewritten as

a ∈ CU ∀b ∈ U(b ∈ CV)

a ∈ CV

which means that from the right premiss, which by definition isU⊆CV , one can conclude
thata ∈ CU ⇒ a ∈ CV for arbitrarya, that is

U⊆ CV

CU⊆ CV
. (∗)

Now (∗) is easily seen to be equivalent to monotonicity together with idempotency for
C. In fact, if (∗) holds, then fromU⊆V , andhenceU⊆ CV by reflexivity, it follows that
CU⊆ CV , so thatC is monotonic; idempotency follows by (∗) from CU⊆CU . Conversely,
from the premissU⊆ CV one hasCU⊆ CCV if C is monotonic, and henceCU⊆ CV , if C
is idempotent, so that (∗) holds. �

An additional characterization says thatC : P(X) → P(X) is a closure operator if and
only if it satisfies the equivalence

U⊆ CV iff CU⊆ CV. (∗∗)

In fact, one direction of (∗∗) is (∗) above, whilethe other is equivalent to reflexivity.
Putting togetherPropositions 1.7, 1.10 and 1.13, we can conclude that congruences,

infinitary preorders andclosure operators are all just different formulations of the same
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mathematical content. That is, summing up, for any setX there is a bijection among the
following:

(i) congruences on the sup-lattice(P(X),
⋃

);

(ii) infinitary preorders onX;

(iii) closure operators onX.

In spite of such a biunivocal correspondence, it is quite convenient to keep both the
notation (and intuition) of a closure operatorC and that of the corresponding infinitary
preorder, which we denote by�C (sometimes also without the subscript). In fact, the former
often allows shorter statements and proofs, while the latter is necessary from the predicative
point of view, since it allows us to see that� can be generated inductively by some axioms
and rules, as we will see in the next section.

Moreover, it is useful to grasp the correspondences just summarized without the
intermediate step of congruence preorders. GivenC, we have just seen thata �C U is a
rewriting for a ∈ CU , andhenceU �C V , that is arewriting for U ⊆ CV , is equivalent to
the inclusionCU ⊆ CV , by (∗∗). So, in particular, if we denote by=C (instead ofθ�C !)
the congruence associated with�C , then the congruence relationU =C V , which is by
definition U �C V& V �C U , is equivalent to the equalityCU = CV . Summing up, we have
the equivalences

U �C V iff CU ⊆ CV

U =C V iff CU = CV.

So =C is the finest equivalence turning the preorder relation�C between subsets into a
partial order. In fact, if∼ is an equivalence relation between subsets such thatU�CV& V�C
U impliesU ∼ V , we have by definition thatU =C V impliesU ∼ V . Note in addition
that the equivalence (∗∗) can be rewritten also as

∀a(a ∈ U → a �C V) iff ∀a(a �C U → a �C V). (∗∗∗)

So, given a relation� between elements and subsets of a setX and puttingU � V ≡
∀a ∈ U(a � V), the relation � is an infinitary preorder whenU � V holds if and only if
∀a(a�U → a�V). We stress finally thatU =C V can be written as∀a(a�CU ↔ a�C V),
which has the form of an extensional equality, depending on the relation�C ratherthan
membership. This is the extension of subsets considered as terms for the elements of a
sup-lattice, and in this sense the congruence=C is the equality of the infinitary preordered
set(X, �C).

In this setting, it is significant to observe that, for any morphismf : C → C ′ of the
categoryIP, U =C V implies f (U) =C′ f (V). This means that a morphism respects
the equalities of the infinitary preordered setsC andC ′. Accordingly, we characterize a
morphism with respect to congruences, so that we consider two morphismsf, f ′ : C → C′
equal when we havef (U) =C′ f ′(U) in C′, for everyU ⊆ X. This amounts again to
considering the extension of the terms as the extension of the object that they denote, quite
independently from how the term is given. The two maps are then identified when “their
graphs are equal”, quite independently from how the maps themselves are given.



G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30–61 41

2. Presentation of sup-lattices

A presentation of sup-lattices by means of infinitary preordered sets is now easily
obtained, by way of the link with closure operators. The fixed points of the closure operator
C, i.e. thesubsetsU of X suchthat U = CU , are usually called closed; here we prefer
to call themC-saturated, or simply saturated, subsets. Accordingly,the collection of
C-saturated subsets ofX is denoted bySat(C). SinceU is saturated iffU = CV for some
V ∈ X, it follows that

Sat(C) = {CU : U⊆X}.
SinceU�CV is equivalent toCU⊆ CV , theorder�C between subsets becomes the inclusion
between saturated subsets. Moreover, the characterization (∗∗) allows us to prove quite
easily the well known result that the partially ordered collectionSat(C) is indeed a sup-
lattice.

Theorem 2.1. For any closure operatorC on the set X, the following hold:

(i) (Sat(C),
∨

), with join given by
∨

i∈I CUi ≡ C(
⋃

i∈I CUi ), is asup-lattice.
(ii) The closure operatorC, considered as a mapping from the sup-lattice(P(X),

⋃
) onto

the sup-lattice(Sat(C),
∨

), is asup-lattice morphism, i.e. the equalityC(
⋃

i∈I Ui ) =
C(

⋃
i∈I CUi ) holds.

(iii) The family{C{b} : b ∈ S} generatesSat(C), that is CU = ∨
b∈U C{b} for every

U⊆X.

Proof. (i) By its definition,
∨

i∈I C(Ui ) satisfies the characterization of supremum in
Sat(C) given afterDefinition 1.1. In fact, ifCUi , i ∈ I , is a family in Sat(C), thenCUi ⊆ CV
for all i ∈ I if and only if

⋃
i∈I CUi ⊆ CV , which holds if and only ifC(

⋃
i∈I CUi )⊆ CV

by (∗∗).
(ii) C(

⋃
i∈I Ui ) is an upper bound of the familyCUi , i ∈ I , becauseUi ⊆⋃

i∈I Ui

implies CUi ⊆ C(
⋃

i∈I Ui ) for every i ∈ I , and henceC(
⋃

i∈I CUi )⊆ C(
⋃

i∈I Ui ); the
opposite inclusion is immediate.

(iii) One hasU = ⋃
b∈U {b}, and hence, by (ii) and the definition of join,CU =∨

b∈U C{b}. �

The sup-latticeSat(C) described by means of the closure operatorC is isomorphic to
the sup-lattice obtained as a quotient ofP(X) over the congruence=C corresponding toC.
This confirms the equivalence of the two approaches.

Proposition 2.2. The sup-latticeP(X)/=C is isomorphic to Sat(C).

Proof. We denote by[U ] the equivalence class of the subsetU modulo=C . The map
φ : [U ] �→ CU is the isomorphism. In fact the equivalenceU �C V iff CU⊆CV tells us both
thatφ is well defined and that it preserves the order, andhence that it is injective. Obviously,
φ is onto. Finallyφ(

∨
i∈I [Ui ]) ≡ C(

⋃
i∈I Ui ) = C(

⋃
i∈I CUi ) ≡ ∨

i∈I φ[Ui ]. �

We say that a sup-latticeL is basedon a setX if there is a functiong : X → L such
that the imageg(X) generatesL, that is for anya ∈ L,

↓ga ≡ {g(x) : g(x) ≤ a andx ∈ X}
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is a set-indexed family of elements anda = ∨ ↓ga. We saythatL is set-basedif it is based
on someset (see [14] and [2]).

The typical example isSat(C), whereC is any closure operator on a setX. In fact,
consider the functioni : X → Sat(C) defined byi (x) ≡ C{x} for anyx ∈ X. Then clearly
↓iCU = {C{x} : C{x}⊆CU} and so↓i CU is the image along the functioni of the subset
CU ; this is enough to allow us to conclude that it is a set-indexed family (see [17]). Now
CU = ∨{C{x} : C{x}⊆CU} is immediate.

The next proposition says that this is essentially the only example:

Theorem 2.3. If L is any sup-lattice based on a set X via the function g: X → L, then
the relation�g defined by putting

a �g U ≡ g(a) ≤
∨
b∈U

g(b)

is an infinitary preorder and, writingCg for the corresponding closure operator, Sat(Cg) is
isomorphic toL.

Proof. The relation�g is an infinitary preorder. In fact, ifa ∈ U , then we have
g(a) ≤ ∨

b∈U g(b), and so reflexivity is satisfied. Assume thata �g U and U �g V ;
then g(a) ≤ ∨

b∈U g(b) and∀b ∈ U(g(b) ≤ ∨
c∈V g(c)), which by definition of join

is equivalent to
∨

b∈U g(b) ≤ ∨
c∈V g(c). Sog(a) ≤ ∨

c∈V g(c) by transitivity of ≤, and
hence�g is transitive. Nowg̃ : Sat(Cg) → L, defined puttingg̃(CgU) ≡ ∨

b∈U g(b), is
an isomorphism. In fact,̃g is well defined and one–one, sinceCgU⊆ CgV if and only if
g̃(CgU)⊆ g̃(CgV); in factCgU⊆ CgV if and only if U �g V , which isequivalent to∀b ∈
U(g(b) ≤ ∨

c∈V g(c)) by definition of �g, andhence also to
∨

b∈U g(b) ≤ ∨
c∈V g(c),

which by definition ofg̃ is g̃(CgU)⊆ g̃(CgV).
Moreover,g̃−1 : L → SatCg defined puttingg̃−1(l ) ≡ Cg{x ∈ X : g(x) ≤ l } is the

inverse ofg̃. In fact, one has̃g(g̃−1(l )) ≡ ∨
b∈{x∈X:g(x)≤l} g(b) = l sinceL is based on

the setX via the functiong, andg̃−1(g̃(CgU)) ≡ Cg{x ∈ X : g(x) ≤ ∨
b∈U g(b)} = CgU

by definition of �g. �

When thecarrier L of a sup-lattice L is a set, following the definition contained in
the above theorem, oneobtains the infinitary preordered set induced by the identical map
on L, that isC idL ≡ (L, �idL ), wherea �idL U is a ≤ ∨

b∈U b. We can considerC idL

a sort of translation of the structureL into the language of the infinitary preordered sets:
the elements ofL are translated into the infinitary terms, the order relation into�. Let
us putTransl(L) ≡ C idL . The above theorem amounts to saying thatL is isomorphic to
Sat(Transl(L)). Such an isomorphism is given by the map↓L , defined by↓L (l ) ≡ {x ∈
X : x ≤ l } (it is the map ˜id−1

L in the above notation), whose inverse (namelỹidL ) maps
C idL U into

∨
U .

The carrier ofL is always a set in an impredicative setting, where, hence, one can state
the following corollary:

Corollary 2.4. Every sup-latticeL is isomorphic to Sat(Transl(L)).

In the next section we deal with the predicative case.
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2.1. Sup-lattices presented by axioms

Fix a setX and an infinitary relationR(a,U), defined for anya ∈ X andU⊆X. We
think of R(a,U) as giving conditions on an infinitary preorder, and thus we say that an
infinitary preorder satisfiesR if it includes it, that is if it satisfies

R-ax: for everya ∈ X andU ⊆ X,
R(a,U)

a � U
.

The nameR-ax should recall thatR is thought of as giving axioms. When the least
infinitary preorder satisfyingR exists, we call it �R and say that the sup-lattice
corresponding to(X, �R) is presented through the set of generatorsX and the conditions
given by therelation R. Thus if CR is the closure operator corresponding to�R, thesup-
lattice presented byX andR is Sat(CR). So note that here the conditionR(a,U) requires
an inequality to hold, namelyCR{a}⊆∨

b∈U CR{b}, or equivalently CR{a}⊆ CRU , rather
than the equalityCR{a} = CRU = ∨

b∈U CR{b} as in other approaches (like [6] and [18]).
When�R exists, it must satisfy:

1. �R is an infinitary preorder;
2. �R satisfiesR;
3. �R is the least infinitary preorder satisfyingR; that is, for any infinitary preorder�,

if
R(a,U)

a � U
for anya ∈ X andU⊆X, then also

a �R U

a � U
for anya ∈ X andU⊆X.

To find a solution, that is, to construct an infinitary relation�R satisfying the
requirements 1–3, it is useful to translate them in terms of the closure operatorCR

corresponding to�R. It is also convenient to introduce the notation

RU ≡ {a : R(a,U)}
for anyU⊆X. Then� satisfiesR can be rewritten as:RU⊆ CU for anyU , whereC is the
closure operator corresponding to�. And thenit is also immediate that the following are
equivalent:

a. � satisfiesR, that is� is closed underR-ax, that is RU⊆ CU for anyU .

b. � is closed underR-trax:
R(a, V) V � U

a � U
, that is

V⊆ CU

RV⊆ CU
for anyU, V .

(The nameR-trax comes from “transitivity on axioms”; see [4].) This suggests the
following definition (which is the natural generalization of the notion ofC-ideal of [6];
cf. also Definition 5.2.1 of [1] and the last section here):

Definition 2.5. For any setX and infinitary relationR on X, a subsetZ ⊆ X is called
R-saturated if

R(a,U) U⊆Z

a ∈ Z
, that is

U⊆Z

RU⊆Z

holds for everya ∈ X andU⊆X.
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The notion ofR-saturated subset allows us to rewrite conditions 1–3 easily into a simple
equivalent formulation in terms of the closure operatorCR:

1’. CR is a closure operator;
2’. for everyU⊆X, CRU is R-saturated;
3’. for any closure operatorC,

if CU is R-saturated for anyU⊆X, then alsoCRU⊆ CU for anyU⊆X.

These conditions can be further simplified. In fact, suppose that the leastR-saturated subset
containingU exists, and isdenoted byCRU . That is, assume that

1”. U⊆ CRU ,

2”.
V⊆ CRU

RV⊆ CRU
,

3”. if U⊆Z andV⊆Z ⇒ RV⊆Z, thenCRU⊆Z

hold for anyU⊆X. ThenCR satisfies 1’–3’. In fact,CR is a closure operator because it sat-
isfies (∗∗), that isU⊆ CRW iff CRU⊆ CRW. In fact, one direction holds by 3” applied to
Z ≡ CRW: sinceU⊆ CRW by assumption andV⊆ CRW ⇒ RV⊆ CRW by 2”, then by 3”
alsoCRU⊆CRW. Theother direction of (∗∗) holds by 1”. Moreover, 2’ and 3’ follow im-
mediately from 2” and 3” respectively. Now the point is that, by the minimality property 3’,
if a solution of 1’–3’ exists, it is unique. So it is enough to findCRU which satisfies 1”–3”.5

Since the intersection ofR-saturated subsets is clearlyR-saturated, the common
solution is to defineCRU simply as the intersection of allR-saturated subsets containingU :

CRU ≡
⋂

{Z : U ⊆ Z and Z is R-saturated}.
So, accepting the definition ofCR, any set of generators and any infinitary relationR on X
present a sup-lattice, which isSat(CR).

The trouble with the above definition ofCR is that it is not justified in type theory
since it involves quantifications over subsets in an essential way; more specifically, the
quantification over Z corresponding to intersection is not bounded, in the sense that it is
not indexed by a set, and moreover it is nested with the quantification on subsets needed to
expressR-saturation, which is also unbounded.

The solution is to requireR itself to be given more explicitly, that is through families
of subsets indexed by sets. Following [4], we say that an infinitary relation R on X has
an axiomsetif there exist a family of setsI (a) set (a ∈ X) and a family of subsets
C(a, i )⊆X (a ∈ X, i ∈ I (a)) such that, for anya ∈ X and anyU⊆X,

R(a,U) if andonly if (∃i ∈ I (a))( C(a, i )⊆U).

It is immediate that, whenR has an axiomsetI , C, then Z is R-saturated if and only if
for anya ∈ X, (∃i ∈ I (a))( C(a, i )⊆Z) → a ∈ Z. SoCR, or equivalently �R, is defined

5 One can also formally prove that 1’–3’ imply 1”–3”; we leave the details, except for the remark that a
constructive proof of 3” from 3’ is possible because for any choice of anR-saturated subsetZ⊆X, CZU ≡
{a ∈ X : U⊆Z → a ∈ Z} is a closure operator withCZ Z = Z andCZU R-saturated for anyU .
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inductively by the rules:

reflexivity:
a ∈ U

a �R U

infinity:
i ∈ I (a) C(a, i ) �R U

a �R U
.

This is an inductive definition of a kind which is acceptable in type theory (see [5]).
This means that proofs by induction on the generation of�R are justified:

if U⊆Z and(∀i ∈ I (a))( C(a, i )⊆Z → a ∈ Z)

thena �R U impliesa ∈ Z.

Note that this is exactly a rewriting of 3”, whenR has an axiomsetI , C. It is easy to
prove by induction (see [4]) that the relation�R satisfies transitivity, andhence that it is
an infinitary preorder. As a conclusion, the construction ofSat(CR) is possible within type
theory wheneverR has an axiomset.

We have devised exposition in such a way that from now on we do not need any
explicit reference to inductive definitions. What we will need is that�R exists, however
it is conceived and defined. So from now on whenever we mention�R we mean that
it is the least infinitary preorder satisfyingR, and that it exists. It is understood that if
a predicative treatment is wished, one must understand also that the relationR is given
through an axiomset.

In the following theorem we extendProposition 1.3to sets equipped with a relation,
and, moreover, we extend to sup-lattices a result proved for frames in [6], p. 58, Proposition
2.11. Given a pair(X, R), and a sup-latticeL, we say that a mapf : X → L preserves R
if andonly if R(a,U) implies f (a) ≤ ∨

b∈U f (b). We need the following lemma:

Lemma 2.6. Let (X, R) be a set equipped with an infinitary relation R andL any sup-
lattice. Then a map f: X → L preserves R if and only if it preserves the preorder�R.

Proof. The “if” direction is obvious, since�R containsR. Let f : X → L be a map which
preservesR. The infinitary preordera � f U ≡ f (a) ≤ ∨

f U , defined as inTheorem 2.3,
is exactly the maximum relation which is preserved byf . Then� f is a preorder which
includesR by hypothesis, and hence it includes also�R, which isthe minimum infinitary
preorder includingR. �

It is now quite easy to prove thatSat(CR) is the sup-lattice freely generated by(X, R):

Theorem 2.7. For any pair (X, R), where X is a setand R an infinitaryrelation on X,
the map i : X → Sat(CR) defined by x�→ CR{x} is universal among maps g: X → L,
whereL is any sup-lattice and g is any map preserving R. That is, for any such g there is
a unique morphism̃g : Sat(CR) → L such that g= g̃ ◦ i .

Proof. Notice that the canonical embeddingi : X → Sat(CR) preservesR; in fact,
R(a,U) impliesa�RU , that isCR{a} ⊆ CRU , andCRU = ∨

b∈U CR{b}, byTheorem 2.1.
Since the diagram must be commutative, it must beg̃(CR{a}) = g(a) for anya ∈ X. This
definesg̃ on the image ofX underCR. Such an image generates the wholeSat(CR), that is
CRU = ∨

b∈U CR{b} for anyU , by Theorem 2.1; so we put g̃(CRU) ≡ ∨
b∈U g(b), and
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g̃ is the onlypossible way to define a morphism making the diagram commute. So it only
remains to check that̃g is indeed a morphism. To see that̃g is well defined, that is that
CRU = CRV implies g̃CRU = g̃CRV , it is enough to see that̃g preserves inequalities: if
CRU⊆CRV then∀a ∈ U(a �R V) and hence, sinceg preservesR and so also�R by the
lemma, we haveg(a) ≤ ∨

b∈V g(b) for everya ∈ U , that is
∨

a∈U g(a) ≤ ∨
b∈V g(b).

We can finally see that̃g preserves joins. Since we have
∨

i∈I CRUi = CR(
⋃

i∈I Ui )

by 2.1, one has the equalities:g̃(
∨

i∈I CRUi ) = g̃(CR(
⋃

i∈I Ui )) ≡ ∨
b∈⋃

Ui
g(b) =∨

i∈I (
∨

b∈Ui
g(b)) = ∨

i∈I g̃(CRUi ). �

Note thatProposition 1.3can be obtained fromTheorem 2.7. In fact, anyg : X → L
suchthatg(X) generatesL trivially preserves the empty set of axioms (that isR = ∅) and
hence it extends in a unique way toSat(C∅). Now Sat(C∅) is justP(X) since the infinitary
preorder generated by∅ is membership.

In Theorem 2.7, g̃ is onto, in the strong sense that it has a right inverse defined by putting
g̃−1(a) ≡ CR{x ∈ X : g(x) ≤ a}, if andonly if g(X), the image ofX alongg, generatesL.
Similarly, g̃ is one–one if and only if�R coincides with the infinitary preorder�g defined in
Theorem 2.3. In fact, by definitiong̃ is one–one iffg̃CRU = g̃CRV impliesCRU = CRV .
This amounts to saying thatg(a) ≤ ∨

c∈V g(c) impliesa �R V for everya ∈ U , that is
a�g U impliesa�RU . The converse implication holds becauseg preservesR, sog̃ is one–
one when�R = �g. SoTheorem 2.3could be obtained as a consequence ofTheorem 2.7.

Let us say that a sup-latticeL is predicatively presentable if there is a setX and an
infinitary relation R with an axiomset such thatL is isomorphic to Sat(CR). A natural
question now is: which sup-lattices are predicatively presentable? Ifh : Sat(CR) → L is
the isomorphism, then clearlyL is based onX via the functiong = h ◦ i : x �→ h(CR{x});
in fact, this is the meaning ofTheorem 2.1(iii). So we certainly must restrict to set-based
sup-lattices. Then wecan define�g as inTheorem 2.3, andobtain thatL is isomorphic to
Sat(Cg). Theproof of such a theorem is all right, but it is related to the knowledge of the
ordering≤ of L. In other words, the difficulty for a predicativist is only that the definition
of �g relies on the order ofL, which in general is not given predicatively. This means
that we must add a condition which is satisfied bySat(CR) only whenR has an axiomset.
By a result of P. Aczel (see Theorem 3.2 of [4]), when R has an axiomset,�R also has
an axiomset. Recalling that�R is just the ordering ofSat(CR), we say that a sup-lattice
L which is set-based onX via the functiong : X → L is alsoset-presented(see [2]) if
�g has an axiomset. Then every predicatively presented sup-lattice is clearly set-based and
set-presented. The converse also holds, since�g coincides with the infinitary preorder it
generates, and soSat(Cg) is predicatively presented. We thus have:

Theorem 2.8. A sup-latticeL can be presented predicatively if and only if it is set-based
and set-presented.

Impredicatively,Theorem 2.7leads to the equivalence between the categoryIP and the
category of sup-lattices, here denoted bySL.

Proposition 2.9. The categoriesIP andSL are equivalent.

Proof. By Theorem 2.1we have a mapSat : Ob(IP) → Ob(SL) which maps anyC into
Sat(C); by Theorem 2.3and Corollary 2.4 Sat has a right inverseTransl : Ob(SL) →
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Ob(IP), whereTransl(L) = (L, �idL ) is the infinitary preorder defined on the carrierL of
the sup-latticeL putting a �idL U ≡ a ≤ ∨

b∈U b (cf. Theorem 2.3). We recall also that
the isomorphismL → Sat(Transl(L)) of Corollary 2.4 is obtained by mappingl ∈ L into
↓L (l ) ≡ {x ∈ L : x ≤ l }.

Now one can defineSat on morphisms as follows: for anyf : C → C′ one can
first define a mapg : X → Sat(C ′) preserving�C , putting g(a) ≡ C′( f (a)) for every
a ∈ X. Then, by 2.7, onecan extend it to a sup-lattice morphism̃g : Sat(C) → Sat(C′).
So, put Sat( f ) ≡ g̃. By definition of g̃ one hasSat( f )(CU) = ∨

b∈U g(b), that is
C′(

⋃
b∈U C′(g(b))) in Sat(C′). Easycalculations show that this last is equal toC ′( f U),

soone hasSat( f )(CU) = C′( f U).
To defineTranslon morphisms, put simplyTransl(m) = m, for any two objectsL, L′

and any morphismm : L → L′6; Transl(m) is then extended to subsets ofL as usual. We
see thatSat(Transl(m)) = m: in fact, we haveSat(Transl(m))(↓L (l )) ≡ ∨

(↓L ′ m(l )) =
m(l ) for everyl ∈ L. Conversely,let us considerC = Transl(L), C′ = Transl(L′) and f :
C → C′ any morphism. ThenTransl(Sat( f ))(CU) = C′( f (U)) =C′ f (U) =C′ f (CU),
for everyU ⊆ L; soTransl(Sat( f )) = f as arrows ofIP. �

3. Pretopologies and the presentation of quantales

3.1. Precovers and stable closure operators

We now extend our method to richer algebraic infinitary structures, namely quantales
(cf. [11,13]). The idea is to present quantales as “sup-lattices on monoids” (cf. [7], p. 7;
see also [1]). In this way we can extend the results proved in the previous section, and then
apply such extension to frames, as we shall see in the next section. So we reach a good
modularity in the treatment of infinitary structures.

Even if most of our results on quantales could easily generalize to the non-
commutative case, we will dealwith commutative quantales as ancestors of frames, that
are commutative. We recall here the basic definitions.

Definition 3.1. A (commutative, unital) quantale is a structureQ = (Q, ·, 1,
∨

) such that:

(i) (Q,
∨

) is a sup-lattice,
(ii) (Q, ·, 1) is a commutative monoid,
(iii) infinite distributivity of · with respect to

∨
holds, that isp · ∨

i∈I qi = ∨
i∈I (p · qi ),

for everyp ∈ Q andqi ∈ Q (i ∈ I ).

Given twoquantalesQ andQ′, a map f : Q → Q′ is a quantale morphism if it is
a sup-lattice morphism and a monoid morphism, i.e.f (

∨
i∈I qi ) = ∨

i∈I f (qi ) for every
family qi ∈ Q (i ∈ I ), f (p · q) = f (p) · f (q) for everyp, q ∈ Q and f (1) = 1.

The following normal form lemma is the key which allows us to extend notions and
results concerning sup-lattices to quantales. To simplify exposition, we say thatX is a
subset ofQ even ifactually it isX = g(X′) for some setX′ and some mapg : X′ → Q.

6 To bepedantic,Transl(m)(l) is the singleton{m(l)}.



48 G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30–61

Lemma 3.2. For every quantaleQ and every subset X of its carrier Q, any element q of
the sub-quantaleQ(X) generated by X can be expressed by q= ∨

U for somesubset
U⊆S,where S is the monoid generated by X in Q.

Proof. By induction on the construction ofq. If q ∈ X, the claim is trivial sinceq = ∨{q}.
If q = 1, then 1= ∨{1} and{1}⊆S. If q = p·r , by the inductive hypothesisp = ∨

U and
r = ∨

V hold for someU, V⊆Sand thenq = (
∨

U) · ∨(V) = ∨{u · v : u ∈ U, v ∈ V}
by distributivity. If q = ∨

i∈I pi for somepi ∈ S(i ∈ I ), by the inductive hypothesis for
everyi ∈ I there exists someUi ⊆Ssuchthat pi = ∨

Ui holds; henceq = ∨
i∈I (

∨
Ui ) =∨

(
⋃

i∈I Ui ). �

Fromnow on, letS stand for a monoid(S, ·, 1) whereS is a set. By the above lemma,
if two subsetsU andV denote two elementsq andq′ of a quantaleQ(X), then the subset
U · V ≡ {a · b : a ∈ U, b ∈ V} denotes the productq · q′. Hence the subsets of a monoid
can be seen as the infinitary terms for a quantale.

The powerP(S) is itself a quantale, with the above operationU · V and with unit{1};
in fact,P(S) is a sup-lattice and distributivity holds, because by definitionU · ∪i∈I Vi =
∪i∈I (U · Vi ). We always write U · b for U · {b}. In particular,U · 1 = U is obvious.

By Proposition 1.3, weobtain thatP(S) is actually the free quantale:

Proposition 3.3. For any monoid S, the powerP(S) is thequantale freely generated by S.
Hence for any set X,P(CMon(X)) is the quantale freely generated by X, if CMon(X) is
the commutative monoid freely generated by X.

Proof. For any g : S → Q preserving the monoid operation ofS, the sup-lattice
morphismg̃, defined in1.3by g̃(U) ≡ ∨

b∈U g(b), preserves the pointwise defined monoid
operation ofP(S). In fact we haveg̃(U · V) ≡ ∨

x∈U ·V g(x) = ∨
b·c∈U ·V g(b · c) =∨

b·c∈U ·V g(b) · g(c) = ∨
b∈U g(b) · ∨

c∈V g(c) ≡ g̃U · g̃V. Note that distributivity is
necessary inthe proof. As for the last statement, anyf : X → Q extends in a unique way
toa monoid morphismḟ : CMon(X) → Q and then in a unique way toP(CMon(X)). �

So we have seen that the equation “quantales= sup-lattices on monoids” is true for
the quantales of terms, in which distributivity holds by definition of product and join.
But, in general, generating a sup-lattice from a given monoid under some conditionsR
does not produce a quantale. So, in order to describe quantales by means of generators
and relations, the elements ofS are enough as generators, but we need further conditions
on infinitary preorders (or closure operators, congruence relations, etc.) onS, to capture
the characterizing property of quantales, that is distributivity. We first need a technical
lemma:

Lemma 3.4. Let (Q, ·, 1,
∨

) be a structure with (Q, ·, 1) a commutative monoid and
(Q,

∨
) a sup-lattice. Then the distributivity property(

∨
i∈I ci ) · b = ∨

i∈I (ci · b) holds
(so that Q is a quantale) if and only if the rule:

a ≤ ∨
i∈I ci

a · b ≤ ∨
i∈I (ci · b)

is valid in Q.
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Proof. If distributivity holds, then froma ≤ ∨
i∈I ci , i.e.a∨∨

i∈I ci = ∨
i∈I ci , it follows

thata · b ∨ ∨
i∈I (ci · b) = ∨

i∈I (ci · b), that isa · b ≤ ∨
i∈I (ci · b) as wished.

Conversely, if the above rule is valid, from
∨

i∈I ci ≤ ∨
i∈I ci it follows that(

∨
i∈I ci ) ·

b ≤ ∨
i∈I (ci · b). To provethe other inequality, first note that, sincec = ∨{c}, the rule

a ≤ c

a · b ≤ c · b

is obtained as a particular case of the rule assumed. So fromci ≤ ∨
i∈I ci it follows that

ci · b ≤ (
∨

i∈I ci ) · b for all i ∈ I ; hence also
∨

i∈I (ci · b) ≤ (
∨

i∈I ci ) · b. �

By the above lemma, to extend the presentation of sup-lattices to the case of quantales,
closure under the rule of localization:

(L)
a � U

a · b � U · b

must be required, in addition to the rules of infinitary preorder. So the basic notion for
studying quantales via infinitary terms and relations will be the following:

Definition 3.5. A precover on a monoid(S, ·, 1), is an infinitary preorder satisfying
localization, that is a relation� satisfying

(SR)
a ∈ U

a � U
(T)

a � U U � V

a � V
(L)

a � U

a · b � U · b
.

A pretopology is a quadrupleF = (S, ·, 1, �F ), where(S, ·, 1) is a monoid, called the
base ofF , and�F is a precover onS.

An alternative definition of precovers (as in [15]) requires closure under the apparently
stronger rule of stability

(St)
a � U b � V

a · b � U · V

but actually an infinitary preorder� is closed under localization(L) if f i t is closed under
stability (St). In fact, assumea � U andb � V . Then by(L) a · b � U · b and similarly
u · b � u · V for anyu ∈ U ; sinceu · V � U · V , by transitivity it follows that u · b � U · V
for anyu ∈ U , that isU · b � U · V . Soa · b � U · V by transitivity. Conversely, assuming
(St) closure under(L) is obtained as a special case, when a premiss isb � b. Sometimes
the versions withsubsets on the left, that is

(LG)
U � V

U · Z � V · Z

and

(StG)
Z � U W � V

Z · W � U · V

are more convenient. It is easy to see that(LG) is equivalent to(L), and(StG) is equivalent
to (St), so also the equivalence of(LG) with (StG) follows.

The bijection between infinitary preorders and closure operators can be specialized to
precovers once we obtain the condition on closure operators corresponding to stability.
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Simply by rewriting the stability of�F in terms of the corresponding closure operatorF ,
one obtains

a ∈ FU b ∈ FV

a · b ∈ F(U · V)
,

that is

FU · FV ⊆F(U · V)

for anyU, V⊆S; we say that a closure operatorF on a monoidS is stable if it satisfies
such a condition. Note that stability is also equivalent toFU · b⊆F(U · b), which is just
a rewriting of localization. The restriction of the bijection ofProposition 1.13immediately
gives:

Proposition 3.6. There is a bijection between precovers and stable closure operators.

In the following, we often need an equivalent formulation of stability ofF in terms of
equality, namely:

F(U · V) = F(FU · FV).

To see theequivalence, first note thatF(U · V)⊆F(FU · FV) holds for every closure
operator; in fact,U · V⊆FU · FV by reflexivity (and stability of membership, to be
pedantic) and thenF(U · V)⊆F(FU ·FV) by monotonicity. So the equalityF(U · V) =
F(FU · FV) is equivalent toF(FU · FV)⊆F(U · V), that is stability of F , becauseF
is a closure operator.

Congruences on quantales are obtained by adding a condition on congruences on sup-
lattices:

Definition 3.7. For any monoidS, a relation θ is called a quantale congruence onS if it is
a congruence on the quantale(P(S), ·, {1},⋃), that is if θ is a sup-lattice congruence on
S (as inDefinition 1.5) which moreover respects the monoid operation, i.e. is closed under
the rule

(v)
U θ V

U · Z θ V · Z
.

Recalling the bijection which associates a congruence=F with an infinitary preorder
�F (seeProposition 1.7), it is now possible to see that quantale congruences are exactly
sup-lattice congruences which are induced by a precover:

Proposition 3.8. For any monoid S, the bijection between infinitary preorders on S and
sup-lattice congruences on S restricts to a bijection between precovers and quantale
congruences on S.

Proof. If =F satisfies(v), the induced preorder�F satisfies localization: ifU �F V , that
is U ∪ V =F V , then(U ∪ V ) · Z = U · Z ∪ V · Z =F V · Z which meansU · Z �F V · Z.

Conversely, if�F satisfies localization, then fromU =F V , i.e.U �F V andV �F U ,
by (L) it follows thatU · Z �F V · Z andV · Z �F U · Z, i.e.U · Z =F V · Z. �
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3.2. Presentation of quantales

We apply the results already obtained for sup-lattices to quantales, and see that the
characterizing properties of quantales are satisfied. The analogue ofTheorem 2.1in the
case of quantales is:

Theorem 3.9. For any pretopologyF = (S, ·, 1, �F ), the structure(Sat(F), ·F ,F (1),
∨

),
where·F is defined by

FU ·F FV ≡ F(FU · FV),

is a quantale.

Proof. After Theorem 2.1, it is enough to see that·F is a monoid operation and that it
satisfies distributivity with respect to joins. Since by stabilityFU ·F FV = F(U · V), the
operation·F is obviously commutative, andF1 is its unit becauseFU ·FF1 = F(U ·1) =
FU ; moreover for anyU, V, W⊆S we haveFU ·F (FV ·F FW) = FU ·F F(V · W)

= F(U ·(V ·W)) and similarly(FU ·FFV)·F W =F((U ·V)·W), so that associativity of
·F follows by stability from associativity of· in S. Finally, sinceU ·⋃i∈I Vi = ⋃

i∈I (U ·Vi )

for anyU andVi , distributivity follows by repeated use of stability:FU ·F (
∨

i∈I FVi )

≡ FU ·F F(
⋃

i∈I FVi ) = FU ·F F(
⋃

i∈I Vi ) = F(U · ⋃
i∈I Vi ) = F(

⋃
i∈I U · Vi )

= F(
⋃

i∈I F(U · Vi )) = ∨
i∈I FU ·F FVi . �

As one can expect,Proposition 2.2becomes:

Proposition 3.10. Let =F be a quantale congruence on S. Then the quotient quantale
P(S)/ =F , where[U ] · [V] ≡ [U · V], 1 ≡ [1], is isomorphic to Sat(F).

Proof. The isomorphism ofProposition 2.2is, in this case,a quantale isomorphism since
φ[U ] ·F φ[V ] ≡ FU ·F FV ≡ F(U · V) ≡ φ[U · V ] andφ[1] ≡ F1. �

We also have the analogue ofTheorem 2.3, that is apresentation of quantales by means
of pretopologies:

Theorem 3.11. For any monoid S, any quantaleQ and any monoid morphism g: S → Q
suchthat the monoid g(S) generates Q, there is a pretopology(S, �F ) such that Sat(F) is
isomorphic toQ.

Proof. By Theorem 2.3, �g is an infinitary preorder and̃g : Sat(F) → Q gives a sup-
lattice isomorphism. Actually,�g is a precover, since, ifa�g U , that isg(a) ≤ ∨

x∈U g(x),
then for anyb we haveg(a·b) = g(a)·g(b) ≤ ∨

x∈U g(x)·g(b) and hence by distributivity
a · b�g U · b. Moreover,g̃ is aquantale isomorphism; in fact,g̃(FU ·F FV) = g̃F(U · V)

= ∨
z∈U ·V g(z) = ∨

x∈U g(x) · ∨y∈V g(y) = g̃FU · g̃FV . �

The functorTransl, already defined for sup-lattices in the impredicative case, can be
defined for quantales as well, leading to the translation of any quantale into a pretopology.
It follows that every quantaleQ is impredicatively isomorphic toSat(F), whereF =
Transl(Q).

Corollary 3.12. Every quantaleQ is isomorphic to Sat(Transl(Q)).
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3.3. Quantales presented by axioms

It is now a relatively simple task to extend the presentation of sup-lattices by axioms
to obtain analogous results for quantales. In fact, we will see that the precover generated
by an infinitary relationR is the same as the infinitary preorder generated by the closure
of R under localization. Thus, in a certain sense, the equation “quantales= sup-lattices on
monoids” is satisfied not only by the generators, but also by the relations.

Let R be any infinitary relation on a monoidS. If it exists, the least precover satisfying
R can be characterized by saying that the corresponding operatorFR satisfies:

1. FR is a stable closure operator;
2. FR satisfiesR;
3. FR is the least stable closure operator satisfyingR.

We now wish to find a solution to such requirements by reducing to the case of closure
operators (or sup-lattices) satisfying a relation, treated inSection 2.1. Thenew task is to
obtain thatFR satisfies localization, that is

FRU · b⊆FR(U · b).

One idea is to force localization on the relation, that is constructRloc as the least extension
of R which satisfies

RlocU · b⊆ Rloc(U · b),

then generateCRloc as known fromSection 2.1, and finally prove that actuallyCRloc = FR.
We now prove thatthis is indeed so.

We first makesure that it is possible to constructRloc as required. Allowing a
quantification on susbets, one definesRloc by

Rloc(c, V) ≡ (∃a, b ∈ S)(∃U⊆S)( c = a · b & V = U · b & R(a,U)).

By a little logic, it is easy to see thatRloc satisfies localization, and obviously it is the
least such. The same idea is expressed in type theory by saying thatRloc is definedby the
introduction rule:

R(a,U) b ∈ S

Rloc(a · b,U · b)
.

In both cases, it is clear thatRU⊆RlocU for anyU , becauseScontains 1.
So the next step is to constructCRloc, that is the least closure operator satisfying Rloc.

Knowing that the relation is of the formRloc, wecan improve a bit on the characterization
given inSection 2.1. First note that, by minimality ofRloc, any stableclosure operatorF
satisfyingR must also satisfyRloc; soFRU ⊇ CRlocU for anyU . Now it is not difficult to
show that for any closure operatorC, the conditions

a. RlocU⊆ CU for anyU , that isCU is Rloc-saturated for anyU ,

b.
V · b⊆ CU

RV · b⊆ CU
for anyU
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are equivalent. In fact, assume a. and supposeV · b⊆ CU ; then RV⊆ RlocV gives
RV · b⊆ RlocV · b⊆ Rloc(V · b) ⊆C(V · b) ⊆ CU . Conversely, supposec ∈ RlocV ; then
there existsb suchthat V = U · b and c ∈ RU · b, so U · b = V⊆ CV by b. gives
RU · b⊆ CV , andhencec ∈ CV as wished.

Thus the characterization ofCRlocU as the leastRloc-saturated subset containingU now
brings us to characterizing the operatorCRloc as follows. We writeFR for CRloc, since we
will show immediately that it satisfies 1–3.

1’. U⊆FRU .

2’.
V · b⊆FRU

RV · b⊆FRU
.

3’. FRU is the least subset satisfying 1’ and 2’, that is: ifU⊆P andV ·b⊆P ⇒ RV·b⊆P,
thenFRU⊆P.

We nowcan see that suchFRU is a solution to 1–3. The proof of transitivity forFR, that
is V⊆FRU ⇒ FRV⊆FRU , is exactly as inSection 2.1. So to prove 1 we need to show
localizationFRU · b⊆FR(U · b). To this end,we must exploit minimality expressed by
3’. We put P ≡ {c : c · b ∈ FR(U · b)}. ThenU⊆P becauseU · b⊆FR(U · b) by
1’. Also, V · c⊆P ⇒ RV · c⊆P becauseV · c⊆P means that(V · c) · b⊆FR(U · b);
hence by associativityV · (c · b)⊆FR(U · b), and soRV · (c · b)⊆FR(U · b) by 2’, and so
finally RV · c⊆P. So 3’ givesFRU⊆P, which means exactly thatFRU · b⊆FR(U · b)

as wished.7 ClearlyFR satisfiesR by 2’, and so 2 holds. Finally, assume thatF is any
precover satisfying R. Then RU⊆FU gives RU · b⊆FU · b⊆F(U · b), which is
immediately seen to be equivalent to b. above, alias 2’. So by minimality, 3’, we have
FRU⊆FU for anyU , and so 3 is proved.

In this way we have proved that a solution of 1–3 is given by the operatorFR associating
with anyU the leastRloc-saturated subset containingU . As in Section 2.1, such anFR is
easily defined impredicatively by putting

FRU ≡
⋂

{Z : U⊆Z andZ is Rloc-saturated}.
Predicatively, one must again assume thatR has an axiomsetI , C; then�R is constructed
by an inductive definition with rules:

reflexivity:
a ∈ U

a �R U

loc-infinity:
i ∈ I (a) C(a, i ) · b �R U

a · b �R U

7 This last step of the proof of localization ofFR is more perspicuous if one defines

U →F V ≡ {a : a · U⊆FV}
from which it is immediate that

Z · U⊆FV iff Z⊆U →F V.

ThenP ≡ {b} →F U ·b, so assumingV ·c⊆{b} →F U ·b givesV ·c ·b⊆F(U ·b); hence RV ·c ·b⊆F(U ·b)
by 2’, and henceRV ·c⊆{b} →F U ·b. This seems to show that the proof is essentially the same as that showing
that any complete lattice with a good implication→ satisfies infinite distributivity.
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which clearly correspond to 1’ and 2’ above. It is then not difficult to prove, by induction
on the generation of�R, that it satisfies localization, and hence that it is a precover.

It is now easy to prove thatSat(FR) is the quantale freely generated by(S, R):

Theorem 3.13. For any pair(S, R), where S is a monoid and R an infinitary relation on
it, let FR be the least pretopology on S satisfying R. Then the map i: S → Sat(FR)

defined by x�→ FR{x} is universal among maps g: S → Q, whereQ is any quantale and
g is any monoid morphism preserving R. In other words, Sat(FR) is the quantale freely
generated by(S, R).

In particular, if X is any set of generators and R any relation on it, then every map
f : X → Q preserving R factors through the quantale Sat(FR), whereFR, is the
pretopology given by the precover generated by R on the free monoid on X.

Proof. It is immediate that any monoid morphismg : S → Q preservingR preserves
also its closure under localizationRloc. Then, by Theorem 2.7, g extends uniquely to the
sup-lattice morphism̃g : SatCRloc → Q, whereCRloc is the infinitary preordered set
given by the infinitary preorder generated byRloc on S. As seen above,CRloc coincides
with the pretopologyFR. To conclude, it is enough to check that the mapsi and g̃
preserve the monoid operations ofS and of SatFR, respectively. We have:i (a · b) ≡
FR(a · b) = FR(a) ·FR FR(b) ≡ i (a) · i (b) by stability of the precover�Rloc; and
g̃(FRU ·FR FRV) ≡ g̃FR(U · V) ≡ ∨

u∈U,v∈V g(u · v) = ∨
u∈U g(u) · ∨

v∈V g(v) ≡
g̃FRU · g̃FRV , by distributivity of quantales.

In particular, ifCMon(X) is the monoid freely generated byX, then any mapf : X →
Q preservingR factors uniquely through a monoid morphismf ′ : CMonX → Q and then
also through a quantale morphism̃f ′ : Sat(FR) → Q as seen above.�

In particular,Proposition 3.3is a consequence of the above theorem, puttingR = ∅, as
is the case of sup-lattices. Presentation of quantales (Theorem 3.11) is another consequence
of the above theorem, as we have alsoalready discussed for sup-lattices.

As for a predicative presentation, let us say thatQ is predicatively presentable if and
only if it is isomorphic toSat(FR), whereR has an axiomset. One can see that, ifR has an
axiomset, thenRloc has an axiomset (see [4], p. 25). So, sinceSat(FR) = Sat(CRloc), as we
have seen above, a quantaleQ is predicatively presentable ifand only if it is predicatively
presentable as a sup-lattice (seeTheorem 2.8).

We consider nowPretop, the subcategory ofIP, whose objects are pretopologies.
A morphism f : F → F ′ is a morphism of Pretop if it is a morphism of IP (see
Definition 1.11) preserving the monoid operation, i.e. satisfying the clausesf (1) =F ′ 1
and f (a) · f (b) =F ′ f (a · b) for everya, b in the base ofF . We see that the equivalence
given in 2.9 restricts to an equivalence betweenPretop and the category of quantales,
Quant:

Theorem 3.14. The categoriesPretop andQuant are equivalent.

Proof. The functorSat : IP → SL, when restricted to Pretop, maps theobjects of
Pretop into the objects ofQuant, byTheorem 3.9: the functorTranslis its right inverse by
Corollary 3.12. Moreover, itis easy to see that, ifF ,G are pretopologies andf : F → G is



G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30–61 55

a morphism of pretopologies, thenSat( f ) : Sat(F) → Sat(G) is a morphism of quantales.
Hence the equivalence inProposition 2.3restricts toPretop andQuant. �

4. Presentation of frames

4.1. Formal topologies and the presentation of frames

In the following we shall see that the results obtained for quantales are enough for
presenting frames as a particular case. The usual definition of frame (see e.g. [6], p. 39) is
the following:

Definition 4.1. A frameH = (H,∧,
∨

) is a complete lattice in which distributivity of
meets with respectto infinitary joins holds, i.e.a ∧ ∨

i∈I bi = ∨
i∈I (a ∧ bi ), for every

a ∈ H , bi ∈ H (i ∈ I ).

Af ter the previous results, it is more convenient for our purposes to adopt the following
equivalent characterization:

Proposition 4.2. Frames can be characterized as those quantales(Q, ·, 1,
∨

) in which
a·b = a∧b for all a, b ∈ Q, where∧ is the meet with respect to the order≤ induced by

∨
.

By this characterization, given two framesH andH′, a map f : H → H ′ is a frame
morphism if and only if it is a quantale morphism.

Sinceframes are particular quantales, to obtain a presentation of frames the first step
is to describethose precover relations which generate frames. LetA = (S, ·, 1, �A) be a
pretopology presenting a frameH, i.e.H ∼= Sat(A). Then, by Proposition 4.2above, we
must haveAU ·A AV = AU ∧ AV for everyU, V⊆S. Actually, as in any sup-lattice
of the formSat(C), the meet operation inSat(A) is just intersection:since the ordering is
inclusion, to show thatAU ∧ AV = AU ∩ AV , it is enough to see thatAU ∩ AV is
A-saturated, a fact which is well known to hold (andeasy to see) for any closure operator.
So, by stability, the condition which characterizes pretopologies giving rise to frames is

A(U · V) = AU ∩ AV,

that isA(U · V)⊆AU ∩ AV andAU ∩ AV⊆A(U · V). We give belowsome useful
equivalents of such inclusions, and for both we find an equivalent condition involving only
the elements of thebase.

Proposition 4.3. For any infinitary preorder�A, the following are equivalent:

(i) A(U · V)⊆AU ∩ AV for every U, V⊆S,
(ii) U · V �A U for every U, V⊆S,
(iii) a · b �A a for every a, b ∈ S,

(iv) �A is closed under the rule (·L) : a �A U

a · b �A U
.

Proof. SinceU ·V = V ·U , (i) is equivalent toA(U ·V)⊆AU for anyU, V⊆S, andhence
equivalence of (i) with (ii) follows fromA(U · V)⊆AU iff U · V �A U . (iii) is a special
case of (ii), obtained by takingU = {a} andV = {b}. Assuming (iii), closure under(·L)
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is immediate by transitivity. Finally, to show that (iv) implies (ii), assumex ∈ U · V ; then
x = a · b for somea ∈ U andb ∈ V and hencea �A U . By (·L) it follows thata · b�A U ,
that isx �A U , soU · V �A U as wished. �

Proposition 4.4. For any pretopologyA = (S, ·, 1, �A), the following are equivalent:

(i) AU ∩ AV⊆A(U · V) for every U, V⊆S,

(ii) �A is closed under the rule(·R):
a �A U a �A V

a �A U · V
,

(iii) �A is closed under the rule(·RG):
Z �A U Z �A V

Z �A U · V
,

(iv) U �A U · U for every U⊆S,
(v) a �A a · a for every a∈ S.

Proof. (i) is equivalent to (ii), since (ii) is just a rewriting of (i) in terms of�A; (ii) implies
(iii), since (iii) is just the variant with subsets on the left of (ii); (iii) implies (iv), taking
Z = U = V , and (iv) implies (v) takingU = {a}. Finally, (v) implies (ii) because stability
applied to the premises of (ii) givesa · a �A U · V , from which we get the conclusion
a �A U · V by (v) and transitivity. �

So we adopt the following definition, that isthe most convenient in order to obtain the
presentation of frames as a corollary of the presentation of quantales. We recall that, since
(·L) and(·R) together imply stability, as one can easily see, covers can be equivalently
defined as infinitary preorders closed under(·L) and(·R).8

Definition 4.5. A precover� satisfyinga·b � a anda � a·a is called a cover. A pretopology
A = (S, ·, 1, �A), where�A is a cover, is called a formal topology.

By Theorem 3.9and the discussion so far, we have:

Proposition 4.6. For any formal topologyA, Sat(A) is a frame.

Conversely, byCorollary 3.12, everyframe is impredicatively isomorphic toSat(A), for
someA, sinceframes are particular quantales and morphisms of frames are morphisms of
quantales.

Further, if we consider the full subcategory ofPretop whose objects are formal
topologies, calledFTop, and thecategory of frames,Frm, we obtain the following
immediate consequence ofTheorem 3.14:

Theorem 4.7. The categoriesFtop andFrm are equivalent.

4.2. Frames presented by axioms

The formal cover generated with conditions, or axioms, given by an infinitary relation
R is just the precover which is generated by the relationR′ obtained fromR by adding all

8 This is the course taken in [14]. Note that the full definition of formal topology includes an additional
predicatePos, which isnecessary for expressing constructively thata formalopen is inhabited, but is not relevant
to present frames.
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pairs(a · b, a) and(a, a · a) for any a, b. In fact, in such a case the precover generated
satisfies conditions4.3(iii) and 4.4(v). So we consider the relationP, defined by requiring
only that P(a · b, a) and P(a, a · a) hold for anya, b, and for any infinitary relationR
we considerR ∪ P, that is the relation obtained by joiningR with P. ThenFR∪P is the
least pretopology satisfyingR ∪ P, and then it is the least formal topology satisfyingR.
Let us term itAR and consider the frameSat(AR). We seethatTheorem 3.13for quantales
specializes to frames as follows:

Theorem 4.8. For any pair (S, R), where S is a monoid and R an infinitary relation on
it, let AR be the least formal topology on S satisfying R. Then the map i: S → Sat(AR)

defined by x �→ AR{x} is universal among maps g: S → H, whereH is any frame
and g is any monoid morphism preserving R. In other terms, Sat(AR) is the frame freely
generated by(S, R).

Proof. Any monoid morphismg preservesP, since the inequalitiesg(a · b) ≡ g(a) ∧
g(b) ≤ g(a) andg(a) ≤ g(a) ∧ g(a) ≡ g(a · a) hold in a frame. So,Theorem 3.13can be
applied toR ∪ P. �

Finally, as for sup-latticesand quantales, by takingR to be empty in the statement of
Theorem 4.8, one finds out what the free frame is: it is the frameSat(F P). This, in turn,
coincides withSat(CPloc) wherePloc is the closure ofP under localization.

Can suchframe be characterized more directly? Yes; indeed, we now see that the cover
generated by the empty set of axioms, that is the infinitary preorder generated byPloc, can
be described in terms of a natural preorder on the baseS. For everya, b ∈ S, weput

a ≤ b iff, for somen ∈ N andd ∈ S, an = b · d.

It is easy to see that≤ is a preorder (sometimes called the natural preorder on the
monoidS). In fact,a ≤ a becausea1 = a · 1 and ifa ≤ b andb ≤ c, thenan = b · d and
bm = c · e for somem, n, d, e, from which(an)m = (b · d)m = c · e· dm, that isap = c · f
for somep, f , i.e.a ≤ c.

We now see that the infinitary preorder generated byPloc is the least infinitary preorder
extending the natural preorder on the base. We first need the following general result:

Lemma 4.9. Let B be a binary relation between elements of a set X. Then the infinitary
preorder generated by B on X satisfies:

(i) x �B y if and only if x ≤B y, where≤B is the preorder generated by B on X, that is
the reflexive and transitive closure of B.

(ii) CB(U) = ⋃
b∈U CB{b}, and hence a�B U if and only if there is b∈ U such that

a ≤B b.

Proof. (i) Since�B is reflexive and transitive,x ≤B y impliesx �B y. Conversely, assume
x �B y, that isx ∈ CBy. It is immediate that↓B y ≡ {z : z ≤B y} is B-saturated, and
henceCB(y) ⊆↓B y. Sox ∈↓B y, that isx ≤B y as wished.

(ii) For every closure operatorC we haveC(U) ⊇ ⋃
b∈U C{b}. Here the equality holds

because
⋃

b∈U CB{b} is B-saturated: ifB(x, y) andy ∈ ⋃
b∈U CB{b}, theny ∈ CB{b} for

someb ∈ U , andhencex ∈ CB{b}⊆⋃
b∈U CB{b}, becauseCB{b} is B-saturated. �



58 G. Battilotti, G. Sambin / Annals of Pure and Applied Logic 137 (2006) 30–61

Note that, for every binary relationB on X, x ≤B y if and only if there exist
d1, . . . dn ∈ X suchthatd1 = x, dn = y andB(di , di+1) for every 1≤ i < n. Applying
this to Ploc, which is a binary relation, we see thatPloc generates the natural preorder on
S. In fact, thepreorder≤Ploc generated byPloc is contained in the natural preorder, since
for everya, b one getsa · b ≤ a by takingn = 1 andd = b in the definition of≤ above,
and for everya, c one getsa ·c ≤ a ·a ·c by takingn = 2 andd = c and by commutativity
of S. Conversely, assumex ≤ y, that isxn = y · d for some natural numbern andd ∈ S.
Then from Ploc(y · d, y) we havePloc(xn, y), and moreover clearly Ploc(xi , xi+1) for
1 ≤ i < n, sox ≤Ploc y.

Then, by the aboveLemma 4.9, one hasa ∈ CPlocU if and only if there isb ∈ U such
thata ≤ b in the natural preorder ofS. So,by Theorem 4.8, we have:

Theorem 4.10. The free framegenerated by a monoid is the frame of downward closed
subsets with respect to thenatural preorder.

4.3. Formal covers on semilattices and their connection with coverages

The aboveTheorem 4.10is usually stated when the base is a semilattice, let us say a
∧-semilattice(T,∧, 1). In such acase, the natural preorder coincides with the partial order
induced by the infimum∧. In fact, sincean = a for anyn ∈ N and anya ∈ T , we have
a ≤ b if and only if a = b ∧ c for somec, if andonly if a = b ∧ (b ∧ c) = b ∧ a. Then
Theorem 4.10gives also the well-known (see [6]):

Theorem 4.11. The free frame generated by a semilattice is the frame of its downward
closed subsets.

Precovers defined on a semilattice satisfy the conditions ofProposition 4.4and hence, in
such acase, any of the conditions ofProposition 4.3characterize covers among precovers.

Proposition 4.12. Let (T,∧, 1) bea semilattice. A relation�A defined on T is a formal
cover if and only if it is closed under the rules(SR), (T), and(∧L).

The cover generated by an infinitary relationR ona semilattice(T,∧, 1) is the precover
generated byR joined with all pairs(a ∧ b, a) (sincea ∧ a = a, pairs(a ∧ a, a) are not
necessary), that is with the semilattice ordering. Hence, by the results inSection 3.3and
since obviously≤ is closed under localization, the cover generated byR is the same thing
as the infinitary preorder generated byRloc joined with≤.

Then the frame freely generated byT with conditions given byR is formed by all
subsets ofT which are Rloc-saturated and downward closed (that is, allU ⊆ T s.t.
Rloc(a, V) & V ⊆ U ⇒ a ∈ U anda ∈ U ⇒↓ a⊆U , where↓ a ≡ {b : b ≤ a}).

The well-knownC-ideals of a coverageC (cf. [6], p. 58) are exactly theC-saturated
and downward closed subsets. We recall that a coverage is just an infinitary relationC on
a semilatticeT which satisfies:

(i) if C(a,U) thenU⊆ ↓ a,

(ii) meet-stability:
C(a,U) b ≤ a

C(b,U ∧ b)
,
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and it is easy to see that (see [18]) in the presence of (i), meet-stability is equivalent to

C(a,U)

C(a ∧ b,U ∧ b)
,

namely localization. So a frame can be presented asC-ideals of a coverageC if and only
if it can be presented as here, asR-saturated subsets of some relationR.

A direct link between coverages and covers can be obtained by noting that coverages,
apart from condition (i), are just relations, that is axioms, closed under localization. So to
be able to compare them with our covers one must first close the axioms under deductions.
Because of the presence of (i), this is not as natural as with covers. However, one can do it,
and say that a coverage isclosedif it satisfies the following additional conditions:

(iii) reflexivity:
a ∈ U

C(a,U ∧ a)
,

(iv) transitivity:
C(a,U) (∀b ∈ U)C(b, W ∧ b)

C(a, W ∧ a)
.

As the next proposition shows in detail, the correspondence between covers and closed
coverages is indeed a bijection:

Proposition 4.13. Let T be any semilattice. For any closed coverage C on T , we put

a �C U ≡ C(a,U ∧ a).

Then�C is a cover on T . Conversely, for any cover� on T , we put

C�(a,U) ≡ a � U & U ⊆↓ a.

Then C� is a closed coverage. This gives a bijective correspondence between covers and
closed coverages.

Proof. Let C be a closed coverage. Then(SR) for �C is exactly reflexivity for C.
To prove closure of �C under (T), assumea �C U and (∀b ∈ U)(b �C W), that is
C(a,U ∧ a) and(∀b ∈ U)C(b, W ∧ b) respectively. From the latter by localization we
obtain(∀b ∧ a ∈ U ∧ a)C(b ∧ a, W ∧ b ∧ a). Putting U ′ ≡ U ∧ a one hasC(a,U ′) and
(∀b′ ∈ U ′)C(b′, W∧b′), so finally transitivity of C allows us to conclude thatC(a, W∧a),
that isa�C W. (L) and(∧L) for �C are both obtained by localization ofC; in fact, ifa�CU ,
that isC(a,U ∧a), one getsC(a∧b,U ∧a∧b), that isa∧b�C U ; but alsoa∧b�C U ∧b
because of the equalityU ∧ a ∧ b = (U ∧ b) ∧ (a ∧ b).

Vice versa, let � be a cover relation onT . Condition (i) is forced by the definition.
Localization follows from localization of�: if C�(a,U), from a�U one getsa∧b�U ∧b,
while from U ⊆↓ a one hasU ∧ b ⊆↓ (a ∧ b), soC�(a ∧ b,U ∧ b) holds. Reflexivity
for C� follows by (SR) and becauseU ∧ a ⊆↓ a. As for transitivity, if C�(a,U) and
(∀b ∈ U)C�(b, W ∧ b), thena � U andU � W ∧ U , sofrom W ∧ U � W one getsa � W
by (T), andfrom thisa � W ∧ a by (L), soC�(a, W ∧ a) follows.

The correspondence is bijective: ifC(a,U), then C(a,U ∧ a), that is a �C U , so
C�C

(a,U); vice versaC�C
(a,U) meansC(a,U ∧ a) andU ⊆↓ a, that isU ∧ a = U ,

so C(a,U). If a � U , thena � U ∧ a, so (a � U ∧ a)& (U ∧ a ⊆↓ a) ≡ C�(a,U ∧ a)
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≡ a �C�
U ; vice versafrom a �C�

U , by the sameequivalences one getsa � U ∧ a, but
U ∧ a � U , soa � U . �

The above results show that the two methods for presenting frames are “quantitatively”
equivalent. There are mainly two reasons why (in [14]) changing Johnstone’s definitions
has been chosen. The first reason is that in a predicative treatment it is necessary to generate
covers inductively, and thus one must keep both notions, that of axioms given by a relation
R and that of cover � (which is closed under deductions). That is why one is free to
consider arbitrary relationsR, with no conditions like (i) or (ii) to be satisfied. The second
reason is that the presence of condition (i), and hence the interpretation ofC(a,U) as an
equality,9 makes it difficult to express weaker infinitary relations, corresponding to sup-
lattices or quantales. In fact, as the proof ofProposition 4.13shows,(∧L) is implicit in
the definition of coverage(∧L), for �C is obtained by localization ofC, and conversely
(∧L) of � is not used to prove thatC� is a coverage. So it is not possible to express
a “pre-coverage” relation, analogous to precovers. Also note that, in the presence of (i),
localization is necessary to be able to express transitivity (see the proof above of the fact
that�C is closed under transitivity).

So an advantage of our infinitary relations isthat they can express several conditions as
independent, which would be linked in the approach of coverages, and that is why they can
produce a uniform presentation of sup-lattices, quantales and frames.
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