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Abstract

Given n taxa, exactly one topology for every subset of four taxa, and a positive integer k (the parameter),
the Minimum Quartet Inconsistency (MQI) problem is the question whether we can find an
evolutionary tree inducing a set of quartet topologies that differs from the given set in only k quartet
topologies. The more general problem where we are not necessarily given a topology for every subset of
four taxa appears to be fixed-parameter intractable. For MQI, however, which is also NP-complete, we can

compute the required tree in time Oð4kn þ n4Þ: This means that the problem is fixed-parameter tractable
and that in the case of a small number k of ‘‘errors’’ the tree reconstruction can be done efficiently. In
particular, for minimal k; our algorithm can produce all solutions that resolve k errors. Additionally, we
discuss significant heuristic improvements. Experiments underline the practical relevance of our solutions.
r 2003 Elsevier Inc. All rights reserved.

Keywords: Computational biology; Minimum quartet inconsistency; Parameterized complexity; Phylogeny; Quartet

methods

1. Introduction

To determine the evolutionary relationship of a set of taxa, e.g., based on DNA or protein
sequence data, is an important question in computational biology. A common model for this
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relationship is an evolutionary tree, a binary tree T in which the leaves are bijectively labeled by
the taxa. In recent years, quartet methods for reconstructing evolutionary trees have received
considerable attention [9,19]. Here, a quartet is a size four subset fa; b; c; dg of the set of taxa and
the quartet topology for fa; b; c; dg induced by T simply is the four leaves subtree of T for
fa; b; c; dg: The three possible quartet topologies for fa; b; c; dg are ½abjcd	; ½acjbd	; and ½adjbc	:
They are shown in Fig. 1.2 The fundamental goal of quartet methods is, given a set of
quartet topologies, to reconstruct the corresponding evolutionary tree. Herein, the given set
of quartet topologies can be incomplete, may contain errors or more than one topology for one
quartet. Hence, to reconstruct (a good estimation of) the original evolutionary tree becomes an
optimization problem, which generally turns out to be NP-hard.
In this paper, we focus on the Minimum Quartet Inconsistency (MQI) problem.
Minimum Quartet Inconsistency (MQI)
Input: A set S of n taxa and a set QS of ðn

4
Þ quartet topologies such that there is exactly one

topology for every quartet corresponding to S and a positive integer k:
Question: Is there an evolutionary tree T where the leaves are bijectively labeled by the elements

from S such that the set of quartet topologies induced by T differs from QS in at most k quartet
topologies?
MQI is NP-complete [6,20]. It is worth noting, as was pointed out by Steel [24], that the quartet

cleaning algorithm by Berry et al. [6] finds the optimal solution for instances with koðn 
 3Þ=2:
Therefore, MQI is NP-hard only for kXðn 
 3Þ=2: It is known that MQI is polynomial time

approximable with a factor n2 [19], and it is an open question of [19] whether MQI can be
approximated with a factor at most n or even with a constant factor. Heuristics for the problem
include semidefinite programming [3] and the widely used quartet puzzling [25]. The parameterized
complexity of MQI, however, so far, has apparently been neglected—we close this gap here. For
the case that the number k of ‘‘wrong’’ quartet topologies is small in comparison with the total
number of given quartet topologies, we show that MQI is fixed-parameter tractable and can be

solved exactly in worst-case time Oð4kn þ n4Þ: Observe that the input size is Oðn4Þ: The more
general variant of MQI where the set QS is not required to contain a topology for every quartet
(subsequently referred to as Sparse MQI) is NP-complete even if k ¼ 0 [23]. Hence, this excludes
parameterized complexity studies and also implies inapproximability (with any factor).
To establish the correctness and the running time of our algorithm, we exhibit some nice

combinatorial properties of MQI. For instance, loosely speaking, we point out that ‘‘global
conflicts’’ due to erroneous quartet topologies in fact can be led back to ‘‘local conflicts.’’ The
basis for this was laid by Colonius and Schultze [11], and by Bandelt and Dress [2]. This property
is fundamental for our algorithms. Moreover, for minimal k; our approach makes it possible to
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Fig. 1. Possible quartet topologies for quartet fa; b; c; dg; which are (from left to right) ½abjcd	; ½acjbd	; and ½adjbc	:

2A fourth possible topology is the star topology which is not considered here because it is not binary.
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construct all evolutionary trees that can be (uniquely) obtained from the given input by changing
k quartet topologies. This puts the user of the algorithm in the position to select (e.g., based on
additional biological knowledge) the probably best, most reasonable solution. Our method also
generalizes to weighted quartets. We consider further parameterizations of the base problems and
fixed-parameter results for them, and we discuss some heuristic improvements to reduce the
practical running time of our main algorithm significantly.
We performed several experiments on synthetic and real (fungi) data and, thereby, showed that

our algorithm (due to intensive tuning) in practice runs much faster than its theoretical (worst-
case) analysis predicts. For instance, with a small k (e.g., k ¼ 100), we can solve relatively large
(n ¼ 50 taxa) instances optimally in around 8 minutes on a LINUX PC with a Pentium III
750 MHz processor and 192 MB main memory.

2. Preliminaries

Quartet methods infer the evolutionary tree only for four taxa, called a quartet, at a time. Once
having determined the evolutionary tree for every quartet of taxa, they try to combine these
evolutionary trees involving four taxa, called quartet topologies, in order to obtain a tree
containing all taxa.
There are several reasons why quartet methods are widely used in practice. They are founded on

the fact that an evolutionary tree is uniquely characterized by the quartet topologies for its size
four sets of taxa [8]. From this set of topologies, we can efficiently compute the tree in polynomial

time Oðn4Þ [5]. Quartet methods clearly divide the tree construction process in two stages—we can
use an arbitrary, even computationally expensive tree construction method for inferring the
quartet topologies, while the recombination of topologies can be handled independently of the
method chosen for inference. Another reason to use quartet methods is data disparity as discussed
by Chor [9]: In practice, we often do not have the same amount of data for all considered taxa,
e.g., not the same set of sequenced proteins. In general, tree construction methods cannot take
advantage of information available only for a subset of taxa. Quartet methods, however, allow us
to use the maximum amount of information available for the four taxa of a quartet when we
compute its quartet topology.
The limitation of quartet methods in practice is caused by the process of quartet inference

which can be erroneous. Therefore, we cannot be sure that there exists a tree inducing the inferred
set of quartet topologies. Assuming that the number of errors is small compared to the number of
correct topologies, we will try to overcome this problem by searching for a tree that matches the
inferred topologies as ‘‘closely’’ as possible.

Recombination of quartet topologies without errors: Given exactly one quartet topology for every
quartet of taxa, it is possible to decide in polynomial time whether there is a binary tree inducing
all of the given quartet topologies, and, if so, to actually construct the tree [5]. Bryant and Steel [7]

solve in time Oðn5Þ the analogous problem in the case that we have one or two topologies for each
quartet and the topologies are weighted. Both algorithms rely on the fact that the given set of
topologies contains a topology for every quartet. In the more general situation in which we are not
necessarily given a topology for every quartet, the problem of deciding whether there is a binary
tree inducing all the given topologies is NP-complete [23].
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Inferring strongly supported parts of the tree: There are situations in which there is no binary tree
inducing the given set of topologies. In the following, we mention methods that infer bipartitions of
taxa which are particularly supported by the given quartet topologies and which can be seen as edges
of a tree; these methods yield trees that are not necessarily fully resolved, i.e., that are not binary.
The Q� method by Berry and Gascuel [5] infers, for a complete set of quartet topologies, only

the completely supported edges, an approach proposed by Buneman [8]: Given a tree with its leaves
bijectively labeled by the given set S of taxa, an edge e in the tree defines a bipartition of S into
sets Ae and Be; each of them containing the taxa in the subtree rooted at one end of e:We call edge
e completely supported if, for every a; a0AAe and b; b0ABe; the corresponding quartet topology is
½aa0jbb0	: The set of quartet topologies induced by the completely supported edges is called Q�:

Berry and Gascuel [5] present an algorithm computing Q� in running time Oðn4Þ:
Another approach, called quartet cleaning, tries to correct obvious quartet errors if their number

is bounded [4,6,12,18,20]. We distinguish edge and vertex quartet cleaning, as well as global and
local algorithms. Edge quartet cleaning applies if the number of errors across one edge is smaller
than some bound, in vertex quartet cleaning the errors across a vertex has to be bounded (for the
definition of errors across an edge or a vertex, resp., see, e.g., [6]). Global quartet cleaning
algorithms correct errors only if the errors are bounded for every edge or vertex. Local algorithms
correct errors also when errors are bounded only for one edge or vertex. For an overview of
quartet cleaning results refer to Della Vedova and Wareham [12]. The global edge quartet
cleaning algorithm given by Berry et al. [6] computes the optimal tree if, for every edge e inducing
a bipartition of taxa into sets Ae and Be; we have fewer than ðjAej 
 1ÞðjBej 
 1Þ=2 quartet errors
across this edge. This value is minimal for jAej ¼ 2 and jBej ¼ n 
 2 and, therefore, quartet
cleaning computes a guaranteed optimal solution if the total number of quartet errors is smaller
than ðn 
 3Þ=2:

Minimum quartet inconsistency: In order to find the ‘‘best’’ binary tree for a given set of quartet
topologies, we can ask for a tree that violates a minimum number of topologies. If we are given
exactly one quartet topology for every set of four taxa, this question is the MQI problem. If there
is not necessarily a quartet topology for every set of four taxa, the more general question is
referred to as Sparse MQI. Ben-Dor et al. [3] give an exact algorithm for the Sparse MQI
problem, based on dynamic programming. For every subset of i taxa, it computes the optimal tree
for these taxa based on the optimal trees for the subsets of i 
 1 taxa, with i running up to the
total number n of species. The resulting running time is Oð3nmÞ; where n is the number of species
and m is the number of given quartet topologies, and the memory requirement is Yð2nÞ:
Regarding heuristics, Ben-Dor et al. [3] use semidefinite programming to obtain, in polynomial

time, possibly non-optimal solutions for Sparse MQI. A widely used heuristic for MQI is quartet
puzzling by Strimmer and von Haeseler [25]. Its main idea is to build the tree incrementally,
starting with four taxa and adding one taxon at a time in a greedy way. To avoid local traps the
algorithm repeats this process and, finally, constructs a (possibly non-binary) consensus of the
single trees.
Not much is known about approximability of MQI. Jiang et al. [19] mention a factor

n2-approximation, at the same time asking for better approximation results. Note that the
complement problem of MQI, where one tries to find a tree T that maximizes the number of given
quartet topologies induced by T ; possesses a polynomial time approximation scheme [18,20]
which, however, is not used in practice due to its high running time.
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Some notation: Assume that we are given a set of n taxa S: A set of quartet topologies is
complete if it contains exactly one topology for every quartet of S: A complete set of quartet
topologies for the quartets over S we denote by QS: A set of quartet topologies Q is tree-consistent
[2] if there exists a tree T such that, for the set QT of quartet topologies induced by T ; we have
QDQT : Set Q is tree-like [2] if there exists a tree with Q ¼ QT : Since an evolutionary tree is
uniquely characterized by the topologies for all its quartets [8], a complete set of topologies is tree-
consistent if and only if it is tree-like. Intuitively, a set of topologies has a ‘‘conflict’’ whenever it is
not tree-consistent. We will call a conflict ‘‘global,’’ when a complete set of topologies is not tree-
consistent. In contrary, we call it ‘‘local,’’ when a size three set of topologies, which necessarily is
incomplete, is not tree-consistent.
We investigate MQI in the context of parameterized complexity [13], where a problem is called

fixed-parameter tractable if it can be solved in deterministic time f ðkÞnOð1Þ: Herein, f may be an
arbitrary (usually exponential or worse) function only depending on a parameter k; but not
depending on the input size n: Besides the monograph [13], some recent surveys on parameterized
complexity are [1,14,15].

3. Global conflicts are local

The key to develop a fixed-parameter solution for MQI is as follows: It is sufficient to examine
the size three sets of quartet topologies and to recursively branch on local conflicts. We use results
by Bandelt and Dress [2] who introduced the substitution property to identify subsets of quartet
topologies which cause conflicts: Given a set of taxa S and a complete set of quartet topologies QS

over these taxa, a set S5DS of five taxa satisfies the substitution property if, for every choice of
distinct a; b; c; d; eAS5; ½abjcd	AQS implies ½abjce	AQS or ½aejcd	AQS:

Proposition 1 (Proposition 6 in Bandelt and Dress [2]). Given a set of taxa S and a complete set of
quartet topologies QS and some taxon fAS; then QS is tree-like iff every size five set of taxa that
contains f satisfies the substitution property.

The proof for Proposition 1 (given in [2]) relies on the ‘‘denseness’’ given in a complete set of
quartet topologies (for short, we sometimes only write topologies).
In the following, we show that in Proposition 1, we can replace the substitution property with

the more common term of tree-consistency.

Lemma 1. Three topologies involving more than five taxa are tree-consistent.

Proof. Assume we have topologies t1; t2; and t3 involving more than five taxa. We distinguish two
cases, in which case (1) will apply if one of t1; t2; t3 involves a taxon not occurring in the other
two topologies. Case (2) will apply if, for each pair of topologies from t1; t2; t3; there are exactly
two taxa occurring in both topologies. Counting arguments make sure that either case (1) or case
(2) applies. Assume that case (1) does not apply: Then, we have three quartets, each of them
containing four from the at least six given taxa, and every taxon has to occur in at least two of the
three quartets. This is only possible for exactly six taxa—here case (2) applies. With more than six
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taxa one would necessarily have a taxon occurring in only one of the topologies; this is handled in
case (1).

Case (1): A topology tAft1; t2; t3g contains a taxon occurring in none of the other topologies.
Assume, w.l.o.g., that t ¼ t1 ¼ ½abjcd	 and that a is the taxon occurring only in t1 and not in t2 or
t3: We can certainly find a tree T inducing t2; and t3; since the topologies for only two different
quartets are always tree-consistent.
In the case that b does occur in t2 or t3; we replace in T the leaf b by an inner node having two

leaves as its children, one labeled with a and the other with b: In the case that b does not occur in
t2 and t3; we also create a new inner node with children a and b; and insert it at some arbitrary
edge of T :
The modified tree induces t1; t2; t3; hence they are tree-consistent.
Case (2): For each pair of topologies from t1; t2; t3; there are exactly two taxa occurring in both

topologies. W.l.o.g., we can assume that topology t1 is given for quartet fa; b; c; dg; topology t2 is
given for quartet fa; b; e; f g; and topology t3 is given for quartet fc; d; e; f g: Checking all possible
combinations of topologies for t1; t2; t3 (we omit the details here), we find that we always can find
a tree inducing t1; t2; t3: &

When searching for local conflicts, Lemma 1 makes it possible to focus on the case of three
topologies involving only five taxa. If the substitution property is not satisfied for taxa
a; b; c; d; eAS; since ½abjcd	AQS but ½abjce	eQS and ½aejcd	eQS; then we say that the topologies
for the quartets fa; b; c; dg; fa; b; c; eg; and fa; c; d; eg contradict the substitution property.

Lemma 2. For a given a set of taxa S, three topologies consisting of taxa from S are tree-consistent
iff they do not contradict the substitution property.

Proof. First, we note that with three topologies involving more than five taxa, on the one hand,
we can build a tree inducing these taxa (according to Lemma 1) and, on the other hand, these taxa
cannot contradict the substitution property (the substitution property is formulated over five taxa
only). Therefore, we can in the following focus on the case of three topologies involving only five
taxa.
ð)Þ As the three topologies are tree-consistent, we can find a tree inducing the topologies. The

set of induced topologies is tree-like. With Proposition 1 the substitution property holds.
ð(ÞWe are given three topologies which do not contradict the substitution property and which

involve five taxa fa; b; c; d; eg:
First, we want to reduce the number of cases we have to consider. For three topologies over five

taxa which do not contradict the substitution property, we show that it is, w.l.o.g., possible to
assume that two of them are ½abjcd	 and ½abjce	: This means that two of the topologies have to be
equal on one side. Assuming that this is not true leads to a contradiction. To see this, we take two
topologies t1 ¼ ½abjcd	 and t2 ¼ ½acjde	; and show that there is no topology t3 with the properties
(1) that t1; t2; t3 do not contradict the substitution property and (2) that no side of t3 equals a side
of t1 or t2: Topology t3 cannot be a topology for quartets fa; b; c; eg or fa; b; d; eg: The reason is
that, given topology t1 ¼ ½abjcd	; the substitution property would require either topology ½aejcd	
(and ½bejcd	) or topology ½abjce	 (and ½abjde	). Since ½aejcd	 would contradict t2; we necessarily
would have that the topology is ½abjce	 or ½abjde	: These, however, would contradict property (2),
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because they equal t1 in the ‘‘ab side.’’ Analogously, t3 cannot be a topology for quartet
fb; c; d; eg—the substitution property would require that the topology is ½bcjde	; which would
contradict property (2), since it equals t2 in the ‘‘de side.’’ Since there are no quartets over
fa; b; c; d; eg remaining, there are no choices left for t3: Therefore, our assumption was wrong.
Thus, for three topologies over five taxa, where the topologies do not contradict the substitution
property, this justifies that two of the topologies have to be equal on one side.
With the preceding considerations, we can, w.l.o.g., assume that two of the given topologies are

t1 ¼ ½abjcd	 and t2 ¼ ½abjce	: We are given a third topology t3: There remain three quartets over
fa; b; c; d; eg whose topology can take this place. These quartets are fa; b; d; eg; fa; c; d; eg; and
fb; c; d; eg:
In Table 1, we list the three quartets and, for each of these three quartets, the three possible

topologies it can take. In case the resulting triple of topologies does not contradict the substitution
property, we complete them to a set of tree-like topologies, as shown in the last column of Table 1.
For these choices of t3 we, thereby, show that t1; t2; t3 are tree-consistent. In two of the listed
cases, we cannot complete the three topologies to a tree-like set. We find, however, that those
triples of topologies contradict the substitution property. With the choice of t3 ¼ ½adjbe	; the
substitution property requires that we have either topology ½adjbc	 or topology ½acjbe	; in
contradiction to topologies t1 and t2: Analogously, the topologies contradict the substitution
property with the choice of t3 ¼ ½aejbd	: &

Note that Lemma 2 involving a necessarily incomplete set of three topologies does not
generalize from size three to an incomplete set of arbitrary size, as exhibited in the following
example. For taxa fa; b; c; d; e; f g; consider the incomplete set of topologies ½abjcd	; ½bcjde	;
½cdjef 	; and ½af jde	: Without going into the details, we only state here that these topologies
are not tree-consistent, although there are no three topologies which contradict the substitution
property.
With Lemma 2 we can now give another interpretation of Proposition 1.
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Table 1

The quartet topologies considered in the proof of Lemma 2

Topology Topology Topology Contradict Completion

t1 t2 t3 the subst. prop. to tree-like set

½abjcd	 ½abjce	 ½abjde	 No ½aejcd	; ½bejcd	
½adjbe	 Yes

½aejbd	 Yes

½acjde	 No ½abjde	; ½bcjde	
½adjce	 No ½abjde	; ½bdjce	
½aejcd	 No ½abjde	; ½bejcd	

½bcjde	 No ½abjde	; ½acjde	
½bdjce	 No ½abjde	; ½adjce	
½bejcd	 No ½abjde	; ½aejcd	

J. Gramm, R. Niedermeier / Journal of Computer and System Sciences 67 (2003) 723–741 729



Theorem 1. Given a set of taxa S, a complete set of quartet topologies QS over S, and some taxon
fAS; QS is tree-like (and, thus, tree-consistent) iff every set of three topologies from QS which

involves f is tree-consistent.

Proof. By Lemma 2 we replace the substitution property in Proposition 1 with tree-
consistency. &

Given a complete set of topologies QS for a set of taxa S; we do not necessarily know
whether the set is tree-like or not. If it is not, we can, according to Theorem 1, choose
an arbitrary taxon fAS and track down a subset of three topologies that involves f and
that is not tree-consistent. Our goal will be to detect all these local conflicts involving
f : This will be the preprocessing stage of the algorithm that will be described in Section 5;
the subsequent stage of the algorithm will (try to) ‘‘repair’’ these conflicts. We can find

all local conflicts involving f in time Oðn4Þ as follows. Since, following Lemma 1, only
three topologies involving five taxa can form a local conflict, it suffices to consider
all size four sets of taxa fa; b; c; dgDS together with the chosen fAS: There are five
quartets over this size five set of taxa, namely, fa; b; c; dg; fa; b; c; f g; fa; b; d; f g;
fa; c; d; f g; and fb; c; d; f g: For the topologies of these quartets, we can test, in constant
time, whether there are three among them that are not tree-consistent. Doing so for every
choice of fa; b; c; dgDS; we will find all local conflicts involving f : We summarize these
considerations in the following lemma.

Lemma 3. If we are given a set S of taxa, some taxon fAS; and a complete set QS of quartet
topologies that is not tree-consistent, then QS has at least one local conflict involving f and all local

conflicts involving f can be found in time Oðn4Þ:

4. Combinatorial characterization of local conflicts

Given three topologies, we need to decide whether they are tree-consistent or not. Directly
using the definition of tree-consistency turns out to be a rather technical, troublesome task,
since we have to reason whether or not a tree topology exists that induces the topologies.
Similarly, it can be difficult to test, for the topologies, whether or not they contradict
the substitution property. To make things less technical and easier to grasp, we subsequently
give a combinatorial characterization of local conflicts. Note that in the following definition
we distinguish two possible orientations of a quartet topology ½abjcd	; namely ½abjcd	 and
½cdjab	:

Definition 1. Given a set of topologies where each of the topologies is assigned an orientation, let l
be the number of different taxa occurring in the left-hand sides of the topologies and let r be the
number of different taxa occurring in the right-hand sides of the topologies.
The signature of the set of topologies, then, is the pair ðl; rÞ that, over all possible orientations

for these topologies, minimizes l:
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Theorem 2. Three quartet topologies are not tree-consistent iff they involve five taxa and their

signature is ð3; 4Þ or ð4; 4Þ:

Proof. ð)Þ We show that, given three topologies t1; t2; t3 which are not tree-consistent, they
involve five taxa and have signature ð3; 4Þ or ð4; 4Þ: By Lemma 2, we know that three topologies
are not tree-consistent iff they contradict the substitution property. Three topologies contradict
the substitution property if for one of these topologies, w.l.o.g., t1 ¼ ½abjcd	; neither the topology
t2 for quartet fa; b; c; eg is ½abjce	 nor the topology t3 for quartet fa; c; d; eg is ½aejcd	: Therefore,
the topology t2 is either ½acjbe	 or ½aejbc	; and the topology t3 is either ½acjde	 or ½adjce	: By
exhaustively checking the possible combinations, we can find that the topologies involve five taxa
and their signature is ð3; 4Þ (e.g., for t2 ¼ ½acjbe	 and t3 ¼ ½acjde	) or ð4; 4Þ (e.g., for t2 ¼ ½acjbe	 and
t3 ¼ ½adjce	).
ð(Þ We are given three topologies t1; t2; t3 involving five taxa and having signature ð3; 4Þ or

ð4; 4Þ: Assume that they are tree-consistent. Showing that this would imply signature ð2; 3Þ or
ð3; 3Þ; we prove that they cannot be tree-consistent. For tree-consistent t1; t2; t3; we can find a tree
inducing them. Given, w.l.o.g., taxa fa; b; c; d; eg and t1 ¼ ½abjcd	; we essentially have two
possibilities: we can attach the leaf e on the middle edge of topology t1 as shown in Fig. 2(a), or we
can attach e on one of the four side branches of t1 as exemplarily shown in Fig. 2(b). Considering
the set of quartet topologies induced by these trees, we find in each case that the set has signature
ð3; 3Þ or ð2; 3Þ: For instance, the topologies induced by the tree in Fig. 2(a) are, besides t1; ½abjce	;
½abjde	; ½aejcd	; and ½bejcd	: Three topologies selected from these, have signature ð3; 3Þ (e.g.,
½abjcd	; ½abjce	; and ½aejcd	) or ð2; 3Þ (e.g., ½abjcd	; ½abjce	; and ½abjde	). &

Using Theorem 2, we can determine whether three topologies are conflicting by simply counting
the involved taxa and computing their signature.

5. Fixed-parameter algorithm for MQI

We describe a recursive algorithm for MQI in its four main parts: building the conflict list, the
search tree, branching, and updating the conflict list.

Building the conflict list: We initially build the conflict list C of local conflicts, i.e., a list
of three-sets of quartets whose topologies are not tree-consistent. By Lemma 3, it is sufficient
to build a list of local conflicts containing some designated taxon, which can be chosen
arbitrarily.
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Fig. 2. Trees inducing non-conflicting topologies in the proof of Theorem 2.
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The search tree: The recursive procedure is outlined in Fig. 3. The procedure selects a local
conflict from the conflict list and tries to resolve it by changing one of its topologies. After such a
change it updates the conflict list (described below), and calls the recursive procedure with
argument k 
 1 on the thereby created subcase. In the next paragraph, we will explain how to
select and change the topologies in this branching and we will find that it is sufficient to branch
into four subcases. The recursion stops if no conflicts are left in the conflict list (we have found a
solution), or if k ¼ 0 (with a non-empty conflict list we did not find a solution in this branch of the
search tree). When a solution is found, the algorithm outputs the current, complete and tree-like

set of topologies. From this, it is possible to derive the evolutionary tree in time Oðn4Þ [5].
Scanning the whole search tree, we can find all solutions that can be obtained by altering k

topologies when k is optimal.
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Fig. 3. Outline in pseudocode of a recursive procedure for eliminating conflicts by changing at most k quartet

topologies (if possible). Further explanation is given in Section 5.
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Branching: By a careful selection of subcases to branch into, we can explore all ways to resolve
an arbitrarily selected local conflict with only four recursive calls. Let t1; t2; t3 be the three
topologies which are not tree-consistent and which form the local conflict. By Lemma 2, t1; t2; t3
contradict the substitution property. Recall that, given ½abjcd	; the substitution property
(Proposition 1) requires topology ½abjce	 or topology ½aejcd	: Therefore, we can assume the
following setting for the three quartets contradicting the substitution property: Topology t1 ¼
½abjcd	; topology t2 is the topology for quartet fa; b; c; eg different from ½abjce	; and topology t3 is
a topology for quartet fa; c; d; eg different from ½aejcd	: In order to change the three topologies
such that they satisfy the substitution property, we have the following possibilities. We can change
t1; either (1) we change t1 to ½acjbd	; or (2) we change t1 to ½adjbc	: The cases in which t1 is
not changed remain to be covered. With unchanged t1; we have to (3) change t2 to ½abjce	 or (4)
change t3 to ½aejcd	; because these are the only remaining possibilities to satisfy the substitution
property.

Updating the conflict list: The main effort in every node of the search tree is to update the
conflict list after changing a topology. In Fig. 3, this is done by instruction update(C; t0), called
with a conflict list C and a changed topology t0 as arguments. We search, when changing t0; the
‘‘neighborhood’’ of t0; and update the conflict list: We (1) remove the three-sets of quartets in the
list whose topologies are now tree-consistent, and (2) add the three-sets of quartets not in the list
whose topologies now form a local conflict.

Correctness: To obtain a non-conflicting set of quartet topologies, we have to, following
Theorem 1, resolve all local conflicts. Such a local conflict can be removed by altering
(at least) one of the three involved quartet topologies. The recursive procedure has to
try every possibility to resolve the local conflict in order to find every possible solution.
If there is a solution, we will find it by the described branching strategy. If for none of
the three topologies we can find a solution while altering the topology, the conflict cannot be
removed.

Running time: Initially, building the conflict list takes time Oðn4Þ by Lemma 2. Using
the conflict list, we can, in constant time, access a local conflict and determine the cases to
branch into. Since it is sufficient to branch into four subcases for a local conflict, and,
since, in every subcase, we decrease the parameter k by one, we obtain a search tree size

at most 4k:
With n species, updating the list of conflicting size three sets can be done in time OðnÞ:

Following Lemma 1, local conflicts can only occur among three topologies consisting of no more
than five taxa. Therefore, having changed the topology of one quartet fa; b; c; dg; we only have to
examine the ‘‘neighborhood’’ of the quartet, i.e., those sets of five taxa containing all of a; b; c; d:
For every such set of five taxa it can be examined in constant time whether for three topologies
over the five taxa a new conflict emerged or whether an existing conflict has been resolved. Given
taxa a; b; c; d; we have n 
 4 choices for a fifth taxon. Thus, OðnÞ is an upper bound for the update
procedure.3

ARTICLE IN PRESS

3 In fact, as explained in Section 3, we only consider sets of five species containing a designated taxon f : Therefore,
if we change the topology of a quartet fa; b; c; dg which does not contain the designated taxon f ; then we only

have to consider one set of five taxa, namely fa; b; c; d; f g: In this special case, the update procedure can be done in

time Oð1Þ:
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Altogether, we obtain:

Theorem 3. MQI can be solved in time Oð4kn þ n4Þ:

Our algorithm has only Oðn4Þ; i.e., optimal, memory requirement, where the input size is

already Oðn4Þ: Firstly, we have to store the topology for every of the Oðn4Þ quartets. Secondly, we
maintain the conflict list; as observed in Section 3, the size of the conflict list is Oðn4Þ: Finally,
we have to keep track of the topologies changed on the path from the root of the search tree to the

current search tree node; these are at most kon4 topologies.

6. Improving the running time in practice

In Section 6.1, we collect some ideas for improvements still maintaining the algorithm’s
optimality. In Section 6.2, sacrificing guaranteed optimality, we propose to combine the algorithm
with existing methods that infer strongly supported parts of a tree.

6.1. Enhancements maintaining optimality

Fixing topologies: Once a topology has been altered, we will, in subsequent stages of recursion,
never alter it again. We call this fixing the topology. This will avoid redundant branchings in the
search tree.

Forcing topologies to change: In contrary to the fixing of topologies, it might be possible to
identify topologies which necessarily have to be altered in order to find a solution. We call this
forcing a topology to change. The ideas described here are similar to those used in the so-called
reduction to problem kernel of the 3-Hitting Set problem [22]. Here, however, they will not
yield a reduction to problem kernel for our problem. Nevertheless, they are likely to result in a
better performance of the algorithm since they allow recognizing situations in which we cannot
find a solution and they also allow a better branching.

Lemma 4. Consider an instance of MQI in which quartet q has topology t. If there are more than 3k
distinct local conflicts which contain t, then in a solution for this instance the topology for q is

different from t.

Proof. We have shown in Section 3 that three topologies only can form a local conflict, if there are
not more than five taxa occurring in them (Lemma 1). For five taxa, there are five quartets
consisting of these taxa. Therefore, when we are given two quartet topologies t1 and t2 and if there
are more than five taxa occurring in t1 and t2; they cannot form a conflict with a third topology. If
there are exactly five taxa occurring in t1 and t2; then there are five quartets consisting of these five
taxa, two of which are the quartets for t1 and t2: The remaining three topologies are the only
possibilities for a topology t3 that could form a conflict with t1 and t2:
Now, consider the situation in which, for a quartet topology t; we have more than 3k distinct

local conflicts which contain t: We show by contradiction that we have to alter topology t to find a
solution. Assume that we can find a solution while not altering t: By changing a topology t0; we can
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cover at most three conflicts containing t since there are at most three local conflicts containing both
t and t0: Therefore, by changing k topologies, we can resolve at most 3k local conflicts. This
contradicts our assumption and shows that we have to alter t to find a solution. &

We call the topologies obtained from Lemma 4 ‘‘forced to change,’’ and mark them
appropriately in order to take them into consideration in the next branching situation.

Recognizing hopeless situations: In this paragraph, we describe situations in which, at some level
in the search tree where we are allowed to alter at most k topologies, we cannot find a solution.
This will allow us to avoid branching into further (useless) subcases. Having a local conflict
consisting only of fixed topologies, we obviously cannot resolve this conflict while not changing
one of the fixed topologies.
If, after identifying the topologies forced to change, there are more than k of them, it is obvious

that a solution is not possible—already by changing these topologies we would change more
topologies than we are allowed to.
The following two lemmas contain more involved observations. If a local conflict does not

contain a topology which is forced to change, then we call it an unforced local conflict.

Lemma 5. Let us have an instance of MQI in which we have identified p conflicts which are forced to
change. If the number of unforced local conflicts is greater than 3ðk 
 pÞk; then the instance has no

solution.

Proof. We have to change the p topologies that are forced to change. We, therefore, decrease the
parameter by p and have the possibility to resolve all local conflicts containing such a topology.
The conflicts which certainly remain to be resolved are the unforced conflicts. From the preceding
paragraph we know that, by changing a topology, we can resolve at most 3k distinct local
conflicts. Therefore, by altering ðk 
 pÞ topologies, we can resolve at most 3ðk 
 pÞk distinct local
conflicts. &

Lemma 6. An instance of MQI in which the number of local conflicts is greater than 6ðn 
 4Þk has
no solution.

Proof. By Lemma 1, local conflicts can only arise between three topologies that do not involve more
than five taxa. Thus, given a quartet q ¼ fa; b; c; dg with topology t; a local conflict can arise with
other quartets involving taxa from fa; b; c; d; eg for some e: Since e has to be different from a; b; c;
and d; there are n 
 4 choices for this taxon e: There are five quartets over fa; b; c; d; eg and four of

them excluding the given q: We have ð4
2
Þ ¼ 6 ways to choose two from these four quartets in order to

form size three sets containing q: Therefore, by altering one topology, we can resolve at most 6ðn 
 4Þ
distinct local conflicts, and by altering k topologies at most 6ðn 
 4Þk distinct local conflicts. &

6.2. Fixing strongly supported edges in advance

To improve the performance of exact fixed-parameter algorithms in practice, it is reasonable to
combine them with known heuristics. For MQI, we propose to preprocess the quartet topologies
using methods that infer strongly supported edges of the tree. Examples of these methods include
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the Q�-method [5], quartet cleaning [6,12], or hypercleaning [4]. The advantage of these methods is

that they are fast (e.g., hypercleaning runs in Oðn5Þ). Their disadvantage is that they resolve only
the strongly supported part of the tree’s edges; on unfavorable input they resolve no edges at all.
We can take advantage of their output, however, by fixing the topologies induced by the inferred
edges. On this modified input, we run our MQI algorithm in order to completely resolve the partly
resolved tree. Even a small set of fixed edges can significantly prune our search space.

Preprocessing by the Q�-method: Here, we describe the use of the Q�-method by Berry and
Gascuel [5] as a preprocessing for our algorithm. The Q�-method produces the maximum subset
of the given quartet topologies that is tree-like. In the combined use with our algorithm, we fix
these quartet topologies from the beginning. The tree we obtain will be a refinement of the tree
reported by the Q�-method.
We cannot guarantee that the reported tree is the optimal solution for MQI as illustrated by the

following example. Consider the tree in Fig. 4(a) on taxa fa; b; c1; c2;y; c6g: Suppose we are given
the complete set of 70 quartet topologies, where the 55 quartets containing at least three taxa from
fc1; c2;y; c6g have the topology induced by the tree, but the remaining 15 quartets have the
topology ½abjc0c00	 where c0c00Afc1; c2;y; c6g and c0ac00: On this input, the Q�-method infers the
bipartition abjc0c00 for the c0c00Afc1; c2;y; c6g; then applying the MQI algorithm leads to a
solution for k ¼ 20; e.g., the tree shown in Fig. 4(b). The optimal solution of MQI, however,
would be the tree depicted in Fig. 4(a) for k ¼ 15:
The examples where the Q�-method yields misleading results are quite artificial. On real data,

these mistakes are unlikely: before reporting misleading edges, i.e., edges not belonging to an
optimal solution, the Q�-method will rather report no edge at all. Our experiments described in
Section 7 support our conjecture that with the preprocessing by the Q�-method we find every
solution that the MQI algorithm would find. Moreover, the experiments show that this
enhancement allows us to process much larger instances than we could without using it.

7. Experimental evaluation

To investigate the usefulness and practical relevance of our algorithm, we performed
experiments on synthetic as well as on real data from fungi. The implementation of the algorithm
was done using the programming language C. The algorithm contains the enhancements described
in Section 6. The combined use with the Q�-method is, however, only applied when processing the
fungi data, not when processing the synthetic data. The reported tests were done on a LINUX PC
with a Pentium III 750 MHz processor and 192 MB main memory.4
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Fig. 4. Example illustrating where the result from the Q� method leads to a suboptimal solution for MQI.

4Differences to the results of this paper’s conference version are due to improvements of the implementation.

J. Gramm, R. Niedermeier / Journal of Computer and System Sciences 67 (2003) 723–741736



7.1. Synthetic data

We performed experiments on artificially generated data in order to get some idea about the
practical contexts in which our algorithm might be useful. For n given taxa n and parameter k; we
produce a data file as follows. We generate an evolutionary tree by recursively joining randomly
selected subtrees. The subtrees are selected from a set which, initially, contains only the one-node
subtrees corresponding to the taxa. When two subtrees are joined, we replace them in the set by
the newly generated subtree. This procedure, finally, yields a tree for n taxa and we derive the
quartet topologies from that tree. Then, we change k distinct, arbitrarily selected topologies in a
randomly chosen way. For different pairs of values for n and k; ten different data sets were
created for each pair. The reported results are the average for test runs on ten data sets.
We experimented with different values of n and k: As a measure of performance, we use two

values: We report the processing time and, since processing time is heavily influenced by system
conditions, e.g., memory access time in case of cache faults, also the search tree size. The search
tree size is the number of the search trees nodes.
Fig. 5(a) gives a table of results for different values of n and k: We could process large

instances of the problem, e.g., n ¼ 50 and k ¼ 100 in 8 min: Regarding the search tree size, we

compare in Fig. 5(b), on a logarithmic scale, the theoretical upper bound of 4k to the real size of

the search tree. The search trees are, by far, smaller than the 4k bound. This is mainly due to
the practical improvements of the algorithm (see Section 6). We also note that, for fixed value of
k; a higher number of taxa n results in a smaller search tree, if the value of k exceeds some turning
point.
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Fig. 5. Table (a) displays the results of our algorithm on MQI instances for different values of n and k: We give

processing time and the size of the scanned search tree. Figure (b) displays, on a logarithmic scale, the difference of the

theoretical 4k bound (dashed) and the real search tree size (solid lines). Each solid line shows, for a fixed number of taxa

n; how the search tree size increases for increasing values of k:
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7.2. Real data

Using our algorithm, we analyzed the evolutionary relationships of species from the mushroom
genus Amanita, a group that includes well-known species like the Fly Agaric and the Death Cap.
The underlying data are an alignment of nuclear DNA sequences coding for the D1/D2 region of
the ribosomal large subunit (alignment length 576) from Amanita species and one outgroup taxon,
as used by WeiX et al. [26,27]. We inferred the quartet topologies by (1) using dnadist from the
Phylip package [16] to compute pairwise distances with the maximum likelihood metric, and
(2) using distquart from the Phyloquart package [5] to infer quartet topologies based on the
distances.
The construction of the evolutionary tree was done by a preprocessing of the data using the Q�-

method, which was also taken from the Phyloquart package. Experiments on small instances, e.g.,
10 taxa, show that all solutions we find without using the Q�-method are also found when using it.
Using the Q�-method, however, results in a significant speed-up of the processing. Fig. 6(a) shows
this impact for small numbers of Amanita species. Note, however, that the speed-up heavily
depends on the data. In Fig. 6(a) and in the following, we neglect the time needed for the
preprocessing by the Q�-method, which is, e.g., 0:11 seconds for n ¼ 12:
Our recursive algorithm processed a set of n ¼ 22 taxa in 23 minutes (which includes 0:2 s

needed by Q�). The resulting tree was rooted using the outgroup taxon Limacella glioderma and is
displayed in Fig. 6(b). The first k-value for the given 7315 quartet topologies for which we found a
solution is k ¼ 978: The Q�-method had fixed 41 percent of the quartet topologies in advance.
Considering the tree, the grouping of taxa is consistent with the grouping into seven sections
supported by WeiX et al. [27], who used the distance method neighbor joining, heuristic parsimony
methods, and maximum likelihood estimations. Particularly, our grouping is nearly identical to
the topology revealed by WeiX et al. using maximum likelihood estimation. This topology is well
compatible with classification concepts based on morphological characters, e.g., the sister group
relationship of sections Vaginatae and Caesareae, and the monophyly of subgenus Amanita which
were not supported in the neighbor joining and heuristic parsimony analysis.
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Fig. 6. (a) Speed-up when using Q� preprocessing. (b) Optimal tree found for a set of 21 Amanita species and one

outgroup taxon; indicated is the grouping of Amanita species into 7 sections and 2 subgenera.
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To contrast our results with another heuristic method, we ran quartet puzzling with 1000
puzzling steps on the same data set. The resulting tree is computed in 1:3 min and also reflects the
mentioned grouping of taxa into the seven subsections. However, it cannot resolve the grouping
of subsections and does, in particular, not indicate the division into two sections.
One might hope that quality of quartet inference techniques will improve in the future. This

would lead to instances requiring smaller values of k:

8. Conclusion

We showed that Minimum Quartet Inconsistency can be solved in worst case time

Oð4kn þ n4Þ; meaning that the problem is fixed-parameter tractable for parameter k denoting the
number of faulty quartet topologies. Several ideas for tuning the algorithm show that its practical
performance is much better than the theoretical bound given above (in particular, concerning the

size of the search tree, 4k). This is clearly expressed by our experimental results in Section 7. The
combination of heuristic methods, inferring the strongly supported edges of a tree, and exact
algorithms seems to result in trees of high quality and, therefore, deserves further attention. This
combination is a good trade-off between the heuristics, which are fast but result in only partially
resolved trees, and the exact algorithms, which result in completely resolved trees but have
exponential running times.
Concerning future work on MQI, it remains to extend our experiments to weighted quartet

topologies (to which our algorithm can be generalized to, see [17] for more details) and to other
(non-fungi) taxa. From a parameterized complexity point of view, it remains open to find a so-
called reduction to problem kernel, which is a kind of preprocessing that shrinks the input the
search tree has to deal with in advance (see [13] for details). As suggested by Chor [10], we might
consider other parameters that can also deal with the Sparse MQI problem, e.g., asking whether
we can satisfy ðm=3Þ þ k quartets for m given quartet topologies. It might also help to identify
parameters inherent to the problem. This could possibly enable us to find efficient solutions, e.g.,
when facing a fixed portion c � m; for some constant 0oco1; of quartet errors. Since MQI can be
solved in polynomial time for koðn 
 3Þ=2 [6], we can ask—in the ‘‘spirit of parameterizing above
guaranteed values’’ [21]—whether it is fixed-parameter tractable to find a tree that violates at most
ðn 
 3Þ=2þ k; kX0; quartet topologies.
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