
INFORMATION AND CONTROL 56, 212-219 (1983) 

A Necessary and Sufficient Condition in Order 
That a Herbrand Interpretation Be Expressive Relative 

to Recursive Programs 

P A W E E  U R Z Y C Z Y N  

Institute of Mathematics, University of Warsaw, 
00-901 Warszawa, PKiN, Poland 

It is proved that a recursive program (without counters) is able to enumerate all 
elements in any Herbrand interpretation. It follows that all recursive program 
domains in a Herbrand interpretation can be defined by first-order formulas iff 
there are first-order formulas expressing integer arithmetic in that interpretation. 

1. INTRODUCTION 

A A- A We say that an interpretation A = (A, =, r~, .... r , ,  f l .... , f  m) is expressive 
relative to a class of programs 3 iff the domain of each program P ~ 3 in 
the similarity type of A can be defined in A by a first-order formula. That is, 
there exists a first-order formula ~0 such that, for all inputs d in A, 

P converges in A on the input d i f f  A, 6 ~ ~0. 

The notion of expressiveness plays an important role in the theory of Hoare 
logics (see, e.g., Cook, 1978). The present paper was motivated by the work 
of Clarke, German, and Halpern (1982), where the existence of Hoare logics 
for recursive programs was discussed, with the restriction to Herbrand inter 
pretations only. (A Herbrand interpretation is an arbitrary interpretation 
generated by its underlying constants, i.e., zero-ary operations.) In particular, 
they proved that, for any Herbrand interpretation A, if A is expressive 
relative to recursive programs then one of the following cases hold: 

There are exists a bijection F: A ~ co, and first-order formulas 
Zero(x) ,  Succ(x,  y),  Add(x ,  y, z), Mul t (x ,  y, z), in the 
similarity type of A, such that, for all a, b, c ~ A, 

A,  a ~ Zero(x)  ~ ,  F(a) = O, 

A , a , b ~ S u c c ( x , y )  ~ F ( a ) +  l = F ( b ) ,  

A,  a, b, e ~ Add(x ,  y, z)  <=~ r ( a )  + F(b) = F(e), 

A,  a, b, e ~ Mult (x ,  y, z)  ~ r ( a )  . F(b) = F(c). (1.1) 

212 
0019-9958/83  $3 .00  

Copyright © 1983 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



RECURSIVE PROGRAMS 213 

For each recursive program P, there exists an n C ~o, such that 
each converging computation of P, on any input in A, takes at 
most n steps. (1.2) 

Interpretations satisfying condition (1. i) are called s t rong l y  a r i thme t i ca l .  

In the present paper we strengthen the above result, namely, we prove that 
a Herbrand interpretation is expressive relative to recursive programs iff it is 
strongly arithmetical or finite (Theorem 2.3). The main tool used in the proof 
is Theorem 2.2, which states that a recursive program is able to enumerate 
all elements in an arbitrary Herbrand interpretation (over a fixed similarity 
type). 

It is worth noting that another proof of our main result can be obtained 
using Lemma 2.1, which is weaker than Theorem 2.2. Namely, Lemma 2.1 
suffices to prove that any Herbrand interpretation satisfying (1.2) is finite 
(see Urzyczyn, 1983). Such a proof, however, would depend upon the 
complicated proof of the mentioned result of Clarke et al. Another reason for 
choosing a direct proof is that Theorem 2.2 seems to be of independent 
interest. 

Before proving the results, we must explain the notion of a recursive 
program (we make no distinction between the notions: "program" and 
"program schema"). Informally, a recurs ive  p r o g r a m  is a finite flow-chart 
schema S, which may use names of programs including S itself as function 
(or relation) symbols, together with all programs whose names occur in S. A 
computation of a recursive program may thus include a sequence of 
recursive calls. We assume that no additional equipment (especially 
counters) is allowed in recursive programs. A precise definition should be 
formulated in the spirit of Constable and Gries (1972), with the additional 
assumption that programs can always test for equality. Nevertheless, we will 
use graphical descriptions and informal explanations in the proofs, instead of 
complicated ALGOL-like expressions. Although, in contrast to Clarke et  al. 

(1982), we have chosen one particular class of programs, it should be clear 
that our consideration applies for many other classes, not less powerful than 
our recursive programs. In particular, Theorems 2.2 and 2.3 remain true for 
any "acceptable programming language with recursion" in the sense of the 
latter paper. 

2. MAIN RESULTS 

Let a be a fixed similarity type, i.e., a finite sequence of relation and 
function symbols: =,  r l ,  r 2 ..... r n , f  l ..... fro,  each equipped with a nonnegative 
arity. Below we assume that all programs and formulas under consideration, 
if not defined otherwise, are of similarity type a, i.e., no other function or 

643/56/3-6 



214 PAWEE URZYCZYN 

relation symbol may occur in them (except names of recursive procedures in 
programs). Also, all interpretations are assumed to be of similarity type a, 
i.e., of  the form A = (A, , r~,-  A ..A ~,A = r 2 , . . .  , rn,Jl,...,fAm), where = is assumed to be 
interpreted as equality. Now, if S is a program with k input variables, then S 
defines a k-ary partial function (or relation) in any interpretation A. The 
function (relation) obtained in that way is denoted by S A. 

For simplicity in the definition to follow, and with no loss of generality, 
we assume at the moment  that all the function s y m b o l s f l , f 2  ..... fm have the 
same arity p >~ 1. Consider an arbitrary interpretation A, as aboye. For an 
arbitrary 5 C A k, where k is a positive integer, we introduce the notion of the 
natural chain from 5, denoted {q,: i < fl}, for some ordinal fl < o0 + 1, which 
is an appropriately defined linear ordering of a subset of the substructure 
generated in A by 5. The definition goes by induction: 

(i) If all the elements in {al ..... ak}, where i f =  (a 1,..., ak), are distinct 
then the first k elements in the chain, q0,..., qk-1, are al,..., a k, respectively. 
If only k '  < k elements in {al,..., ak} are distinct, then the first k '  elements in 
the chain are the k '  distinct entries of 5, listed in order of increasing index. 

(ii) Suppose that the first l elements {qi: i < l} have been defined, for 
some l < co. To define the next element q~ we proceed as follows: We list in 
lexicographic order all sequences of the form (i 1,..., ip, j ) ,  where il ..... i n < l 
and j ~  {1,2 ..... m}, and we choose the first such sequence for which 
f~(qil  ..... qip) q~ {qi: i < I}. If such a sequence exists, we set qt = fj~(qi~ ..... qi~), 
otherwise q~ is undefined and the natural chain is finite. 

We leave it to the reader to adapt the above definition to the case when 
not all of the function symbols in a have the same arity p />  1 (which also 
includes the possibility of zero-ary, i.e., constant symbols). The proof  of 
Lemma 2.0 is straightforward and is left to the reader. 

LEMMA 2.0. Let A be an arbitrary interpretation and 5 C A k. 

(1) I f  5 generates finitely many elements then the natural chain from 5 
includes all the elements generated by 5. 

(2) I f  6 generates infinitely many elements then the natural chain from 
6 is infinite, but does not necessarily include all the elements generated by 6. 

LEMMA 2.1. Let k >/1. There exists a recursive program 
NEXT(x1,. . . ,  Xk, y) such that, for  every interpretation A and every d E  A k, 
b CA,  if  {qi: i < fl} is the natural chain from 5, then 

NEXTA(5, b) = qj+ l, if  b = qi, for somej withj  + 1 < t 3, 

= b ,  if  b = q i a n d j +  l= f l ,  

= undefined, if b ~ qj, for allj  < ft. 



RECURSIVE PROGRAMS 215 

Proof As before we assume that all function symbols in ~ are of the 
same arity p /~  1. For a given interpretation A, denote by next the partial 
function to be computed by the program NEXT in A. Clearly, the element qi 
in the natural chain from d is none other than 

next(d, next(&..., next(d, next(a, al) ) ...)). 

On an input 6, b, the program NEXT operates as follows: If b = a i, for some 
i < k, it computes the value next(d, b) by executing a sequence of conditional 
instructions. Otherwise, by calling itself repeatedly, NEXT can generate the 
successive elements in the natural chain from 6, until it reaches b. (At this 
moment, we can assume that b = qj, for some j, and that NEXTA(d, q i )=  
next(d, qi) = qi+ ~ holds for all i < j .)  In this case, the program searches for 
the first (lexicographically) sequence (i~,..., ip, l), such that i~ ..... ip < j and 

A f l  (qil,'", qi,) q~ {q0, ql .... , qj}, and produces the outputfA(qil  ..... qi~)" If there 
is no such sequence, NEXT stops with the output equal to b. 

The details of the program NEXT are given on Fig. 1. Its verification is 
left to the reader. 

As we observed above, it may happen that some of the elements generated 
by d do not occur in the natural chain from 6. One can, however, improve 
our program NEXT so that it produces a chain of all elements generated by 
any input. 

THEOREM 2.2. For every k ~ 1, there is a program SUC(x 1 ..... xk, y) 
such that, i f  A is an arbitrary interpretation, d C A k and code: co ~ A is a 
function defined by 

code(O) = a 1 , 

code(n + 1) = sucA(d ,  code(n)), 

then the set {code(n): n C co} coincides with the substructure generated by d 
in A. 

Proof  For the proof we introduce the notion of a recursive program with 
counters, which is a recursive program in the similarity type a extended by 
the arithmetical symbols 0 and s, for zero and successor, respectively. There 
are special variables, called counters, that range over the set co of 
nonnegative integers and occur in the instructions containing arithmetical 
symbols. It is easy to define a recursive program with counters, CSUC, 
satisfying the statement of the theorem with CSUC replacing SUC 
throughout. (The existence of CSUC follows also from the results of 
Section 10 in Constable and Gries (1972). 

First we define a recursive program SUC 1 without counters to simulate 
CSUC on inputs defining infinite subalgebras. For an input (d, b), SUC 1 uses 



216  PAWEE URZYCZYN 

NEXT: inputx  1 , . . . , x k , y  

y e s ~  ° 

output x 2 

u 1 : = x  1 

u 2 : = x  1 

Up : = x 1 

ye:  
_I x3 # x2,x 1 
- I  

yes 1 
output x 3 

no • • • . ~. Y=xk-1 

yes 1 

I no 
j ~ . • • x k ~ x k -  1 , . . . , x  1 

yes 1 
output x k 

- Vl  : = f l  (U l  . . . . .  Up)  . l  

v n : = fn(Ul . . . . .  Up) 

w : = x  1 "I 

ye ye 

output v 1 

I 
oo I I w : = N E X T  (x 1 . . . . .  x k , w )  

yes 

Iotxl I 

no l 
Up 

no 
ii 

ye 

output v n 

yes 

: = NEXT (x 1 . . . . .  Xk,Up) 

I 
no ~, w : = N E X T ( x  1 . . . . .  x k , w )  

~ ' o ~  yes 

n 

u 1 = N E X T ( x  1 , . . . , X k , U  1) 

output y 

FIGURE 1 



RECURSIVE PROORAMS 2 1 7  

variables ranging over the natural chain from d, instead of counters. The 
successor operation is simulated by NEXT, and a 1 plays the role of zero. 
Whenever NEXT is applied to a vector (6, c), the main program checks 
whether its output differs from c or not. If  not, SUC1 jumps to a special exit 
labelled "abort"  and gives no output. Observe that e must occur in the 
natural chain from 6, hence NEXT must converge on (d, e). 

Suppose for a moment that NEXTA(d, e ) ~  e in all cases occurring in the 
computation. This means that the simulation is successful, i.e., either 
SUC~(d,b)=CSUCA(d,b) ,  or both are undefined. A difficulty appears 
when the simulation fails; that is, when NEXTA(& e) = c for some e used as 
a value of a "counter." In the latter case, d can only generate a finite number 
of elements, and NEXT may be used to compute all of them, but not 
necessarily in the order given by CSUC. The latter remark means that the 
algorithm of SUCI cannot be completed by simply producing the output 
NEXTA(d, b) in this case. 

Our program SUC must be more complicated. In order to define it we first 
construct a program SUC2, which works as follows: on input (& b), it sets 
z :=x~ and, while z ~ b, it iterates the procedure z := SUCI(Y, z); at last it 
executes once more z := SUC1(~, z) and sets the value of z to the output. Of 
course, if SUC 2 gives an output then the output is equal to that produced by 
SUC~. In particular, it works successfully, provided d generates infinitely 
many elements. An important property of SUC 2 is that if SUCzA(d,b) is 
defined, then b =  code(n), for some n, and SUCzA(&eode(i))=eode(i+ 1) 
holds for all i < n. 

The program SUC executes the following algorithm: For any given input 
(6, b) it first executes SUC 2 on that input. If  SUC 2 gives an output, this is 
also the output of SUC. Otherwise (when SUC 2 reaches an abort-labelled 
exit), the program searches for the first element c in the natural chain from d 
that cannot be obtained from x = a, z = a~, by iterating z := SUC2(Y, z). For 
this, elements of the natural chain are successively enumerated, and each 
time a new element is produced, all the iterations of SUC 2 are repeated. The 
value e is set to the output. It may happen, however, that such a e does not 
exist. Then SUC outputs b, since b must be the last element in the sequence 
code. | 

Theorem 2.2 enables us to prove our necessary and sufficient condition for 
the expressiveness of Herbrand interpretations. 

THEOREM 2.3. Let A be a Herbrand interpretation. Then the following 
conditions are equivalent: 

(i) A is expressive relative to recursive programs. 

(ii) A is strongly arithmetical or finite. 



218 PAWEE URZYCZYN 

P r o o f  Assume that A is infinite and (i) holds. With no loss of 
generality, assume there is only one zero-ary function symbol f in a. Let 
SUC be a program satisfying the property described in Theorem 2.2, for 
k =  1. Let code: ~o-~A be defined by 

code(O) = f A ,  

code(n + 1) = s u c A ( f  A, code(n)) .  

Further, let F = c o d e -  1: A ~ co. It is straightforward that F is a bijection and 
that, for any a, b C A, 

s u c A ( f A ,  a ) = b  iff F ( a ) +  l = F ( b ) .  

Consider the program SUCC(x, y), which converges iff SUC(f ,  x) converges 
and gives output equal to y. Clearly, any formula defining the domain of 
SUCC A can be chosen as Succ (x ,  y )  in (1.1). It is left to the reader to check 
that there are recursive programs A D D ( x , y , z )  and M U L T ( x , y , z ) ,  
satisfying 

ADDA(a, b, c) converges ,> F(a )  + F(b)  = F(c) ,  

MULTA(a, b, c) converges ~:> F(a )  • F (b )  = F(c) ,  

for all a, b, c ~ A. The formulas A d d  and M u l t  are thus defined as arbitrary 
formulas defining the domains of the above programs. Of course, Z e r o ( x )  is 
the formula "x = f . "  We conclude that A is strongly arithmetical. 

It is easily seen that every finite Herbrand interpretation is expressive 
relative to any class of programs. Thus, suppose that A is a strongly 
arithmetical Herbrand interpretation. We may assume that the domain of A 

A and operations A A is the set co. Thus, its underlying relations rA,..., r n f l  ..... fm  
can be seen as relations and operations in co. Let ( ) denote a recursive 
pairing function and let 

R = {(nr, <in, out)>: in = ( i n l ( i n z ( . . .  ( inp_l ,  inp) . . . ) ) )  and 

( l ~ n r ~ < n A  A • rnr(m I .... , inp) = true A out  = l ) 

V ( l < ~ n r < , n A  a • rnr(tn 1 ..... inp) = false/~ out ----- 0) 

V ( n + l < ~ n r ~ n + r n A  A • f . . . .  (tn 1 ..... inp) = out)}. 

It is easily verified that each program domain is recursively enumerable in R. 
By Rogers (1967, Theorem 7, Chap. 14), any such domain is definable by a 
first-order formula in the similarity type (0, s, +, .) extended by a predicate 
symbol R for the set R. Since the interpretation A is strongly arithmetical, 
we may express the arithmetical operations by formulas in the similarity type 



RECURSIVE PROGRAMS 219 

o, with help of Zero, Add, Mult, and Suce. The predicate symbol R(x) can 

be replaced by a formula using arithmetical symbols and the symbols in or. 

Replacing again the arithmetical predicates by Zero, Add, Mult, and Suet,  
we get a formula in the similarity type o, expressing the domain of a given 
recursive program. II 

ACKNOWLEDGMENTS 

I wish to thank Jerzy Tiuryn, for pointing out that Theorem 2.3, can be used for charac- 
terizing expressiveness. I also wish to thank A. J. Kfoury, for his critical remarks. 

REFERENCES 

CLARKE, E. M., GERMAN, S. M., AND HALPERN, J. Y. (1982), "Effective Axiomatizations of 
Hoare Logics," Research report, Harvard Univ., Cambridge. 

CONSTABLE, R. L., AND GRIES, D. (1972), On classes of program schemata, SlAM J. 
Comput. 1 (1), 66-118. 

COOK, S. A. (1978), Soundness and completeness of an axiom system for program 
verification, SIAM J. Comput. 7 (1), 70-90. 

ROGERS, H. JR. (1967), "Theory of Recursive Functions and Effective ComputabilitY," 
McGraw-Hill, New York. 

URZ¥CZVN, P. (1983), Non-trivial definability by flow-chart programs, Inform. and Control, 
in press. 


