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Abstract

During the 1970s Brezis and Browder presented a now classical characterization of maximal monotonic-
ity of monotone linear relations in reflexive spaces. In this paper, we extend (and refine) their result to
a general Banach space. We also provide an affirmative answer to a problem posed by Phelps and Simons.
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1. Introduction

Throughout this paper, we assume that

X is a real Banach space with norm ‖ · ‖,
that X∗ is the continuous dual of X, and that X and X∗ are paired by 〈·,·〉. The closed unit ball
in X is denoted by BX = {x ∈ X | ‖x‖� 1}, and N = {1,2,3, . . .}.
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We identify X with its canonical image in the bidual space X∗∗. As always, X × X∗ and
(X × X∗)∗ = X∗ × X∗∗ are paired via

〈(
x, x∗), (y∗, y∗∗)〉 = 〈

x, y∗〉 + 〈
x∗, y∗∗〉,

where (x, x∗) ∈ X × X∗ and (y∗, y∗∗) ∈ X∗ × X∗∗. The norm on X × X∗, written as ‖ · ‖1, is
defined by ‖(x, x∗)‖1 = ‖x‖ + ‖x∗‖ for every (x, x∗) ∈ X × X∗.

Let A : X ⇒ X∗ be a set-valued operator (also known as multifunction) from X to X∗, i.e.,
for every x ∈ X, Ax ⊆ X∗, and let graA = {(x, x∗) ∈ X × X∗ | x∗ ∈ Ax} be the graph of A. The
domain of A, written as domA, is domA = {x ∈ X | Ax �= ∅} and ranA = A(X) is the range
of A. We say A is a linear relation if graA is a linear subspace. By saying A : X ⇒ X∗ is at
most single-valued, we mean that for every x ∈ X, Ax is either a singleton or empty. In this
case, we follow a slight but common abuse of notation and write A : domA → X∗. Conversely,
if T : D → X∗, we may identify T with A : X ⇒ X∗, where A is at most single-valued with
domA = D.

Now let U × V ⊆ X × X∗. We say that A is monotone with respect to U × V , if for every
(x, x∗) ∈ (graA) ∩ (U × V ) and (y, y∗) ∈ (graA) ∩ (U × V ), we have

〈
x − y, x∗ − y∗〉 � 0. (1)

Of course, by (classical) monotonicity we mean monotonicity with respect to X × X∗. Further-
more, we say that A is maximally monotone with respect to U ×V if A is monotone with respect
to U × V and for every operator B : X ⇒ X∗ that is monotone with respect to U × V and
such that (graA) ∩ (U × V ) ⊆ (graB) ∩ (U × V ), we necessarily have (graA) ∩ (U × V ) =
(graB) ∩ (U × V ). Thus, (classical) maximal monotonicity corresponds to maximal monotonic-
ity with respect to X×X∗. This slightly unusual presentation is required to state our main results;
moreover, it yields a more concise formulation of monotone operators of type (FP).

Now let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X × X∗. We say (x, x∗) is monotonically
related to graA if

〈
x − y, x∗ − y∗〉� 0, ∀(

y, y∗) ∈ graA.

If Z is a real Banach space with continuous dual Z∗ and a subset S of Z, we define S⊥
by S⊥ = {z∗ ∈ Z∗ | 〈z∗, s〉 = 0, ∀s ∈ S}. Given a subset D of Z∗, we define D⊥ by D⊥ =
{z ∈ Z | 〈z, d∗〉 = 0, ∀d∗ ∈ D} = D⊥ ∩ Z.

The operator adjoint of A, written as A∗, is defined by

graA∗ = {(
x∗∗, x∗) ∈ X∗∗ × X∗ ∣∣ (

x∗,−x∗∗) ∈ (graA)⊥
}
.

Note that the adjoint is always a linear relation with graA∗ ⊆ X∗∗ × X∗ ⊆ X∗∗ × X∗∗∗. These
inclusions make it possible to consider monotonicity properties of A∗; however, care is required:
as a linear relation, graA∗ ⊆ X∗∗ × X∗ while as a potential monotone operator we are led to
consider graA∗ ⊆ X∗∗ × X∗∗∗. Now let A : X ⇒ X∗ be a linear relation. We say that A is skew
if graA ⊆ gra(−A∗); equivalently, if 〈x, x∗〉 = 0, ∀(x, x∗) ∈ graA. Furthermore, A is symmetric
if graA ⊆ graA∗; equivalently, if 〈x, y∗〉 = 〈y, x∗〉, ∀(x, x∗), (y, y∗) ∈ graA.

We now recall three fundamental subclasses of maximally monotone operators.



4950 H.H. Bauschke et al. / Journal of Functional Analysis 262 (2012) 4948–4971
Definition 1.1. Let A : X ⇒ X∗ be maximally monotone. The three key types of monotone
operators are defined as follows.

(i) A is of type (D) (1976, [24]; see also [29] and [40, Theorem 9.5]) if for every (x∗∗, x∗) ∈
X∗∗ × X∗ with

inf
(a,a∗)∈graA

〈
a − x∗∗, a∗ − x∗〉� 0,

there exists a bounded net (aα, a∗
α)α∈Γ in graA such that (aα, a∗

α)α∈Γ weak∗ × strong con-
verges to (x∗∗, x∗).

(ii) A is of type negative infimum (NI) (1996, [35]) if

sup
(a,a∗)∈graA

(〈
a, x∗〉 + 〈

a∗, x∗∗〉 − 〈
a, a∗〉)� 〈

x∗∗, x∗〉, ∀(
x∗∗, x∗) ∈ X∗∗ × X∗.

(iii) A is of type Fitzpatrick–Phelps (FP) (1992, [22]) if whenever V is an open convex subset
of X∗ such that V ∩ ranA �= ∅, it must follow that A is maximally monotone with respect
to X × V .

As we see in the following result, it is a consequence of recent work that the three classes of
Definition 1.1 coincide.

Fact 1.2. (See [5, Corollary 3.2] and [37,35,26].) Let A : X ⇒ X∗ be maximally monotone. Then
the following are equivalent.

(i) A is of type (D).
(ii) A is of type (NI).

(iii) A is of type (FP).

This is a powerful result because it is often easier to establish (ii) or (iii) than (i).

Fact 1.3. (See [36,38,16].) The following are maximally monotone of types (D), (NI), and (FP).

(i) ∂f , where f : X → ]−∞,+∞] is convex, lower semicontinuous, and proper;
(ii) A : X ⇒ X∗, where A is maximally monotone and X is reflexive.

These and other relationships known amongst these and other monotonicity notions are de-
scribed in [16, Chapter 9]. Monotone operators have proven to be a key class of objects in both
modern Optimization and Analysis; see, e.g., [13–15], the books [7,16,20,30,36,38,33,44–46]
and the references therein.

Let us now precisely state the aforementioned Brezis–Browder Theorem:

Theorem 1.4 (Brezis–Browder in reflexive Banach space). (See [18,19].) Suppose that X is re-
flexive. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. Then A is
maximally monotone if and only if the adjoint A∗ is monotone.
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In this paper, we generalize the Brezis–Browder Theorem to an arbitrary Banach space. (See
also [39] and [41] for Simons’ recent extensions in the context of symmetrically self-dual Banach
(SSDB) spaces as defined in [38, §21] and of Banach SNL spaces.)

Our main result is the following.

Theorem 1.5 (Brezis–Browder in general Banach space). Let A : X ⇒ X∗ be a monotone linear
relation such that graA is closed. Then A is maximally monotone of type (D) if and only if A∗ is
monotone.

This result will also give an affirmative answer to a question posed by Phelps and Simons in
[31, Section 9, item 2]:

Let A : domA → X∗ be linear and maximally monotone. Assume that A∗ is monotone. Is A

necessarily of type (D)?

The paper is organized as follows. In Section 2, we collect auxiliary results for future reference
and for the reader’s convenience. In Section 3, we provide the key technical step enabling us to
show that when A∗ is monotone then A is of type (D). Our central result, the generalized Brezis–
Browder Theorem (Theorem 1.5), is then proved in Section 4. Finally, in Section 5 with the
necessary proviso that the domain be closed, we establish further results such as Theorem 5.5
relating to the skew part of the operator. This was motivated by and extends [2, Theorem 4.1]
which studied the case of a bounded linear operator.

Finally, let us mention that we adopt standard convex analysis notation. Given a subset C of X,
intC is the interior of C, C is the norm closure of C. For the set D ⊆ X∗, D

w∗
is the weak∗

closure of D. If E ⊆ X∗∗, E
w∗

is the weak∗ closure of E in X∗∗ with the topology induced
by X∗. The indicator function of C, written as ιC , is defined at x ∈ X by

ιC(x) =
{

0, if x ∈ C;
+∞, otherwise.

(2)

For every x ∈ X, the normal cone operator of C at x is defined by NC(x) =
{x∗ ∈ X∗ | supc∈C〈c − x, x∗〉� 0}, if x ∈ C; and NC(x) = ∅, if x /∈ C.

Let f : X → ]−∞,+∞]. Then domf = f −1(R) is the domain of f , and f ∗ : X∗ →
[−∞,+∞] : x∗ �→ supx∈X(〈x, x∗〉 − f (x)) is the Fenchel conjugate of f . The epigraph of
f is epif = {(x, r) ∈ X ×R | f (x) � r}. The lower semicontinuous hull of f , denoted by f , is
the function defined at every x ∈ X by f (x) = inf{t ∈R | (x, t) ∈ epif }. We say f is proper if
domf �= ∅. Let f be proper. The subdifferential of f is defined by

∂f : X ⇒ X∗ : x �→ {
x∗ ∈ X∗ ∣∣ (∀y ∈ X)

〈
y − x, x∗〉 + f (x) � f (y)

}
.

For ε � 0, the ε-subdifferential of f is defined by ∂εf : X ⇒ X∗ : x �→ {x∗ ∈ X∗ | (∀y ∈ X)

〈y − x, x∗〉 + f (x) � f (y) + ε}. Note that ∂f = ∂0f .
Let F : X × X∗ → ]−∞,+∞]. We say F is a representative of the monotone operator

A : X ⇒ X∗ if F is proper, lower semicontinuous and convex with F � 〈·,·〉 on X × X∗ and

graA = {(
x, x∗) ∈ X × X∗ ∣∣ F

(
x, x∗) = 〈

x, x∗〉}.
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Let (z, z∗) ∈ X × X∗ and F : X × X∗ → ]−∞,+∞]. Then F(z,z∗) : X × X∗ → ]−∞,+∞]
[27,38] is defined by

F(z,z∗)
(
x, x∗) = F

(
z + x, z∗ + x∗) − (〈

x, z∗〉 + 〈
z, x∗〉 + 〈

z, z∗〉)
= F

(
z + x, z∗ + x∗) − 〈

z + x, z∗ + x∗〉 + 〈
x, x∗〉, ∀(

x, x∗) ∈ X × X∗. (3)

Let now Y be another real Banach space. We set PX : X × Y → X : (x, y) �→ x. Let
F1,F2 : X × Y → ]−∞,+∞]. Then the partial inf-convolution F1 �2 F2 is the function de-
fined on X × Y by

F1 �2 F2 : (x, y) �→ inf
v∈Y

[
F1(x, y − v) + F2(x, v)

]
.

2. Prerequisite results

In this section, we gather some facts and auxiliary results used in the sequel.

Fact 2.1. (See [28, Proposition 2.6.6(c)] or [34, Theorem 4.7 and Theorem 3.12].) Let C be a
subspace of X, and D be a subspace of X∗. Then

(
C⊥)

⊥ = C and (D⊥)⊥ = D
w∗

.

Fact 2.2 (Rockafellar). (See [32, Theorem 3], [38, Corollary 10.3 and Theorem 18.1] or [44,
Theorem 2.8.7(iii)].) Let f,g : X → ]−∞,+∞] be proper convex functions. Assume that there
exists a point x0 ∈ domf ∩ domg such that g is continuous at x0. Then

(f + g)∗
(
x∗) = min

y∗∈X∗
[
f ∗(y∗) + g∗(x∗ − y∗)], ∀x∗ ∈ X∗,

∂(f + g) = ∂f + ∂g.

Fact 2.3 (Borwein). (See [44, Theorem 3.1.1] which is based on [11, Theorem 1].) Let f : X →
]−∞,+∞] be a proper lower semicontinuous and convex function. Let ε > 0 and β � 0 (where
1
0 = ∞). Assume that x0 ∈ domf and x∗

0 ∈ ∂εf (x0). There exist xε ∈ X, x∗
ε ∈ X∗ such that

‖xε − x0‖ + β
∣∣〈xε − x0, x

∗
0

〉∣∣� √
ε, x∗

ε ∈ ∂f (xε),∥∥x∗
ε − x∗

0

∥∥�
√

ε
(
1 + β

∥∥x∗
0

∥∥)
,

∣∣〈xε − x0, x
∗
ε

〉∣∣� ε +
√

ε

β
.

Fact 2.4 (Attouch–Brezis). (See [1, Theorem 1.1] or [38, Remark 15.2].) Let f,g : X →
]−∞,+∞] be proper lower semicontinuous and convex. Assume that

⋃
λ>0 λ[domf − domg]

is a closed subspace of X. Then

(f + g)∗
(
z∗) = min

y∗∈X∗
[
f ∗(y∗) + g∗(z∗ − y∗)], ∀z∗ ∈ X∗.
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Fact 2.5 (Simons and Zălinescu). (See [42, Theorem 4.2] or [38, Theorem 16.4(a)].) Let Y be
a real Banach space and F1,F2 : X × Y → ]−∞,+∞] be proper, lower semicontinuous, and
convex. Assume that for every (x, y) ∈ X × Y ,

(F1 �2 F2)(x, y) > −∞

and that
⋃

λ>0 λ[PX domF1 − PX domF2] is a closed subspace of X. Then for every (x∗, y∗) ∈
X∗ × Y ∗,

(F1 �2 F2)
∗(x∗, y∗) = min

u∗∈X∗
[
F ∗

1

(
x∗ − u∗, y∗) + F ∗

2

(
u∗, y∗)].

The following result was first established in [12, Theorem 7.4]. We next provide a new proof.

Fact 2.6 (Borwein). Let A,B : X ⇒ X∗ be linear relations such that graA and graB are closed.
Assume that domA − domB is closed. Then

(A + B)∗ = A∗ + B∗.

Proof. We have

ιgra(A+B) = ιgraA �2 ιgraB. (4)

Let (x∗∗, x∗) ∈ X∗∗ × X∗. Since graA and graB are closed convex, ιgraA and ιgraB are proper
lower semicontinuous and convex. Then by Fact 2.5 and (4),

ιgra(A+B)∗
(
x∗∗, x∗) = ι(gra(A+B))⊥

(−x∗, x∗∗)
= ι∗gra(A+B)

(−x∗, x∗∗) (
since gra(A + B) is a subspace

)
= min

y∗∈X∗
[
ι∗graA

(
y∗, x∗∗) + ι∗graB

(−x∗ − y∗, x∗∗)]
= min

y∗∈X∗
[
ι(graA)⊥

(
y∗, x∗∗) + ι(graB)⊥

(−x∗ − y∗, x∗∗)]
= min

y∗∈X∗
[
ιgraA∗

(
x∗∗,−y∗) + ιgraB∗

(
x∗∗, x∗ + y∗)]

= ιgra(A∗+B∗)
(
x∗∗, x∗).

It follows that gra(A + B)∗ = gra(A∗ + B∗), i.e., (A + B)∗ = A∗ + B∗. �
Fact 2.7 (Simons). (See [38, Lemma 19.7 and Section 22].) Let A : X ⇒ X∗ be a monotone
operator such that graA is convex with graA �= ∅. Then the function

g : X × X∗ → ]−∞,+∞] : (x, x∗) �→ 〈
x, x∗〉 + ιgraA

(
x, x∗) (5)

is proper and convex.
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Fact 2.8 (Marques Alves and Svaiter). (See [26, Theorem 4.4].) Let A : X ⇒ X∗ be maximally
monotone, and let F : X → ]−∞,+∞] be a representative of A. Then A is of type (D) if and
only if for every (x0, x

∗
0 ) ∈ X × X∗,

inf
(x,x∗)∈X×X∗

[
F(x0,x

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]

= 0.

We also recall the following somewhat more precise version of Theorem 1.4.

Fact 2.9 (Brezis and Browder). (See [19, Theorem 2], or [17,18,39,43].) Suppose that X is reflex-
ive. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. Then the following
are equivalent.

(i) A is maximally monotone.
(ii) A∗ is maximally monotone.

(iii) A∗ is monotone.

Now let us cite some basic properties of linear relations.
The following result appeared in Cross’ book [21]. We give new proofs of items (iv)–(vi). The

proof of item (vi) below was adapted from [10, Remark 2.2].

Fact 2.10. Let A : X ⇒ X∗ be a linear relation. Then the following hold.

(i) Ax = x∗ + A0, ∀x∗ ∈ Ax.
(ii) A(αx + βy) = αAx + βAy, ∀(α,β) ∈ R2 � {(0,0)}, ∀x, y ∈ domA.

(iii) 〈A∗x, y〉 = 〈x,Ay〉 is a singleton, ∀x ∈ domA∗, ∀y ∈ domA.
(iv) (domA)⊥ = A∗0 is (weak∗) closed and domA = (A∗0)⊥.
(v) If graA is closed, then (domA∗)⊥ = A0 and domA∗w∗ = (A0)⊥.

(vi) If domA is closed, then domA∗ = (Ā0)⊥ and thus domA∗ is (weak∗) closed, where Ā is
the linear relation whose graph is the closure of the graph of A.

Proof. (i): See [21, Proposition I.2.8(a)]. (ii): See [21, Corollary I.2.5]. (iii): See [21, Proposi-
tion III.1.2].

(iv): We have

x∗ ∈ A∗0 ⇔ (
x∗,0

) ∈ (graA)⊥ ⇔ x∗ ∈ (domA)⊥.

Hence (domA)⊥ = A∗0 and thus A∗0 is weak∗ closed. By Fact 2.1, domA = (A∗0)⊥.
(v): Using Fact 2.1,

x∗ ∈ A0 ⇔ (
0, x∗) ∈ graA = [

(graA)⊥
]
⊥ = [

gra−(
A∗)−1]

⊥ ⇔ x∗ ∈ (
domA∗)

⊥.

Hence (domA∗)⊥ = A0 and thus, by Fact 2.1, domA∗w∗ = (A0)⊥.
(vi): Let Ā be the linear relation whose graph is the closure of the graph of A. Then domA =

dom Ā and A∗ = Ā∗. Then by the Attouch–Brezis Theorem (Fact 2.4),

ιX∗×(Ā0)⊥ = ι∗{0}×Ā0
= (ιgra Ā + ι{0}×X∗)∗ = ιgra(−Ā∗)−1 � ιX∗×{0} = ιX∗×dom Ā∗ .

It is clear that domA∗ = dom Ā∗ = (Ā0)⊥ is weak∗ closed, hence closed. �
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3. A key result

The proof of Proposition 3.1 was in part inspired by that of [46, Theorem 32.L] and by that of
[25, Theorem 2.1].

Proposition 3.1. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and A∗
is monotone. Define

F : X × X∗ → ]−∞,+∞] : (x, x∗) �→ ιgraA

(
x, x∗) + 〈

x, x∗〉.
Then F is a representative of A, and

inf
(x,x∗)∈X×X∗

[
F(v0,v

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]

= 0, ∀(
v0, v

∗
0

) ∈ X × X∗.

Proof. Since A is monotone and graA is closed, Fact 2.7 implies that F is proper lower semi-
continuous and convex, and a representative of A. Let (v0, v

∗
0) ∈ X × X∗. Recalling (3), note

that

F(v0,v
∗
0 ) : (x, x∗) �→ ιgraA

(
v0 + x, v∗

0 + x∗) + 〈
x, x∗〉 (6)

is proper lower semicontinuous and convex. By Fact 2.2, there exists (y∗∗, y∗) ∈ X∗∗ × X∗ such
that

K := inf
(x,x∗)∈X×X∗

[
F(v0,v

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]

= −
(

F(v0,v
∗
0 ) + 1

2
‖ · ‖2 + 1

2
‖ · ‖2

)∗
(0,0)

= −F ∗
(v0,v

∗
0 )

(
y∗, y∗∗) − 1

2

∥∥y∗∗∥∥2 − 1

2

∥∥y∗∥∥2
. (7)

Since (x, x∗) �→ F(v0,v
∗
0 )(x, x∗)+ 1

2‖x‖2 + 1
2‖x∗‖2 is coercive, there exist M > 0 and a sequence

(an, a
∗
n)n∈N in X × X∗ such that

‖an‖ + ∥∥a∗
n

∥∥� M (8)

and

F(v0,v
∗
0 )

(
an, a

∗
n

) + 1

2
‖an‖2 + 1

2

∥∥a∗
n

∥∥2

< K + 1

n2
= −F ∗

(v0,v
∗
0 )

(
y∗, y∗∗) − 1

2

∥∥y∗∗∥∥2 − 1

2

∥∥y∗∥∥2 + 1

n2

(
by (7)

)
⇒ F(v0,v

∗
0 )

(
an, a

∗
n

) + 1

2
‖an‖2 + 1

2

∥∥a∗
n

∥∥2 + F ∗
(v0,v

∗
0 )

(
y∗, y∗∗)

+ 1∥∥y∗∗∥∥2 + 1∥∥y∗∥∥2
<

1
(9)
2 2 n2
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⇒ F(v0,v
∗
0 )

(
an, a

∗
n

) + F ∗
(v0,v

∗
0 )

(
y∗, y∗∗) + 〈

an,−y∗〉 + 〈
a∗
n,−y∗∗〉 < 1

n2
(10)

⇒ (
y∗, y∗∗) ∈ ∂ 1

n2
F(v0,v

∗
0 )

(
an, a

∗
n

) (
by [44, Theorem 2.4.2(ii)]

)
. (11)

Set β = 1
max{‖y∗‖,‖y∗∗‖}+1 . Then by Fact 2.3, there exist sequences (ãn, ã∗

n)n∈N in X × X∗ and
(y∗

n, y∗∗
n )n∈N in X∗ × X∗∗ such that

‖an − ãn‖ + ∥∥a∗
n − ã∗

n

∥∥ + β
∣∣〈ãn − an, y

∗〉 + 〈
ã∗
n − a∗

n, y∗∗〉∣∣� 1

n
, (12)

max
{∥∥y∗

n − y∗∥∥,
∥∥y∗∗

n − y∗∗∥∥}
� 2

n
, (13)

∣∣〈ãn − an, y
∗
n

〉 + 〈
ã∗
n − a∗

n, y∗∗
n

〉∣∣� 1

n2
+ 1

nβ
, (14)

(
y∗
n, y∗∗

n

) ∈ ∂F(v0,v
∗
0 )

(
ãn, ã∗

n

)
, ∀n ∈N. (15)

Then we have

〈
ãn, y

∗
n

〉 + 〈
ã∗
n, y∗∗

n

〉 − 〈
an, y

∗〉 − 〈
a∗
n, y∗∗〉

= 〈
ãn − an, y

∗
n

〉 + 〈
an, y

∗
n − y∗〉 + 〈

ã∗
n − a∗

n, y∗∗
n

〉 + 〈
a∗
n, y∗∗

n − y∗∗〉
�

∣∣〈ãn − an, y
∗
n

〉 + 〈
ã∗
n − a∗

n, y∗∗
n

〉∣∣ + ∣∣〈an, y
∗
n − y∗〉∣∣ + ∣∣〈a∗

n, y∗∗
n − y∗∗〉∣∣

� 1

n2
+ 1

nβ
+ ‖an‖ · ∥∥y∗

n − y∗∥∥ + ∥∥a∗
n

∥∥ · ∥∥y∗∗
n − y∗∗∥∥ (

by (14)
)

� 1

n2
+ 1

nβ
+ (‖an‖ + ∥∥a∗

n

∥∥) · max
{∥∥y∗

n − y∗∥∥,
∥∥y∗∗

n − y∗∗∥∥}
� 1

n2
+ 1

nβ
+ 2

n
M

(
by (8) and (13)

)
, ∀n ∈N. (16)

By (12), we have

∣∣‖an‖ − ‖ãn‖
∣∣ + ∣∣∥∥a∗

n

∥∥ − ∥∥ã∗
n

∥∥∣∣� 1

n
. (17)

Thus by (8), we have

∣∣‖an‖2 − ‖ãn‖2
∣∣ + ∣∣∥∥a∗

n

∥∥2 − ∥∥ã∗
n

∥∥2∣∣
= ∣∣‖an‖ − ‖ãn‖

∣∣(‖an‖ + ‖ãn‖
) + ∣∣∥∥a∗

n

∥∥ − ∥∥ã∗
n

∥∥∣∣(∥∥a∗
n

∥∥ + ∥∥ã∗
n

∥∥)
� 1

n

(
2‖an‖ + 1

n

)
+ 1

n

(
2
∥∥a∗

n

∥∥ + 1

n

) (
by (17)

)
� 1

n

(
2M + 2

n

)
= 2

n
M + 2

n2
, ∀n ∈N. (18)
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Similarly, by (13), for all n ∈ N, we have

∣∣∥∥y∗
n

∥∥2 − ∥∥y∗∥∥2∣∣ � 4

n

∥∥y∗∥∥ + 4

n2
� 4

nβ
+ 4

n2
,

∣∣∥∥y∗∗
n

∥∥2 − ∥∥y∗∗∥∥2∣∣� 4

n

∥∥y∗∗∥∥ + 4

n2
� 4

nβ
+ 4

n2
. (19)

Thus

F(v0,v
∗
0 )

(
ãn, ã∗

n

) + F ∗
(v0,v

∗
0 )

(
y∗
n, y∗∗

n

) + 1

2
‖ãn‖2 + 1

2

∥∥ã∗
n

∥∥2 + 1

2

∥∥y∗
n

∥∥2 + 1

2

∥∥y∗∗
n

∥∥2

=
[
F(v0,v

∗
0 )

(
ãn, ã∗

n

) + F ∗
(v0,v

∗
0 )

(
y∗
n, y∗∗

n

) + 1

2
‖ãn‖2 + 1

2

∥∥ã∗
n

∥∥2 + 1

2

∥∥y∗
n

∥∥2 + 1

2

∥∥y∗∗
n

∥∥2
]

−
[
F(v0,v

∗
0 )

(
an, a

∗
n

) + 1

2
‖an‖2 + 1

2

∥∥a∗
n

∥∥2 + F ∗
(v0,v

∗
0 )

(
y∗, y∗∗) + 1

2

∥∥y∗∗∥∥2 + 1

2

∥∥y∗∥∥2
]

+
[
F(v0,v

∗
0 )

(
an, a

∗
n

) + 1

2
‖an‖2 + 1

2

∥∥a∗
n

∥∥2 + F ∗
(v0,v

∗
0 )

(
y∗, y∗∗) + 1

2

∥∥y∗∗∥∥2 + 1

2

∥∥y∗∥∥2
]

<
[
F(v0,v

∗
0 )

(
ãn, ã∗

n

) + F ∗
(v0,v

∗
0 )

(
y∗
n, y∗∗

n

) − F(v0,v
∗
0 )

(
an, a

∗
n

) − F ∗
(v0,v

∗
0 )

(
y∗, y∗∗)]

+ 1

2

[‖ãn‖2 + ∥∥ã∗
n

∥∥2 − ‖an‖2 − ∥∥a∗
n

∥∥2]
+ 1

2

[∥∥y∗
n

∥∥2 + ∥∥y∗∗
n

∥∥2 − ∥∥y∗∗∥∥2 − ∥∥y∗∥∥2] + 1

n2

(
by (9)

)
�

[〈
ãn, y

∗
n

〉 + 〈
ã∗
n, y∗∗

n

〉 − 〈
an, y

∗〉 − 〈
a∗
n, y∗∗〉] (

by (15)
)

+ 1

2

(∣∣‖ãn‖2 − ‖an‖2
∣∣ + ∣∣∥∥ã∗

n

∥∥2 − ∥∥a∗
n

∥∥2∣∣)
+ 1

2

(∣∣∥∥y∗
n

∥∥2 − ∥∥y∗∥∥2∣∣ + ∣∣∥∥y∗∗
n

∥∥2 − ∥∥y∗∗∥∥2∣∣) + 1

n2

� 1

n2
+ 1

nβ
+ 2

n
M + 1

n
M + 1

n2
+ 4

nβ
+ 4

n2
+ 1

n2

(
by (16), (18) and (19)

)
= 7

n2
+ 5

nβ
+ 3

n
M, ∀n ∈N. (20)

By (15), (6), and [44, Theorem 3.2.4(vi)&(ii)], there exists a sequence (z∗
n, z

∗∗
n )n∈N in (graA)⊥

such that

(
y∗
n, y∗∗

n

) = (
ã∗
n, ãn

) + (
z∗
n, z

∗∗
n

)
, ∀n ∈ N. (21)

Since A∗ is monotone and (z∗∗
n , z∗

n) ∈ gra(−A∗), it follows from (21) that

〈
y∗
n, y∗∗

n

〉 − 〈
y∗
n, ãn

〉 − 〈
y∗∗
n , ã∗

n

〉 + 〈
ã∗
n, ãn

〉 = 〈
y∗
n − ã∗

n, y∗∗
n − ãn

〉 = 〈
z∗
n, z

∗∗
n

〉
� 0

⇒ 〈
y∗
n, y∗∗

n

〉
�

〈
y∗
n, ãn

〉 + 〈
y∗∗
n , ã∗〉 − 〈

ã∗, ãn

〉
, ∀n ∈ N.
n n
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Then by (6) and (15), we have 〈ã∗
n, ãn〉 = F(v0,v

∗
0 )(ãn, ã∗

n) and

〈
y∗
n, y∗∗

n

〉
�

〈
y∗
n, ãn

〉 + 〈
y∗∗
n , ã∗

n

〉 − F(v0,v
∗
0 )

(
ãn, ã∗

n

) = F ∗
(v0,v

∗
0 )

(
y∗
n, y∗∗

n

)
, ∀n ∈N. (22)

By (20) and (22), we have

F(v0,v
∗
0 )

(
ãn, ã∗

n

) + 〈
y∗
n, y∗∗

n

〉 + 1

2
‖ãn‖2 + 1

2

∥∥ã∗
n

∥∥2 + 1

2

∥∥y∗
n

∥∥2 + 1

2

∥∥y∗∗
n

∥∥2
<

7

n2
+ 5

nβ
+ 3

n
M

⇒ F(v0,v
∗
0 )

(
ãn, ã∗

n

) + 1

2
‖ãn‖2 + 1

2

∥∥ã∗
n

∥∥2
<

7

n2
+ 5

nβ
+ 3

n
M, ∀n ∈ N. (23)

Thus by (23),

inf
(x,x∗)∈X×X∗

[
F(v0,v

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]
� 0. (24)

By (6),

inf
(x,x∗)∈X×X∗

[
F(v0,v

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]
� 0. (25)

Combining (24) with (25), we obtain

inf
(x,x∗)∈X×X∗

[
F(v0,v

∗
0 )

(
x, x∗) + 1

2
‖x‖2 + 1

2

∥∥x∗∥∥2
]

= 0. � (26)

Proposition 3.2. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and A∗
is monotone. Then A is maximally monotone of type (D).

Proof. By Fact 2.8 and Proposition 3.1, it suffices to show that A is maximally monotone. Let
(z, z∗) ∈ X × X∗. Assume that

(
z, z∗) is monotonically related to graA. (27)

Define

F : X × X∗ → ]−∞,+∞] : (x, x∗) �→ ιgraA

(
x, x∗) + 〈

x, x∗〉.
We have

F(z,z∗) : (x, x∗) �→ ιgraA

(
z + x, z∗ + x∗) + 〈

x, x∗〉. (28)

Proposition 3.1 implies that there exists a sequence (xn, x
∗
n)n∈N in domF(z,z∗) such that

F(z,z∗)
(
xn, x

∗
n

) + 1‖xn‖2 + 1∥∥x∗
n

∥∥2 → 0. (29)

2 2
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Set (an, a
∗
n) := (z + xn, z

∗ + x∗
n), ∀n ∈ N. Then by (28), we have

F(z,z∗)
(
xn, x

∗
n

) = ιgraA

(
z + xn, z

∗ + x∗
n

) + 〈
xn, x

∗
n

〉
(30)

= ιgraA

(
an, a

∗
n

) + 〈
an − z, a∗

n − z∗〉. (31)

By (29) and (31),

(
an, a

∗
n

) ∈ graA, ∀n ∈N. (32)

Then by (32) and (27), we have

〈
xn, x

∗
n

〉 = 〈
an − z, a∗

n − z∗〉� 0, ∀n ∈N. (33)

Combining (31) and (33),

F(z,z∗)
(
xn, x

∗
n

)
� 0, ∀n ∈ N. (34)

In view of (34) and (29),

‖xn‖2 + ∥∥x∗
n

∥∥2 → 0. (35)

Thus (xn, x
∗
n) → (0,0) and hence (an, a

∗
n) → (z, z∗). Finally, by (32) and since graA is closed,

we see (z, z∗) ∈ graA. Therefore, A is maximally monotone. �
Remark 3.3. Proposition 3.2 provides an affirmative answer to a problem posed by Phelps and
Simons in [31, Section 9, item 2] on the converse of [31, Theorem 6.7(c) ⇒ (f)]. In [4, Proposi-
tion 3.1], we present an alternative proof for Proposition 3.2.

Example 3.4. Let A : X ⇒ X∗ be a monotone linear relation such that graA is closed. We note
that we cannot guarantee the maximal monotonicity of A even if A is at most single-valued and
densely defined. To see this, suppose that X = 	2, and that A : 	2 ⇒ 	2 is given by

Ax := (
∑

i<n xi − ∑
i>n xi)n∈N

2
=

( ∑
i<n

xi + 1

2
xn

)
n∈N

, ∀x = (xn)n∈N ∈ domA, (36)

where domA := {x := (xn)n∈N ∈ 	2 | ∑
i�1 xi = 0, (

∑
i�n xi)n∈N ∈ 	2}. Then A is an at most

single-valued linear relation. Now [9, Propositions 3.6] states that

A∗x =
(

1

2
xn +

∑
i>n

xi

)
n∈N

, (37)

where

x = (xn)n∈N ∈ domA∗ =
{
x = (xn)n∈N ∈ 	2

∣∣∣ ( ∑
i>n

xi

)
n∈N

∈ 	2
}
.
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Moreover, [9, Propositions 3.2, 3.5, 3.6 and 3.8], [31, Theorem 2.5] and Fact 2.9 show that:

(i) A is maximally monotone and skew;
(ii) domA is dense and domA� domA∗;

(iii) A∗ is maximally monotone, but not skew;
(iv) −A is not maximally monotone and A∗|domA = −A|domA.

Hence, −A is monotone with dense domain and gra(−A) is closed, but nonetheless −A is not
maximally monotone.

4. The general Brezis–Browder Theorem

We may now pack everything together to establish our central result. For the reader’s conve-
nience we repeat Theorem 1.5:

Theorem 4.1 (Brezis–Browder in general Banach space). Let A : X ⇒X∗ be a monotone linear
relation such that graA is closed. Then A is maximally monotone of type (D) if and only if A∗ is
monotone.

Proof. “ ⇒ ”: By Fact 1.2, A is of type (NI). Suppose to the contrary that there exists (a∗∗
0 , a∗

0) ∈
graA∗ such that 〈a∗∗

0 , a∗
0〉 < 0. Then we have

sup
(a,a∗)∈graA

(〈
a,−a∗

0

〉 + 〈
a∗∗

0 , a∗〉 − 〈
a, a∗〉) = sup

(a,a∗)∈graA

{−〈
a, a∗〉} = 0 <

〈−a∗∗
0 , a∗

0

〉
,

which contradicts that A is type of (NI). Hence A∗ is monotone.
“⇐”: Apply Proposition 3.2 directly. �

Remark 4.2. The proof of the necessary part in Theorem 4.1 follows closely that of [19, Theo-
rem 2].

The original Brezis and Browder result follows.

Corollary 4.3 (Brezis and Browder). Suppose that X is reflexive. Let A : X ⇒ X∗ be a monotone
linear relation such that graA is closed. Then the following are equivalent.

(i) A is maximally monotone.
(ii) A∗ is maximally monotone.

(iii) A∗ is monotone.

Proof. “(i) ⇔ (iii)”: Apply Theorem 4.1 and Fact 1.3 directly.
“(ii) ⇒ (iii)”: Clear.
“(iii) ⇒ (ii)”: Since graA is closed, (A∗)∗ = A. Apply Theorem 4.1 to A∗. �
In the case of a skew operator we can add maximality of the adjoint and so we prefigure results

of the next section:
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Corollary 4.4 (The skew case). Let A : X ⇒ X∗ be a skew operator such that graA is closed.
Then the following are equivalent.

(i) A is maximally monotone of type (D).
(ii) A∗ is monotone.

(iii) A∗ is maximally monotone with respect to X∗∗ × X∗.

Proof. By Theorem 4.1, it only remains to show:
“(ii) ⇒ (iii)”: Let (z∗∗, z∗) ∈ X∗∗ × X∗ be monotonically related to graA∗. Since gra(−A) ⊆

graA∗, (z∗∗, z∗) is monotonically related to gra(−A). Thus (z∗, z∗∗) ∈ [gra(−A)]⊥ since graA

is linear. Hence (z∗∗, z∗) ∈ graA∗. Hence A∗ is maximally monotone. �
Remark 4.5. We cannot say A∗ is maximally monotone with respect to X∗∗ × X∗∗∗ in Corol-
lary 4.4(iii): indeed, let A be defined by

graA = {0} × X∗.

Then graA∗ = {0} × X∗. If X is not reflexive, then X∗ � X∗∗∗ and so graA∗ is a proper subset
of {0} × X∗∗∗. Hence A∗ is not maximally monotone with respect to X∗∗ × X∗∗∗ although A is
maximally monotone of type (D) by Fact 1.3(i), because A = N{0} is a normal cone (and hence
subdifferential) operator.

We conclude with an application of Theorem 4.1 to an operator studied previously by Phelps
and Simons [31].

Example 4.6. Suppose that X = L1[0,1] so that X∗ = L∞[0,1], let

D = {
x ∈ X

∣∣ x is absolutely continuous, x(0) = 0, x′ ∈ X∗},
and set

A : X ⇒X∗ : x �→
{ {x′}, if x ∈ D;

∅, otherwise.

By [31, Example 4.3], A is an at most single-valued maximally monotone linear relation with
proper dense domain, and A is neither symmetric nor skew. Moreover,

domA∗ = {
z ∈ X∗∗ ∣∣ z is absolutely continuous, z(1) = 0, z′ ∈ X∗} ⊆ X

A∗z = −z′,∀z ∈ domA∗, and A∗ is monotone. Therefore, Theorem 4.1 implies that A is of
type (D).

In the next section, we turn to the question of how the skew part of the adjoint behaves.
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5. Decomposition of monotone linear relations

In this section, our main result states that A is maximally monotone of type (D) if and only if
its skew part A◦ is maximally monotone of type (D) and A∗0 = A0. When domA is closed, we
also obtained a refined version of the Brezis–Browder Theorem.

Let us first gather some basic properties about monotone linear relations, and conditions for
them to be maximally monotone.

The next three propositions were proven in reflexive spaces in [8, Proposition 2.2]. We adjust
the proofs to a general Banach space setting.

Proposition 5.1 (Monotone linear relations). Let A : X ⇒ X∗ be a linear relation. Then the
following hold.

(i) Suppose A is monotone. Then domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥; consequently, if graA

is closed, then domA ⊆ domA∗w∗ ∩ X and A0 ⊆ A∗0.
(ii) (∀x ∈ domA) (∀z ∈ (A0)⊥) 〈z,Ax〉 is single-valued.

(iii) (∀z ∈ (A0)⊥) domA → R : y �→ 〈z,Ay〉 is linear.
(iv) If A is monotone, then (∀x ∈ domA) 〈x,Ax〉 is single-valued.
(v) A is monotone ⇔ (∀x ∈ domA) inf〈x,Ax〉 � 0.

(vi) If A is monotone, then so is A + A∗.
(vii) If A is monotone, then so are A − A∗ and A∗ − A.
(viii) If (x, x∗) ∈ (domA) × X∗ is monotonically related to graA and x∗

0 ∈ Ax, then x∗ − x∗
0 ∈

(domA)⊥.

Proof. (i): Pick x ∈ domA. Then there exists x∗ ∈ X∗ such that (x, x∗) ∈ graA. By monotonic-
ity of A and since {0}×A0 ⊆ graA, we have 〈x, x∗〉� sup〈x,A0〉. Since A0 is a linear subspace,
we obtain x⊥A0. This implies domA ⊆ (A0)⊥ and A0 ⊆ (domA)⊥. If graA is closed, then
Facts 2.10(v)&(iv) yield domA ⊆ (A0)⊥ ⊆ (A0)⊥ = domA∗w∗

and A0 ⊆ A∗0.
(ii): Take x ∈ domA, x∗ ∈ Ax, and z ∈ (A0)⊥. By Fact 2.10(i), 〈z,Ax〉 = 〈z, x∗ + A0〉 =

〈z, x∗〉.
(iii): Take z ∈ (A0)⊥. By (ii), (∀y ∈ domA) 〈z,Ay〉 is single-valued. Now let x, y be in

domA, and let α,β be in R. If (α,β) = (0,0), then 〈z,A(αx +βy)〉 = 〈z,A0〉 = 0 = α〈z,Ax〉+
β〈z,Ay〉. And if (α,β) �= (0,0), then Fact 2.10(ii) yields 〈z,A(αx + βy)〉 = 〈z,αAx + βAy〉 =
α〈z,Ax〉 + β〈z,Ay〉. This verifies linearity.

(iv): Apply (i)&(ii).
(v): “ ⇒ ”: This follows from the fact that (0,0) ∈ graA. “⇐”: If x and y belong to domA,

then Fact 2.10(ii) yields 〈x − y,Ax − Ay〉 = 〈x − y,A(x − y)〉 � 0.
(vi): Let A be monotone. Set B := A + A∗ and take x ∈ domB = domA ∩ domA∗. By (v)

and Fact 2.10(iii), 0 � 〈x,Ax〉 = 〈A∗x, x〉. Hence 0 � 2〈x,Ax〉 = 〈x,Bx〉. Again by (v), B is
monotone.

(vii): Set B := A−A∗ and note that domB = domA∩domA∗ = dom(−B). Take x ∈ domB .
By Fact 2.10(iii), 〈x,Bx〉 = 〈x,Ax〉 − 〈A∗x, x〉 = 0. The monotonicity of ±B thus follows
from (v).

(viii): Let (x, x∗) ∈ domA × X∗ be monotonically related to graA, and take x∗
0 ∈ Ax. For

every (v, v∗) ∈ graA, we have x∗
0 + v∗ ∈ A(x + v) (by Fact 2.10(ii)); hence, 〈x − (x + v), x∗ −

(x∗ + v∗)〉 � 0 and thus 〈v, v∗〉 � 〈v, x∗ − x∗〉. Now take λ > 0 and replace (v, v∗) in the last
0 0
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inequality by (λv,λv∗). Then divide by λ and let λ → 0+ to see that 0 � sup〈domA, x∗ − x∗
0 〉.

Since domA is linear, it follows that x∗ − x∗
0 ∈ (domA)⊥. �

We define the symmetric part and the skew part of A via

A+ := 1

2
A + 1

2
A∗ and A◦ := 1

2
A − 1

2
A∗, (38)

respectively. It is easy to check that A+ is symmetric and that A◦ is skew.

Proposition 5.2 (Maximally monotone linear relations). Let A : X ⇒ X∗ be a monotone linear
relation. Then the following hold.

(i) A+ and A◦ are monotone.
(ii) If A is maximally monotone, then (domA)⊥ = A0 and hence domA = (A0)⊥.

(iii) If domA is closed, then: A is maximally monotone ⇔ (domA)⊥ = A0.
(iv) If A is maximally monotone, then domA∗w∗ ∩ X = domA = (A0)⊥, and A0 = A∗0 =

A+0 = A◦0 = (domA)⊥ is (weak∗) closed.
(v) If A is maximally monotone and domA is closed, then domA∗ ∩ X = domA.

(vi) If A is maximally monotone and domA ⊆ domA∗, then A = A+ +A◦, A+ = A−A◦, and
A◦ = A − A+.

(vii) If A is maximally monotone and domA is closed, then both A+ and A◦ are maximally
monotone.

(viii) If A is maximally monotone and domA is closed, then A∗ = (A+)∗ + (A◦)∗.

Proof. (i): This follows from Proposition 5.1(vi)&(vii).
(ii): Let x∗ ∈ (domA)⊥. Then, for all (a, a∗) ∈ graA, 0 � 〈a − 0, a∗ − 0〉 = 〈a − 0, a∗ − x∗〉.

By the maximal monotonicity of A, we have (0, x∗) ∈ graA, i.e., x∗ ∈ A0. This establishes
the inclusion (domA)⊥ ⊆ A0. (We are grateful to the referee for suggesting this simple proof.)
Combining with Proposition 5.1(i), we have (domA)⊥ = A0. By Fact 2.1, domA = (A0)⊥.

(iii): “ ⇒ ”: Clear from (ii). “⇐”: The assumptions and Fact 2.1 imply that domA = domA =
[(domA)⊥]⊥ = (A0)⊥. Let (x, x∗) be monotonically related to graA. We have inf〈x − 0,

x∗ − A0〉 � 0. Then we have x ∈ (A0)⊥ and hence x ∈ domA. Then by Proposition 5.1(viii)
and Fact 2.10(i), x∗ ∈ Ax. Hence A is maximally monotone.

(iv): By (ii) and Fact 2.10(iv), A0 = (domA)⊥ = A∗0 is weak∗ closed and thus A+0 = A◦0 =
A0 = (domA)⊥. Then by Fact 2.10(v) and (ii), domA∗w∗ ∩ X = (A0)⊥ = domA.

(v): Combine (iv) with Fact 2.10(vi).
(vi): We show only the proof of A = A+ + A◦ as the other two proofs are analogous. Clearly,

domA+ = domA◦ = domA ∩ domA∗ = domA. Let x ∈ domA, and x∗ ∈ Ax and y∗ ∈ A∗x.
We write x∗ = x∗+y∗

2 + x∗−y∗
2 ∈ (A+ + A◦)x. Then, by (iv) and Fact 2.10(i), Ax = x∗ + A0 =

x∗ + (A+ + A◦)0 = (A+ + A◦)x. Therefore, A = A+ + A◦.
(vii): By (v),

domA+ = domA◦ = domA is closed. (39)

Hence, by (iv),

A◦0 = A+0 = A0 = (domA)⊥ = (domA+)⊥ = (domA◦)⊥. (40)



4964 H.H. Bauschke et al. / Journal of Functional Analysis 262 (2012) 4948–4971
Since A is monotone, so are A+ and A◦. Combining (39), (40), and (iii), we deduce that A+ and
A◦ are maximally monotone.

(viii): By (v)&(vi),

A = A+ + A◦. (41)

Then by (vii), (v), and Fact 2.6, A∗ = (A+)∗ + (A◦)∗. �
For a monotone linear relation A : X ⇒X∗ it will be convenient to define – as in, e.g., [3] – a

generalized quadratic form

(∀x ∈ X) qA(x) =
{ 1

2 〈x,Ax〉, if x ∈ domA;
+∞, otherwise.

Proposition 5.3. Let A : X ⇒ X∗ be a monotone linear relation, let x and y be in domA, and
let λ ∈R. Then qA is single-valued, qA � 0 and

λqA(x) + (1 − λ)qA(y) − qA

(
λx + (1 − λ)y

) = λ(1 − λ)qA(x − y)

= 1

2
λ(1 − λ)〈x − y,Ax − Ay〉. (42)

Consequently, qA is convex.

Proof. Proposition 5.1(iv)&(v) show that qA is single-valued and that qA � 0. Combining with
Proposition 5.1(i)&(iii), we obtain (42). Therefore, qA is convex. �

As in the classical case, qA allows us to connect properties of A+ to those of A and A∗.
The proof of Proposition 5.4(iv) was borrowed from [19, Theorem 2]. Results very similar to
Proposition 5.4(i)&(ii) are verified in [43, Proposition 18.9]. We write qA for the lower semicon-
tinuous hull of qA.

Proposition 5.4 (Properties of the symmetric part and the adjoint). Let A : X ⇒ X∗ be a mono-
tone linear relation. Then the following hold.

(i) qA + ιdomA+ = qA+ and thus qA+ is convex.
(ii) graA+ ⊆ gra ∂qA. If A+ is maximally monotone, then A+ = ∂qA.

(iii) If A is maximally monotone and domA is closed, then A+ = ∂qA.
(iv) If A is maximally monotone, then A∗|X is monotone.
(v) If A is maximally monotone and domA is closed, then A∗|X is maximally monotone.

Proof. Let x ∈ domA+.
(i): By Fact 2.10(iii) and Proposition 5.1(iv), qA+ = qA|domA+ . Then by Proposition 5.3,

qA+ is convex. Let y ∈ domA. By Fact 2.10(iii), 〈A(x − y), x − y〉 = 〈Ax − Ay,x − y〉 =
〈Ax,x〉 + 〈Ay,y〉 − 2〈A+x, y〉 and therefore all pairing terms are single-valued by Proposi-
tion 5.1(iv). It therefore follows with Fact 2.10(iii) that

〈A+x, y〉 and 〈Ax,x〉 = 〈A+x, x〉 are single-valued. (43)
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Hence

0 � 1

2
〈Ax − Ay,x − y〉 = 1

2
〈Ay,y〉 + 1

2
〈Ax,x〉 − 〈A+x, y〉, (44)

and thus qA(y) � 〈A+x, y〉 − qA(x). Take the lower semicontinuous hull of qA at y to deduce
that qA(y) � 〈A+x, y〉−qA(x). For y = x, we have qA(x) � qA(x). On the other hand, qA � qA.
Altogether, qA(x) = qA(x) = qA+(x). Thus (i) holds.

(ii): Let y ∈ domA. By (43), (44) and (i),

qA(y) � qA(x) + 〈A+x, y − x〉 = qA(x) + 〈A+x, y − x〉, (45)

where the pairing terms are single-valued. Since domqA ⊆ domqA = domA, by (45), qA(z) �
qA(x)+〈x∗, z−x〉, ∀x∗ ∈ A+x,∀z ∈ domqA. Hence A+x ⊆ ∂qA(x). If A+ is maximally mono-
tone, then A+ = ∂qA. Thus (ii) holds.

(iii): Combine Proposition 5.2(vii) with (ii).
(iv): Suppose to the contrary that A∗|X is not monotone. By Proposition 5.1(v), there exists

(x0, x
∗
0 ) ∈ graA∗ with x0 ∈ X such that 〈x0, x

∗
0 〉 < 0. Now we have

〈−x0 − y, x∗
0 − y∗〉 = −〈

x0, x
∗
0

〉 + 〈
y, y∗〉 + 〈

x0, y
∗〉 − 〈

y, x∗
0

〉
= −〈

x0, x
∗
0

〉 + 〈
y, y∗〉 > 0, ∀(

y, y∗) ∈ graA. (46)

Thus, (−x0, x
∗
0 ) is monotonically related to graA. By the maximal monotonicity of A,

(−x0, x
∗
0 ) ∈ graA. Then 〈−x0 − (−x0), x

∗
0 − x∗

0 〉 = 0, which contradicts (46). Hence A∗|X is
monotone.

(v): By Fact 2.10(vi), domA∗|X = (A0)⊥ and thus domA∗|X is closed. By Fact 2.1 and
Proposition 5.2(ii), (domA∗|X)⊥ = ((A0)⊥)⊥ = A0

w∗ = A0. Then by Proposition 5.2(iv),
(domA∗|X)⊥ = A∗0 = A∗|X0. Applying (iv) and Proposition 5.2(iii), we see that A∗|X is maxi-
mally monotone. �

The proof of the next Theorem 5.5(i) ⇒ (ii) was partially inspired by that of [2, Theo-
rem 4.1(v) ⇒ (vi)]. In it we present our main findings relating monotonicity and adjoint proper-
ties of A and those of its skew part A◦.

Theorem 5.5 (Monotone linear relations with closed graph and domain). Let A : X ⇒ X∗ be a
monotone linear relation such that graA is closed and domA is closed. Then the following are
equivalent.

(i) A is maximally monotone of type (D).
(ii) A◦ is maximally monotone of type (D) with respect to X × X∗ and A∗0 = A0.

(iii) (A◦)∗ is maximally monotone with respect to X∗∗ × X∗ and A∗0 = A0.
(iv) (A◦)∗ is monotone and A∗0 = A0.
(v) A∗ is monotone.

(vi) A∗ is maximally monotone with respect to X∗∗ × X∗.
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Proof. “(i) ⇒ (ii)”: By Theorem 4.1,

A∗ is monotone. (47)

By Proposition 5.4(iii), A+ is a subdifferential operator; hence, by Fact 1.3(i),

A+ is maximally monotone of type (D). (48)

By Theorem 4.1,

(A+)∗ is monotone. (49)

Now we show that

(A◦)∗ is monotone. (50)

Proposition 5.2(viii) implies

A∗ = (A+)∗ + (A◦)∗. (51)

Since A is maximally monotone and domA is closed, Proposition 5.2(vii) implies that

A◦ is maximally monotone; consequently, gra(A◦) is closed. (52)

On the other hand, again since A is maximally monotone and domA is closed, Proposition 5.2(v)
yields dom(A◦) = domA is closed. Altogether, and combining with Fact 2.10(vi) applied to A◦,
we obtain dom(A◦)∗ = (A◦0)⊥. Furthermore, since A0 = A◦0 by Proposition 5.2(iv), we have
(A0)⊥ = (A◦0)⊥. Moreover, applying Fact 2.10(vi) to A, we deduce that domA∗ = (A0)⊥.
Therefore,

dom(A◦)∗ = (A◦0)⊥ = (A0)⊥ = domA∗. (53)

Similarly, we have

dom(A+)∗ = domA∗. (54)

Take (x∗∗, x∗) ∈ gra(A◦)∗. By (51), (53) and (54), there exist a∗, b∗ ∈ X∗ such that

(
x∗∗, a∗) ∈ graA∗,

(
x∗∗, b∗) ∈ gra(A+)∗ (55)

and

a∗ = b∗ + x∗. (56)

Since A+ is symmetric, graA+ ⊆ gra(A+)∗. Thus, by (49), (x∗∗, b∗) is monotonically related
to graA+. By (48), there exists a bounded net (aα, b∗)α∈Γ in graA+ such that (aα, b∗)α∈Γ
α α
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weak∗ × strong converges to (x∗∗, b∗). Note that (aα, b∗
α) ∈ gra(A+)∗, ∀α ∈ Γ . By (51), (53)

and (54), there exist a∗
α ∈ A∗aα, c∗

α ∈ (A◦)∗aα such that

a∗
α = b∗

α + c∗
α, ∀α ∈ Γ. (57)

Thus by Fact 2.10(iii),

〈
aα, c∗

α

〉 = 〈A◦aα, aα〉 = 0, ∀α ∈ Γ. (58)

Hence for every α ∈ Γ , (−aα, c∗
α) is monotonically related to graA◦. By Proposition 5.2(vii),

(−aα, c∗
α

) ∈ graA◦, ∀α ∈ Γ. (59)

By (47) and (55), we have

0 �
〈
x∗∗ − aα, a∗ − a∗

α

〉 = 〈
x∗∗ − aα, a∗ − b∗

α − c∗
α

〉 (
by (57)

)
= 〈

x∗∗ − aα, a∗ − b∗
α

〉 − 〈
x∗∗, c∗

α

〉 + 〈
aα, c∗

α

〉
= 〈

x∗∗ − aα, a∗ − b∗
α

〉 − 〈
x∗∗, c∗

α

〉 (
by (58)

)
= 〈

x∗∗ − aα, a∗ − b∗
α

〉 + 〈
x∗, aα

〉 (
by (59) and

(
x∗∗, x∗) ∈ gra(A◦)∗

)
. (60)

Taking the limit in (60) along with aα
w∗
⇁x∗∗ and b∗

α → b∗, we have

〈
x∗∗, x∗〉� 0.

Hence (A◦)∗ is monotone and thus (50) holds. Combining this, (52), and Theorem 4.1, we deduce
that A◦ is maximally monotone of type (D). Finally, A∗0 = A0 by Proposition 5.2(iv).

“(ii) ⇒ (iii) ⇒ (iv)”: Apply Corollary 4.4 to A◦, which has closed graph by maximal mono-
tonicity.

“(iv) ⇒ (v)”: By Fact 2.10(iv) and Proposition 5.2(iii), A is maximally monotone. Then by
Proposition 5.2(viii) and Proposition 5.4(iii), we have

A∗ = (A+)∗ + (A◦)∗ and A+ = ∂qA. (61)

As a subdifferential operator, A+ is of type (D) (see Fact 1.3(i)), and hence (A+)∗ is monotone
by Theorem 4.1. Thus, by the assumption and (61), we have A∗ is monotone.

“(v) ⇒ (vi)”: By Proposition 3.2, A is maximally monotone. Then by Fact 2.10(vi) and Propo-
sition 5.2(iv),

domA∗ = (
A∗0

)⊥
. (62)

Then by Fact 2.1 and Fact 2.10(iv),

(
domA∗) = A∗0. (63)
⊥
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Let (x∗∗, x∗) ∈ X∗∗ × X∗ be monotonically related to graA∗. Because {0} × A∗0 ⊆ graA∗, we
have inf〈x∗∗, x∗ − A∗0〉� 0. Since A∗0 is a subspace, x∗∗ ∈ (A∗0)⊥. Then by (62),

x∗∗ ∈ domA∗. (64)

Take (x∗∗, x∗
0 ) ∈ graA∗ and λ > 0. For every (a∗∗, a∗) ∈ graA∗, we have (λa∗∗, λa∗) ∈ graA∗

and hence (x∗∗ + λa∗∗, x∗
0 + λa∗) ∈ graA∗ (since graA∗ is a subspace). Thus

λ
〈
a∗∗, x∗

0 + λa∗ − x∗〉 = 〈
x∗∗ + λa∗∗ − x∗∗, x∗

0 + λa∗ − x∗〉� 0.

Now divide by λ to obtain λ〈a∗∗, a∗〉 � 〈a∗∗, x∗ − x∗
0 〉. Then let λ → 0+ to see that 0 �

sup〈domA∗, x∗ − x∗
0 〉. Thus, x∗ − x∗

0 ∈ (domA∗)⊥. By (63), x∗ ∈ x∗
0 + A∗0 ⊆ A∗x∗∗ + A∗0.

Then there exists (0, z∗) ∈ graA∗ such that (x∗∗, x∗ − z∗) ∈ graA∗. Since graA∗ is a subspace,
(x∗∗, x∗) = (0, z∗) + (x∗∗, x∗ − z∗) ∈ graA∗. Hence A∗ is maximally monotone with respect to
X∗∗ × X∗.

“(vi) ⇒ (i)”: Apply Proposition 3.2 directly. �
The next three examples show the need for our various auxiliary hypotheses.

Example 5.6. We cannot remove the condition that A∗0 = A0 in Theorem 5.5(iv). For example,
suppose that X = R2 and set e1 = (1,0), e2 = (0,1). We define A : X ⇒ X by

graA = span{e1} × {0} so that graA∗ = X × span{e2}.
Then A is monotone, domA is closed, and graA is closed. Thus

graA◦ = span{e1} × span{e2} (65)

and so

gra(A◦)∗ = span{e1} × span{e2}.
Hence (A◦)∗ is monotone, but A is not maximally monotone because graA� graNX .

Example 5.7. We cannot replace “domA is closed” by “domA is dense” in the statement of
Theorem 5.5. For example, let X,A be defined as in Example 3.4 and consider the operator A∗.
Example 3.4(iii)&(ii) imply that A∗ is maximally monotone with dense domain; hence, graA∗
is closed. Moreover, by Example 3.4(i)&(iv),

(
A∗)

◦ = A∗ − A∗∗

2
= A∗ − A

2
= −A. (66)

Hence

[(
A∗)

◦
]∗ = −A∗. (67)

Thus [(A∗)◦]∗ is not monotone by Example 3.4(iii); even though A∗ is a classically maximally
monotone and densely defined linear operator.
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Example 5.8. We cannot remove the condition that (A◦)∗ is monotone in Theorem 5.5(iv). For
example, consider the Gossez operator A (see [23] and [2]). It satisfies X = 	1, domA = X,
A◦ = A, A0 = {0} = A∗0, yet A∗ is not monotone.

Remark 5.9. Let A : X ⇒ X∗ be a maximally monotone linear relation.

(i) In general, (A∗)◦ �= (A◦)∗. To see that, let X,A be as in Example 3.4 again. By Exam-
ple 3.4(i), we have

(
A∗)

◦ = −A and (A◦)∗ = A∗.

Hence (A∗)◦ �= (A◦)∗ by Example 3.4(ii). Moreover, even when A is a linear and contin-
uous operator, one cannot deduce that (A∗)◦ = (A◦)∗. Indeed, assume that X and A are
as in Example 5.8. Then (A∗)◦ is skew and hence monotone; however, (A◦)∗ = A∗ is not
monotone.

(ii) However, if X is finite-dimensional, we do have (A∗)◦ = (A◦)∗. Indeed, by Fact 2.6,

(A◦)∗ =
(

A − A∗

2

)∗
= A∗ − A∗∗

2
= (

A∗)
◦.

We do not know whether (A∗)◦ = (A◦)∗ for all maximally monotone linear relations if and
only if X is finite-dimensional.

The work in [6] suggests that in every nonreflexive Banach space there is a maximally mono-
tone linear relation which is not of type (D).

When A is linear and continuous, Theorem 5.5 can also be deduced from [2, Theorem 4.1].
When X is reflexive and domA is closed, Theorem 5.5 turns into the following refined version
of Fact 2.9:

Corollary 5.10 (Monotonicity of the adjoint in reflexive space). Suppose that X is reflexive and
let A : X ⇒ X∗ be a monotone linear relation such that graA is closed and domA is closed.
Then the following are equivalent.

(i) A is maximally monotone.
(ii) A∗ is monotone.

(iii) A∗ is maximally monotone.
(iv) A0 = A∗0.

Proof. “(i) ⇔ (ii) ⇔ (iii) ⇒ (iv)”: This follows from Theorem 5.5 and the fact that every maxi-
mally monotone operator on a reflexive space is of type (D), see Fact 1.3(ii).

“(iv) ⇒ (i)”: Fact 2.10(iv) implies that (domA)⊥ = A∗0 = A0. By Proposition 5.2(iii), A is
maximally monotone. �

When X is finite-dimensional, the closure assumptions in the previous result are automatically
satisfied and we thus obtain the following:
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Corollary 5.11 (Monotonicity of the adjoint in finite-dimensional space). Suppose that X is
finite-dimensional. Let A : X ⇒X∗ be a monotone linear relation. Then the following are equiv-
alent.

(i) A is maximally monotone.
(ii) A∗ is monotone.

(iii) A∗ is maximally monotone.
(iv) A0 = A∗0.
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