Efficiency and Generalized Convex Duality for Multiobjective Programs

Richard R. Egudo
School of Applied Science, Gippsland Institute of Advanced Education, Switchback Road, Churchill 3842, Australia
Submitted by E. Stanley Lee

Received July 21, 1987

The concept of efficiency (Pareto optimum) is used to formulate duality for multiobjective non-linear programs. The results are obtained for convex functions, ρ-convex (i.e., weakly convex and strongly convex) functions, and pseudoconvex functions. For the convex and ρ-convex functions a Wolfe type of dual is formulated, while for the pseudoconvex and ρ-convex functions, a Mond-Weir type dual is proposed. © 1989 Academic Press, Inc.

1. Introduction and Preliminaries

The aim of this paper is to use the concept of efficiency (Pareto optimum) to formulate duality relationships between the multiobjective non-linear program
(VOP)

$$
\begin{align*}
& \text { Minimize }\left(f_{1}(x), f_{2}(x), \ldots, f_{p}(x)\right) \\
& \text { Subject to } g(x) \leqq 0 \tag{1}
\end{align*}
$$

and the two dual multiobjective programs
Wolfe Vector Dual [11]
(WVD) $\quad \operatorname{Maximize}\left(f_{1}(u)+y^{\prime} g(u), \ldots, f_{p}(u)+y^{\prime} g(u)\right)$

$$
\begin{align*}
& \text { Subject to } \sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)+\nabla y^{\prime} g(u)=0, \tag{2}\\
& y \geqq 0, \tag{3}\\
& \tau_{i} \geqq 0, i=1,2, \ldots, p, \sum_{i=1}^{p} \tau_{i}=1 ; \tag{4}
\end{align*}
$$

Mond-Weir Vector Dual [6]
(DVOP) Maximize $\left(f_{1}(u), f_{2}(u), \ldots, f_{p}(u)\right)$
Subject to (2) through to (4) and

$$
\begin{equation*}
y^{\prime} g(u) \geqq 0 \tag{5}
\end{equation*}
$$

The functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}, i=1,2, \ldots, p$ and $g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ are assumed to be differentiable.

Optimization in (VOP), (WVD), and (DVOP) means obtaining efficient solutions for the corresponding programs.

Definition 1. A feasible solution x^{0} for (VOP) is efficient for (VOP) if and only if there is no other feasible x for (VOP) such that for some $i \in P=\{1,2, \ldots, p\}$

$$
\begin{equation*}
f_{i}(x)<f_{i}\left(x^{0}\right) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}\left(x^{0}\right) \quad \text { for all } \quad j \in P \tag{7}
\end{equation*}
$$

In the case of maximization, the signs of the inequalities (6) and (7) are reversed (i.e., they become $>$ and \geqq, respectively).

For the case where $\tau_{i}, i=1,2, \ldots, p$, are all strictly positive, $f_{i}, i=1$, $2, \ldots, p$, and g are convex; Weir [9] has used proper efficiency [3] to establish some duality results between (VOP) and (WVD). Also, Egudo [2] and Weir [9] have used proper efficiency to obtain duality relationships between (VOP) and (DVOP) where the multipliers $\tau_{i}, i=1$, $2, \ldots, p$, are all strictly positive and a positive linear combination of the objective function components is assumed to be pseudoconvex. Recently Weir [10] obtained a duality result between (VOP) and (DVOP) whereby the objective function components are pseudoconvex but their positive linear combination need not be pseudoconvex.

In $[2,9,10]$, the proofs of strong duality results use the following Geoffrion [3] characterization of proper efficiency.

Lemma 1. If for some fixed $\lambda \in 0 \in \mathbb{R}^{p}, x^{0}$ solves the single objective program

Minimize $\lambda^{t} f(x)$
Subject to $g(x) \leqq 0$;
then x^{0} is properly efficient for (VOP).
In this paper proofs for strong duality results will invoke the following.

Lemma 2 (Theorem 4.1 of Chankong and Haimes [1]). x^{0} is an efficient solution for (VOP) if and only if x^{0} solves
$P_{k}\left(\varepsilon^{0}\right) \quad$ Minimize $f_{k}(x)$

$$
\begin{gathered}
\text { Subject to } f_{j}(x) \leqq f_{j}\left(x^{0}\right) \quad \text { for all } j \neq k, \\
g(x) \leqq 0
\end{gathered}
$$

for each $k=1,2, \ldots, p$.

2. Wolfe Vector Duality

Here we prove weak and strong duality relations between (VOP) and (WVD). First we consider a weak duality result when the functions are convex.

Theorem 1. Assume that for all feasible x for (VOP) and all feasible (u, τ, y) for $(W V D), f_{i}, i=1,2, \ldots, p$, and g are convex functions. If also either
(a) $\tau_{i}>0$ for all $i=1,2, \ldots, p$ or
(b) $\sum_{i=1}^{p} \tau_{i} f_{i}(\cdot)+\sum_{j=1}^{m} y_{j} g_{j}(\cdot)$ is strictly convex at u,
then the following cannot hold:

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}(u)+y^{\prime} g(u) \quad \text { for all } j \in P=\{1,2, \ldots, p\} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(x)<f_{i}(u)+y^{t} g(u) \quad \text { for some } \quad i \in P . \tag{9}
\end{equation*}
$$

Proof. Suppose contrary to the result that (8) and (9) hold. Then since x is feasible for (VOP) and $y \geqq 0$, (8) and (9) imply

$$
\begin{equation*}
f_{j}(x)+y^{t} g(x) \leqq f_{j}(u)+y^{t} g(u) \quad \text { for all } \quad j \in P \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(x)+y^{\prime} g(x)<f_{i}(u)+y^{\prime} g(u) \quad \text { for some } \quad i \in P \tag{11}
\end{equation*}
$$

respectively. Now hypothesis (a) and $\sum_{i=1}^{p} \tau_{i}=1$ imply

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x)+y^{t} g(x)<\sum_{i=1}^{p} \tau_{i} f_{i}(u)+y^{t} g(u) \tag{12}
\end{equation*}
$$

and since f_{i} 's and g are convex and $\tau_{i}>0, i=1,2, \ldots, p, y \geqq 0$, it now follows from (12) that

$$
\begin{equation*}
(x-u)^{t}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)+\nabla y^{t} g(u)\right)<0 \tag{13}
\end{equation*}
$$

which contradicts (2).
Also, since $\tau_{i} \geqq 0, i=1,2, \ldots, p$, and $\sum_{i=1}^{p} \tau_{i}=1,(10)$ and (11) imply

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x)+y^{t} g(x) \leqq \sum_{i=1}^{p} \tau_{i} f_{i}(u)+y^{t} g(u) \tag{14}
\end{equation*}
$$

Now (14) and hypothesis (b) imply (13), again contradicting (2).
Next we state and prove a weak duality result between (VOP) and (WVD) under ρ-convexity. But first we define ρ-convex functions [7, 8].

Definition 2. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be ρ-convex $[7,8]$ if there exists a real number ρ such that for each $x, u \in \mathbb{R}^{n}$ and $0 \leqq \lambda \leqq 1$,

$$
f(\lambda x+(1-\lambda) u) \leqq \lambda f(x)+(1-\lambda) f(u)-\rho \lambda(1-\lambda)\|x-u\|^{2} .
$$

For a differentiable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f$ is ρ-convex if and only if for all x, $u \in \mathbb{R}^{n}$

$$
f(x)-f(u) \geqq(x-u)^{t} \nabla f(u)+\rho\|x-u\|^{2}
$$

If ρ is positive then f is said to be strongly convex $[7,8]$; and if ρ is negative then f is said to be weakly convex [8].

Theorem 2 (Weak Duality). Assume that for all feasible x for (VOP) and all feasible (u, τ, y) for $(W V D), f_{i}, i=1,2, \ldots, p$, are ρ_{i}-convex and g_{i}, $j=1,2, \ldots, m$, are σ_{j}-convex. If also either
(a) $\tau_{i}>0$ for all $i=1,2, \ldots, p$ and $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j} \geqq 0$ or
(b) $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j}>0$,
then the following cannot hold:

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}(u)+y^{t} g(u) \quad \text { for all } \quad j \in P=\{1,2, \ldots, p\} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(x)<f_{i}(u)+y^{t} g(u) \quad \text { for some } \quad i \in P \tag{16}
\end{equation*}
$$

Remark 1. Hypothesis (a) can be interpreted as follows: when all the objective function multipliers are strictly positive then the linear com-
bination of the objective function components plus the non-negative linear combination of the constraint functions should be either convex or strongly convex. Hypothesis (b) can be interpreted as follows: the non-negative linear combination of the objective function components and the constraint functions should be strongly convex. These conditions are weaker than those in Theorem 1 because they allow some of the objective function components and constraint functions to be weakly convex [8] provided that their non-negative linear combination is either convex or strongly convex.

Proof. Suppose contrary to the result that (15) and (16) hold. Then since x is feasible for (VOP) and $y \geqq 0$, (15) and (16) imply

$$
\begin{equation*}
f_{j}(x)+y^{\prime} g(x) \leqq f_{j}(u)+y^{\prime} g(u) \quad \text { for all } j \in P \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{i}(x)+y^{t}(x)<f_{i}(u)+y^{t} g(u) \quad \text { for some } \quad i \in P . \tag{18}
\end{equation*}
$$

Now if hypothesis (a) holds, then from $\tau_{i}>0$ for all $i \in P$, (17), and (18) we obtain

$$
\sum_{i=1}^{p} \tau_{i} f_{i}(x)+y^{t} g(x) \sum_{i=1}^{p} \tau_{i}<\sum_{i=1}^{p} \tau_{i} f_{i}(u)+y^{t} g(u) \sum_{i=1}^{p} \tau_{i}
$$

and since $\sum_{i=1}^{p} \tau_{i}=1$, this inequality reduces to

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i}\left(f_{i}(x)-f_{i}(u)\right)+y^{t} g(x)-y^{\prime} g(u)<0 \tag{19}
\end{equation*}
$$

Now from (19), ρ_{i}-convexity of f_{i} 's, and σ_{j}-convexity of g_{j} 's we obtain

$$
\begin{aligned}
& (x-u)^{t}\left(\sum \tau_{i} \nabla f_{i}(u)+\nabla y^{\prime} g(u)\right) \\
& \quad+\left(\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j}\right)\|x-u\|^{2}<0
\end{aligned}
$$

and since by hypothesis (a), $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j} \geqq 0$, this implies

$$
\begin{equation*}
(x-u)^{x}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)+y^{t} \nabla g(u)\right)<0, \tag{20}
\end{equation*}
$$

which contradicts (2).
Also from (17), (18), and $\tau_{i} \geqq 0, i=1,2, \ldots, p, \sum_{i=1}^{p} \tau_{i}=1$, we obtain

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i}\left(f_{i}(x)-f_{i}(u)\right)+y^{t} g(x)-y^{t} g(u) \leqq 0 \tag{21}
\end{equation*}
$$

and since f_{i}^{\prime} 's are ρ_{i}-convex and g_{j} 's are σ_{j}-convex, (21) implies

$$
\begin{align*}
& (x-u)^{t}\left(\sum_{i=1}^{n} \tau_{i} \nabla f_{i}(u)+\nabla y^{t} g(u)\right) \\
& \quad+\left(\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j}\right)\|x-u\|^{2} \leqq 0 . \tag{22}
\end{align*}
$$

Now by hypothesis (b), $\sum_{i=1}^{p} \tau_{i} \beta_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j}>0$; hence (22) implies (20), again contradicting (2).

Corollary 1. Assume that weak duality (Theorem 1 or 2) holds between (VOP) and (WVD). If $\left(u^{0}, \tau^{0}, y^{0}\right)$ is feasible for (WVD) with $y^{0 t} g\left(u^{0}\right)=0$ and u^{0} is feasible for (VOP), then u^{0} is efficient for (VOP) and (u^{0}, τ^{0}, y^{0}) is efficient for (WVD).

Proof. Suppose that u^{0} is not efficient for (VOP); then there exists a feasible x for (VOP) such that for some $i \in P=\{1,2, \ldots, p\}$,

$$
\begin{equation*}
f_{i}(x)<f_{i}\left(u^{0}\right) \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}\left(u^{0}\right) \quad \text { for all } \quad j \in P \tag{24}
\end{equation*}
$$

By hypothesis $y^{0 t} g\left(u^{0}\right)=0$, so (23) and (24) can be written as

$$
\begin{aligned}
& f_{u}(x)<f_{i}\left(u^{0}\right)+y^{0} g\left(u^{0}\right) \quad \text { for some } \quad i \in P \\
& \text { and } f_{j}(x) \leqq f_{j}\left(u^{0}\right)+y^{0} g\left(u^{0}\right) \quad \text { for all } \quad j \in P
\end{aligned}
$$

respectively; and since (u^{0}, τ^{0}, y^{0}) is feasible in (WVD) and x is feasible for (VOP), these inequalities contradict weak duality (Theorem 1 or 2).

Also suppose that $\left(u^{0}, \tau^{0}, y^{0}\right)$ is not efficient ofr (WVD). Then there exists a feasible (u, τ, y) for (WVD) such that for some $i \in P=\{1,2, \ldots, p\}$

$$
\begin{equation*}
f_{i}(u)+y^{t} g(u)>f_{i}\left(u^{0}\right)+y^{0} g\left(u^{0}\right) \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}(u)+y^{t} g(u) \geqq f_{j}\left(u^{0}\right)+y^{0 t} g\left(u^{0}\right) \quad \text { for all } \quad j \in P \tag{26}
\end{equation*}
$$

and since $y^{0 t} g\left(u^{0}\right)=0,(25)$ and (26) reduce to

$$
f_{i}(u)+y^{\prime} g(u)>f_{i}\left(u^{0}\right) \quad \text { for some } \quad i \in P
$$

and

$$
f_{j}(u)+y^{t} g(u) \geqq f_{j}\left(u^{0}\right) \quad \text { for all } \quad j \in P
$$

respectively. Since u^{0} is feasible for (VOP), these inequalities contradict weak duality (Theorem 1 or 2). Therefore u^{0} and (u^{0}, τ^{0}, y^{0}) are efficient for their respective programs.

Theorem 3 (Strong Duality). Let x^{0} be an efficient solution for (VOP) and assume that x^{0} satisfies a constraint qualification $[4,5]$ for $P_{k}\left(\varepsilon^{0}\right)$ for at least one $k=1,2, \ldots, p$; then there exist $\tau^{0} \in \mathbb{R}^{p}$ and $y^{0} \in \mathbb{R}^{m} \operatorname{such}\left(x^{0}, \tau^{0}, y^{0}\right)$ is feasible for ($W V D$) and $y^{0 t} g\left(x^{0}\right)=0$. If also weak duality (Theorem 1 or 2) holds between (VOP) and (WVD) then $\left(x^{0}, \tau^{0}, y^{0}\right)$ is efficient for (WVD).

Proof. Since x^{0} is efficient for (VOP), from Lemma 2, x^{0} solves $P_{k}\left(\varepsilon^{0}\right)$ for all $k=1,2, \ldots, p$. By hypothesis there exists a $k \in P=\{1,2, \ldots, p\}$ for which x^{0} satisfies a constraint qualification of $P_{k}\left(\varepsilon^{0}\right)$. Now from Kuhn-Tucker necessary conditions [4,5] there exist $\tau_{i} \geqq 0$ for all $i \neq k$ and $y \geqq 0 \in R^{m}$ such that

$$
\begin{align*}
f_{k}\left(x^{0}\right)+\sum_{i \neq k} \tau_{i} \nabla f_{i}\left(x^{0}\right)+\sum_{j=1}^{m} y_{j} \nabla g_{j}\left(x^{0}\right) & =0 \tag{27}\\
y^{t} g\left(x^{0}\right) & =0 \tag{28}
\end{align*}
$$

Now dividing all terms in (27) and (28) by $1+\sum_{i \neq k} \tau_{i}$ and setting

$$
\tau_{k}^{0}=\frac{1}{1+\sum_{i \neq k} \tau_{i}}>0, \quad \tau_{j}^{0}=\frac{\tau_{j}}{j+\sum_{1 \neq k} \tau_{i}} \geqq 0
$$

and

$$
y^{0}=\frac{y}{1+\sum_{i \neq k} \tau_{i}} \geqq 0
$$

we conclude that (x^{0}, τ^{0}, y^{0}) is feasible for (WVD). Efficiency of (x^{0}, τ^{0}, y^{0}) for (WVD) now follows from Corollary 1.

3. Mond-Weir Vector Duality

In this section we present weak and strong duality relations between programs (VOP) and (DVOP). The weak duality results are given under two conditions: one when objective function components are pseudoconvex and the constraint functions are quasiconvex and the other when the functions are ρ-convex.

Theorem 4 (Weak Duality). Assume that for all feasible X for (VOP) and all feasible (u, τ, y) for (DVOP), $y^{\prime} g(\cdot)$ is quasiconvex at u. If also any of the following holds.
(a) $\tau_{i}>0, \forall i \in P=\{1,2, \ldots, p\}$, and $f_{i}, i=1,2, \ldots, p$, are pseudoconvex at u;
(b) $\tau_{i}>0$, for all $i \in P$ and $\sum_{i=1}^{p} \tau_{i} f_{i}(\cdot)$ is pseudoconvex at u;
(c) $\sum_{i=1}^{p} \tau_{i} f_{u}(\cdot)$ is strictly pseudoconvex at u,
then the following cannot hold:

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}(u) \quad \text { for all } j \in P=\{1,2, \ldots, p\} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}(x)<f_{i}(u) \quad \text { for some } \quad i \in P \tag{30}
\end{equation*}
$$

Proof. For each feasible x for (VOP) and each feasible $(u, \tau, y$) for (DVOP) we have $y^{t} g(x)-y^{\prime} g(u) \leqq 0$; and since $y^{t} g(\cdot)$ is quasiconvex at u this implies

$$
\begin{equation*}
(x-y)^{\prime} \nabla y^{\prime} g(u) \leqq 0 \tag{31}
\end{equation*}
$$

Applying (31) to $\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)+\nabla y^{t} g(u)=0$ yields

$$
\begin{equation*}
(x-u)^{t} \sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u) \geqq 0 \tag{32}
\end{equation*}
$$

Now suppose contrary to the result of the theorem that (29) and (30) hold. If $\tau_{i}>0$ for all $i=1,2, \ldots, p$ then (29) and (30) imply

$$
\begin{equation*}
\tau_{j} f_{j}(x) \leqq \tau_{j} f_{j}(u) \quad \text { for all } \quad j \in P=\{1,2, \ldots, p\} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{i} f_{i}(x)<\tau_{i} f_{i}(u) \quad \text { for some } \quad i \in P \tag{34}
\end{equation*}
$$

respectively. Equations (33) and (34) also imply

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x)<\sum_{i=1}^{p} \tau_{i} f_{i}(u) \tag{35}
\end{equation*}
$$

By hypothesis (a), i.e., f_{i} 's are pseudoconvex, (33) and (34) imply

$$
\begin{equation*}
(x-u)^{t}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)\right)<0 \tag{36}
\end{equation*}
$$

contradicting (32).
By hypothesis (b), i.e., $\sum_{i=1}^{p} \tau_{i} f_{i}(\cdot)$ is pseudoconvex at u, (35) implies (36), again contradicting (32).

Now from $\tau_{i} \geqq 0, i=1,2, \ldots, p$, (29), and (30) we obtain

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x) \leqq \sum_{i=1}^{p} \tau_{i} f_{i}(u) \tag{37}
\end{equation*}
$$

and by hypothesis (c), i.e., $\sum_{i=1}^{p} \tau_{i} f_{i}(\cdot)$ is strictly pseudoconvex, (37) implies (36), again contradicting (32).

Theorem 5 (Weak Duality). Assume that for all feasible x for (VOP) and all feasible (u, τ, y) for ($D V O P$), $f_{i}, i=1,2, \ldots, p$, are ρ_{i}-convex and g_{j}, $j=1,2, \ldots, m$, are σ_{j}-convex. If either
(a) $\tau_{i}>0$ for all $i \in P=\{1,2, \ldots, p\}$ and $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j} \geqq 0$, or
(b) $\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j}>0$,
then the following cannot hold:

$$
\begin{equation*}
f_{i}(x)<f_{i}(u) \quad \text { for some } \quad i \in P=\{1,2, \ldots, p\} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{j}(x) \leqq f_{j}(u) \quad \text { for all } \quad j \in P . \tag{39}
\end{equation*}
$$

Proof. Suppose contrary to the result that (38) and (39) hold; then for $\tau_{i}>0$ for each $i=1,2, \ldots, p$, (38) and (39) imply

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x)<\sum_{i=1}^{p} \tau_{i} f_{i}(u) ; \tag{40}
\end{equation*}
$$

and for $\tau_{i} \geqq 0, i=1,2, \ldots, p$, (38) and (39) imply

$$
\begin{equation*}
\sum_{i=1}^{p} \tau_{i} f_{i}(x) \leqq \sum_{i=1}^{p} \tau_{i} f_{i}(u) . \tag{41}
\end{equation*}
$$

Now since f_{i} 's are ρ_{i}-convex (40) and (41) imply

$$
\begin{gather*}
(x-u)^{t}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)\right)+\left(\sum_{i=1}^{p} \tau_{i} \rho_{i}\right)\|x-u\|^{2}<0, \tag{42}\\
(x-u)^{t}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)\right)+\left(\sum_{i=1}^{p} \tau_{i} \rho_{i}\right)\|x-u\|^{2} \leqq 0, \tag{43}
\end{gather*}
$$

respectively. Also, since (u, τ, y) is feasible for (DVOP) and x is feasible for (VOP) we have

$$
\begin{equation*}
y^{\prime} g(x)-y^{\prime} g(u) \leqq 0 ; \tag{44}
\end{equation*}
$$

and because g 's are σ_{j}-convex (44) implies

$$
\begin{equation*}
(x-u)^{t} \nabla y^{t} g(u)+\|x-u\|^{2} \sum_{j=1}^{m} y_{j} \sigma_{j} \leqq 0 . \tag{45}
\end{equation*}
$$

Now adding (42) and (45) and then applying hypothesis (a), i.e.,

$$
\sum_{i=1}^{p} \tau_{i} \rho_{i}+\sum_{j=1}^{m} y_{j} \sigma_{j} \geqq 0,
$$

yield

$$
\begin{equation*}
(x-u)^{t}\left(\sum_{i=1}^{p} \tau_{i} \nabla f_{i}(u)+\sum_{j=1}^{m} y_{j} \nabla g_{j}(u)\right)<0, \tag{46}
\end{equation*}
$$

which contradicts (2). Also, adding (43) and (45) and then applying hypothesis (b) yield (46), again contradicting (2).

Corollary 2. Assume weak duality (Theorem 4 or 5) holds between (VOP) and (DVOP). If $\left(u^{0}, \tau^{0}, y^{0}\right)$ is feasible for (DVOP) such that u^{0} is feasible for (VOP), then u^{0} is efficient for (VOP) and $\left(u^{0}, \tau^{0}, y^{0}\right)$ is efficient for (DVOP).

Proof. First we show that u^{0} is efficient for (VOP). Suppose that u^{0} is not efficient for (VOP); then therc exists a feasible x for (VOP) such that (29) and (30) or (38) and (39) hold. But (u^{0}, τ^{0}, y^{0}) is feasible for (DVOP); hence the result of weak duality (Theorem 4 or 5) is contradicted. Therefore u^{0} must be efficient for (VOP). Similarly assuming that (u^{0}, τ^{0}, y^{0}) is not efficient for (DVOP) leads to a contradiction, and hence $\left(u^{0}, \tau^{0}, y^{0}\right)$ is efficient for (DVOP).

Theorem 6 (Strong Duality). Let x^{0} be efficient for (VOP) and assume that x^{0} satisfies a constraint qualification $[4,5]$ for $P_{k}\left(\varepsilon^{0}\right)$ for at least one $k=1,2, \ldots, p$. Then there exist $\tau^{0} \in \mathbb{R}^{p}$ and $y^{0} \in \mathbb{R}^{m}$ such that $\left(x^{0}, \tau^{0}, y^{0}\right)$ is feasible for (DVOP). If also weak duality (Theorem 4 or 5) holds between (VOP) and (DVOP) then (x^{0}, τ^{0}, y^{0}) is efficient for (DVOP).
Proof. Since x^{0} is an efficient solution of (VOP), then from Lemma 2, x^{0} solves $P_{k}\left(\varepsilon^{0}\right)$ for each $k=1,2, \ldots, p$. By hypothesis there exists at least one $k=1,2, \ldots, p$ such that x^{0} satisfies a constraint qualification [4,5] for $P_{k}\left(\varepsilon^{0}\right)$. From Kuhn-Tucker necessary conditions [4,5] we obtain $\tau_{i} \geqq 0$ for all $i \neq k$, and $y \geqq 0 \in \mathbb{R}^{m}$ such that

$$
\begin{align*}
\nabla f_{k}\left(x^{0}\right)+\sum_{i \neq k} \tau_{i} \nabla f_{i}\left(x^{0}\right)+\nabla y^{t} g\left(x^{0}\right) & =0 \tag{47}\\
y^{t} g\left(x^{0}\right) & =0 . \tag{48}
\end{align*}
$$

Now dividing (47) and (48) by $1+\sum_{i \neq k} \tau_{i}$ and defining

$$
\tau_{k}^{0}=\frac{1}{1+\sum_{i \neq k} \tau_{i}}>0, \quad \tau_{j}^{0}=\frac{\tau_{j}}{1+\sum_{i \neq k} \tau_{i}} \geqq 0 \quad \text { for all } j \neq k
$$

and

$$
y^{0}=\frac{y}{1+\sum_{i \neq k} \tau_{i}} \geqq 0,
$$

we conclude that (x^{0}, τ^{0}, y^{0}) is feasible for (DVOP). The efficiency of (x^{0}, τ^{0}, y^{0}) for (DVOP) now follows from Corollary 2.

Rfffrences

1. V. Chankong and Y. Y. Haimes, "Multiobjective Decision Making: Theory and Methodology," North-Holland, New York, 1983.
2. R. R. Egudo, Proper efficiency and multiobjective duality in non-linear programming, J. Inform. Optim. Sci. 8 (1987), 155-166.
3. A. M. Geoffrion, Proper efficiency and the theory of vector maximization, J. Math. Anal. Appl. 22 (1968), 618-630.
4. H. W. Kuhn and A. W. Tucker, Nonlinear programming, in "Proceedings, Berkeley Symposium on Mathematical Statistics and Probability," pp. 481-492, Univ. of California Press, Berkeley, CA, 1950.
5. O. L. Mangasarian, "Nonlinear Programming," McGraw-Hill, New York, 1969.
6. B. Mond and T. Weir, Generalized concavity and duality, in "Generalized Concavity in Optimization and Economics" (S. Schaible and W. T. Ziemba, Eds), pp. 263-279, Academic Press, San Diego, 1981.
7. J. P. Vial, Strong convexity of sets and functions, J. Math. Econom. 9 (1982), 187-205.
8. J. P. Vial, Strong and weak convexity of sets and functions, Math. Oper. Res. 8 (1983), 231-259.
9. T. Weir, Proper efficiency and duality for vector valued optimization problems, J. Austral. Math. Soc. Ser. A, in press.
10. T. Weir, A duality theorem for multiple objective fractional optimization problem, Bull. Austral. Math. Soc. 34 (1986), 415-425.
11. P. Wolfe, A duality theorem for nonlinear programming, Quart. Appl. Math. 19 (1961), 239-244.
