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Placental amino acid transport is essential for optimal fetal growth and development, with a reduced
fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR).
Understanding placental insufficiency related FGR has been aided by the development of mouse models
that have features of the human disease. However, to take maximal advantage of these, methods are
required to study placental function in the mouse. Here, we report a method to isolate plasma membrane
vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters,
systems A and b, the activities of which are reduced in human placental microvillous plasma membrane
(MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by
a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched
11.3� 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal
intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline
phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited
on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this
trophoblast membrane. System A and system b activity in mouse placental vesicles, measured as Naþ-
dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed
localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to
human placental MVM showed that system A activity was comparable at initial rate between species
whilst system b activity was significantly lower in mouse. This mirrored the lower expression of TAUT
observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma
membrane vesicles can be isolated and used to examine transporter function.

� 2009 Elsevier Ltd. Open access under CC BY license. 
1. Introduction

Adequate provision of amino acids is required for optimal fetal
development [1]. Altered amino acid supply to the fetus may
significantly impact on development and lead to fetal growth
restriction (FGR), a condition associated with high levels of peri-
natal mortality and morbidity [2] including neurodevelopmental
delay and handicap in those surviving [3]. FGR is a condition
associated with various aetiologies [4]. However, over recent years
there has been growing evidence to suggest that impaired nutrient
transfer across the placenta directly limits fetal growth [4,5]. In FGR
there is a reduction in cord plasma concentration of amino acids
including essential amino acids [6,7], and this is associated with
a reduced activity of a range of amino acid transport systems in
x: þ44 161 701 6971.
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both the microvillous (MVM) and basal (BM) plasma membranes of
the syncytiotrophoblast [5]. These include system A and system
b transporters in MVM [8–11], system L transporter in MVM and
BM [12] and system yþL transporter in BM [12].

In human placental MVM, the magnitude of the reduction in
system A activity relates to the severity of FGR [8], but definitive
evidence that impaired system A activity is causal in inducing FGR
has come from animal models. Cramer et al. [13] used N-methyl-
ated amino acid a-(methylamino)isobutyric acid (MeAIB), a non-
metabolisable substrate for system A [14], to inhibit placental
system A activity in rats thereby impacting on placental delivery of
endogenous neutral amino acid substrates to fetuses. This manip-
ulation resulted in a reduced maternofetal transfer of radiolabelled
MeAIB, reduced system A activity in isolated apical plasma
membrane vesicles and a significant reduction in fetal weight near-
term. Other studies, using dietary manipulation in pregnant rats to
induce FGR, have clearly demonstrated that the downregulation in
placental system A activity precedes the onset of FGR [15]. These
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observations clearly delineate system A as a key transporter in
determining fetal growth. Likewise, the importance of system
b amino acid transporter, encoded by the TAUT gene, in promoting
normal growth is exemplified by the observation that mice
homozygous for the deletion of the TAUT gene (taut�/�) are
significantly smaller than their wild-type siblings, and do not
exhibit catch-up growth [16].

These studies emphasise the importance of using rodent
models, which can be relatively easily manipulated, to elucidate the
role of specific placental amino acid transporters in the patho-
genesis of FGR. Additionally, mouse genetic variants that represent
conditions prevalent in humans are important in advancing our
understanding of disease processes. As a prelude to examining
placental amino acid transporter activity in genetically modified
mice, the aim of this study was to isolate plasma membrane
vesicles from a defined trophoblast plasma membrane of the
near-term mouse haemotrichorial placenta and to assess whether
these could be used to investigate the activities of system A and
system b amino acid transporters as key determinants of fetal
growth and development. To do this we adapted the Mg2þ-chela-
tion method used to isolate plasma membrane vesicles from rat
placenta [17], based on the original method to prepare MVM
vesicles from human placenta [18]. In order to establish the
suitability of alkaline phosphatase as a marker of purity for the
mouse placental vesicle preparation, cytochemical localisation of
this enzyme in mouse placenta was performed. Finally, we
compared the activities of system A and system b amino acid
transporters in mouse placental vesicles with that in human
placental MVM vesicles.

2. Methods

2.1. Chemicals

All chemicals were purchased from either Sigma–Aldrich Co. Ltd (Poole, UK) or
VWR International (Lutterworth, UK) unless otherwise stated.

2.2. Animals

C57/B1 mice were mated and the first day of gestation determined by the
discovery of a copulation plug (term is 19–20 days). All animals were provided with
nesting material and housed in cages maintained under constant 12 h light–dark
cycle at 21–23 �C with free access to food (Beekay Rat and Mouse Diet, Bantin &
Kingham, Hull, UK) and tap water. All animals were killed by Schedule 1 procedure
in accordance with the UK Animals (Scientific Procedures) Act of 1986.

2.3. Alkaline phosphatase localisation in mouse placenta

Alkaline phosphatase localisation was performed as described previously [17].
Briefly, placentas were collected from an individual mouse at embryonic day 18
(E18) and cut into four sections. Tissue was fixed by immersion in 2.5% glutaralde-
hyde in 0.1 M sodium cacodylate buffer (pH 7.4) for 4 h followed by washing in
cacodylate buffer containing 3 mM calcium chloride. Thin slivers of tissue were cut
with a razor blade, cut into small squares and washed in 0.2 M Tris–HCl buffer
(pH 8.5) followed by incubation in the presence or absence (negative control) of
substrate as described previously [19]. After rinsing thoroughly with Tris–HCl buffer
(pH 8.5), tissue was washed with distilled water and cacodylate buffer, post-fixed
with 1% osmium tetroxide for 1 h, dehydrated in a graded alcohol series and
propylene oxide and embedded in TAAB epoxy resin (TAAB Laboratories Equipment
Ltd, Aldermaston, UK). Ultrathin sections were cut and mounted on 300 mesh
copper grid and examined at an accelerating voltage of 80 kV in a Phillips CM10
electron microscope without counterstaining. Digital images were captured using
a Deben camera and stored as 4 MB TIFF files.

2.4. Vesicle preparation and purification

For isolation of mouse placental vesicles, a modification of the method to
prepare rat placental vesicles was followed [17]. Placentas were collected from 2–6
litters at E18 and placed on ice. Tissue was weighed (1.05–3.93 g) and homogenised
for approximately 30 s in 5 volumes (w/v) ice-cold mannitol buffer (300 mM
mannitol, 10 mM Hepes–Tris, 1 mM MgSO4, pH 7.4). A sample (30 ml) of the
homogenate was retained for enzyme activity and protein analysis, and to the
remaining homogenate 12 mM MgCl2 was added; this was stirred on ice for 10 min.
The homogenate was then centrifuged at 2300�g for 15 min and the supernatant
retained and centrifuged at 23,500�g for 40 min. The resulting pellet was resus-
pended in intravesicular buffer (290 mM sucrose, 5 mM Tris, 5 mM Hepes, pH 7.4)
using a Dounce homogenizer and the vesicle suspension was passed 15–20 times
through a 25G syringe needle to yield the vesicle suspension. For comparison,
human placental MVM vesicles were prepared by a protocol employing two rounds
of Mg2þ-precipitation as described previously [18]. Vesicles intended for Western
blot analysis were stored at �80 �C.

Protein content of mouse homogenate and vesicle fractions was measured by
the method of Bradford [20] using a commercial kit (Biorad, Hertfordshire, UK).
Alkaline phosphatase activity was measured at pH 9.8 using p-nitrophenyl phos-
phate as substrate [21]. Vesicle purity was further assessed by measuring NADH
dehydrogenase [22] and succinate dehydrogenase [23] activities as markers of
endoplasmic reticulum and mitochondrial contamination respectively, as previously
described [17].

2.5. System A and system b activity in mouse placental vesicles

All measurements of system A and system b activity were performed within one
day of mouse vesicle isolation. System A activity was measured over 1 min at room
temperature (w22 �C) as previously described in the presence and absence of an
inwardly directed Naþ gradient [10]. The Naþ-dependent component of 14C-MeAIB
uptake was taken to indicate System A activity. Briefly, uptake was initiated by the
addition of 20 ml mouse vesicles (124–281 mg protein) to 20 ml 14C-MeAIB (0.33 mM;
Perkin Elmer, Buckinghamshire, UK) in the presence or absence of Naþ contained in
the extravesicular buffer (5 mM Tris, 5 mM Hepes, 145 mM NaCl or KCl, pH 7.4) [10].
Vesicular uptake was stopped by the addition of 2 ml ice-cold Krebs Ringer phos-
phate buffer (KRP; 130 mM NaCl, 10 mM Na2HPO4, 4.2 mM KCl, 1.2 mM MgS04,
0.75 mM CaCl2, pH 7.4) and 2 ml of the resultant solution applied to a filter under
vacuum filtration, which was washed with 10 ml KRP and dissolved in 2 ml 2-
ethoxyethanol and counted by liquid scintillation spectroscopy. System b activity
was determined in a similar manner using 20 ml 3H-taurine (1 mM; GE Healthcare,
Buckinghamshire, UK) as substrate. Non-specific binding of tracer to vesicle plasma
membrane was quantified by incubation of vesicles with 0.2% Triton to disrupt
vesicle integrity. Specificity of transporter activities was also examined by
competitive inhibition using model substrates for each transport mechanism
(20 mM for system A and 500 mM for system b) in the uptake buffer. For comparison,
uptakes were also performed using human placenta MVM vesicles, isolated using
magnesium precipitation as described previously [18] and of high purity as judged
by alkaline phosphatase enrichment (21.9�1.6-fold; n¼ 8).

2.6. Western blot analysis of TAUT expression

Human MVM and mouse vesicle samples (40 mg protein) were mixed with
sample buffer (8 M urea, 5% SDS, 455 mM dithiothreitol, 0.04% bromophenol blue in
50 mM Tris–HCl, pH 6.9) in a 2:1 volume ratio (vesicles:sample buffer). Mouse
kidney lysate (Santa Cruz Biotechnology, California, USA) was included as positive
control [24]. The samples were subjected to SDS-PAGE on a 8% gel and were then
electrotransferred to nitrocellulose membranes. The membranes were probed with
an affinity-purified rabbit polyclonal antibody raised against rat TAUT (1:250; Alpha
Diagnostic International, San Antonio, Texas) for 2 h at room temperature, using
similar conditions to that described previously [25]. To confirm antibody specificity,
parallel negative controls were included whereby incubations were performed with
primary antibody that had been pre-adsorbed with 10� antigenic peptide overnight
at 4 �C. Blots were re-probed for b-actin (1:1000; Abcam, Cambridge, England) to
confirm comparable protein loading and preservation of sample integrity.

2.7. Statistics

Data is presented as the mean� SEM, with n¼ number of preparations (each
preparation being pooled from �2 litters). Statistical analysis using least-squares
linear regression analysis, one-way ANOVA followed by a Dunnett’s multiple
comparison test or two-way ANOVA followed by a Bonferroni post-test were applied
as appropriate with p< 0.05 taken to be significant.

3. Results

3.1. Alkaline phosphatase ultracytochemistry

Intense deposits of reaction product indicative of alkaline
phosphatase activity were predominantly localised between
syncytial layers I and II, with no reaction product visible in
trophoblast layer III or fetal capillary endothelium (Fig. 1A and C).
Reaction product was clearly associated with plasma membrane
infoldings of layer II (Fig. 1C) and was also associated with plasma



Fig. 1. Alkaline phosphatase distribution in mouse placenta. (A) Intense reaction product, indicative of alkaline phosphatase activity, was localised between trophoblast layers I and
II (black arrows) with deposits clearly visible between the plasma membrane infoldings of layer II. The boxed area is magnified in Fig. 1C. (B) No reaction product was observed in
the absence of substrate. (C) Reaction product distribution within layer II. I, II, III indicate the three trophoblast layers; FC, fetal capillary; E, fetal capillary endothelium; MBS,
maternal blood space; rbc, red blood cell.
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proteins and maternal erythrocytes within the maternal blood
space (Fig. 1A). No reaction product was observed in the absence of
substrate (Fig. 1B).
3.2. Protein recovery and purity in mouse placental vesicles

The amount of protein recovered in the mouse placental
membrane vesicle fraction from pooled placentas of �2 litters was
3.5� 0.3 mg/g placenta (n¼ 22). Marker enzyme activities in
homogenate and vesicle fractions are shown in Table 1. Alkaline
phosphatase activity was markedly enriched in mouse placental
vesicles. In contrast, there was no enrichment of NADH dehydro-
genase or succinate dehydrogenase activities indicating minimal
Table 1
Marker enzyme activities in mouse placental homogenate and vesicles.

Homogenate Vesicles

Alkaline phosphatase
(mmol product/mg protein/min)

0.96� 0.15 (22) 8.94� 0.83 (22)

Alkaline phosphatase enrichment 11.3� 0.5
NADH dehydrogenase

(mmol product/mg protein/min)
2.15� 0.55 (3) 2.05� 0.54 (3)

NADH dehydrogenase enrichment 0.95� 0.02
Succinate dehydrogenase

(nmol product/mg protein/min)
14.3� 10.4 (3) 7.8� 7.2 (3)

Succinate dehydrogenase enrichment 0.16� 0.2

Mean� SEM (n) is shown.
contamination with endoplasmic reticulum and mitochondria
respectively.

3.3. System A uptake in mouse placental vesicles

Uptake of 14C-MeAIB into mouse placental vesicles was time-
dependent with uptake in the presence of Naþ significantly higher
(p< 0.0005, 2-way ANOVA with Bonferroni’s post-test) than that in
the absence (with Kþ replacement) at all time points (Fig. 2A). Naþ-
dependent uptake of 14C-MeAIB in mouse vesicles was linear over
60 s (Fig. 2B). Uptake of 14C-MeAIB reflected accumulation within
an intravesicular space as uptake was negligible in the presence of
0.2% Triton (data not shown). The gradient of the linear regression
line was not significantly different between mouse placental and
human MVM vesicles measured under the same conditions
(Fig. 2B). Fig. 2C shows the competitive inhibition of 14C-MeAIB by
an excess of the unlabelled neutral amino acids, representing
model substrates of system A, measured at 30 s (taken to be initial
rate). In the presence of each amino acid, uptake into mouse
placental vesicles was significantly reduced, with a similar pattern
of inhibition observed in human MVM vesicles (Fig. 2C).

3.4. System b uptake in mouse placental vesicles

Uptake of 3H-taurine into mouse placental vesicles increased
with time over 15–60 s, with uptake in the presence of Naþ
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Fig. 2. Uptake of 14C-MeAIB (0.165 mM) into mouse placental vesicles. (A) Uptakes were measured in the presence (-) and absence (;; Kþ replacement) of an inwardly directed
Naþ gradient over 60 s. (B) Linearity of Naþ-dependent 14C-MeAIB uptake into mouse placental (r2¼ 0.95, p< 0.05, solid line; n¼ 6) and human MVM vesicles (r2¼ 0.98, p< 0.05,
dashed line; n¼ 6) over 60 s. The gradients of the lines were not significantly different (F test). Data are expressed as mean� SEM. (C) Effect of neutral amino acids (20 mM) on Naþ-
dependent 14C-MeAIB uptake into mouse placental and human MVM vesicles. Data is expressed as meanþ SEM with (n) given above bars. In both mouse and human vesicles uptake
of 14C-MeAIB was significantly reduced by each amino acid (p< 0.01, One-way ANOVA with Dunnett’s multiple comparison test).
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significantly higher (p< 0.001, 2-way ANOVA with Bonferroni’s
post-test) than that in the absence of Naþ at all time points (Fig. 3A).
Naþ-dependent uptake of 3H-taurine in mouse vesicles was linear
over 60 s (Fig. 3B) and into an intravesicular space, as in the
presence of 0.2% Triton, uptake was negligible (data not shown). In
contrast to system A, both the magnitude and rate of 3H-taurine
uptake into mouse placental vesicles over 60 s was markedly lower
than in human placental MVM vesicles (Fig. 3B). Fig. 3C shows the
competitive inhibition of 3H-taurine by excess unlabelled b-amino
acids, as model substrates of system b measured at initial rate
(30 s). In the presence of each amino acid, uptake into mouse
placental vesicles was significantly reduced, similar to the pattern
of inhibition observed in human placental MVM vesicles (Fig. 3C).

3.5. TAUT protein expression in mouse placental vesicles

To investigate the lower system b activity in mouse placental
vesicles further, the expression of the taurine transporter (TAUT)
which mediates this activity was examined (Fig. 4). Fig. 4A shows
a representative Western blot that compares the expression of in
mouse placental vesicles to that in human placental MVM. Confir-
mation that the primary antibody was immunoreactive with
murine TAUT protein was evidenced by the signal detected in
mouse kidney as positive control (Fig. 4A). Multiple TAUT species
were observed in both human MVM and mouse placental vesicles,
with signal intensity relatively more pronounced in human
placental MVM (Fig. 4A). All immunoreactive signals were abol-
ished by pre-adsorption of the antibody with 10� excess antigenic
peptide (Fig. 4B), confirming antibody specificity. Reprobing of the
blot for b-actin (Fig. 4C), confirmed protein integrity in all samples.
4. Discussion

Our observation that alkaline phosphatase activity in the
near-term mouse placenta is predominantly localised to the
maternal-facing plasma membrane of syncytiotrophoblast II layer
is consistent with previous reports in this species describing the
presence strong alkaline phosphatase activity to numerous
infoldings in layer II with minimal activity localised to either the
apical or basal plasma membrane of layer I [26]. This predominant
distribution of alkaline phosphatase to the maternal-facing plasma
membrane of syncytiotrophoblast layer II in mouse placenta
mirrors that found in rat placenta [17], suggesting a common
pattern of polarised alkaline phosphatase activity between these
two species with haemotrichorial placentation.

This polarisation of alkaline phosphatase activity is also reflec-
ted in the haemomonochorial human placenta with the predomi-
nant localisation of alkaline phosphatase to the MVM plasma
membrane of the syncytiotrophoblast [19]. These data therefore
raise the possibility that the maternal-facing plasma membrane of
syncytiotrophoblast layer II in rodent placenta and the MVM
plasma membrane in human syncytiotrophoblast possess common
catalytic properties and complement of intrinsic proteins. In
support of this concept, maternal-facing plasma membranes from
trophoblast layer II of rat placenta and human placental MVM have
several transport proteins found in common; Naþ/Hþ exchanger
[17], lactate transporter [27], and systems A [28–30], ASC [31], X�AG
[31,32], yþ and yþL [31] amino acid transporters.

Collectively, these observations strongly suggest that alkaline
phosphatase activity is predominantly associated with, and
a relatively good marker of, the first trophoblast plasma
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Fig. 3. Uptake of 3H-taurine (0.5 mM) into mouse placental vesicles. (A) Uptakes were measured in the presence (-) and absence (;; Kþ replacement) of an inwardly directed Naþ

gradient over 60 s. (B) Linearity of Naþ-dependent 3H-taurine uptake into mouse placental (r2¼ 0.90, p< 0.05, solid line; n¼ 6) and human MVM vesicles (r2¼1.0, p< 0.005, dashed
line; n¼ 5) over 60 s. The gradients of the lines were significantly different (p< 0.0005, F test). Data are expressed as mean� SEM. (C) Effect of b-amino acids (500 mM) on Naþ-
dependent 3H-taurine uptake into mouse placental and human MVM vesicles. Data is expressed as meanþ SEM with (n) given above bars. In both mouse and human vesicles
uptake of 3H-taurine was significantly reduced by each amino acid (p< 0.01 One-way ANOVA with Dunnett’s multiple comparisons test).
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membrane to confer restriction to maternofetal transfer of
solutes. This proposal is supported by permeability studies
which have demonstrated that tracers such as horseradish
peroxidase penetrated trophoblast layer I relatively rapidly in
both rat [33] and mouse [26] placenta, collecting in the space
Fig. 4. Western blot comparing TAUT expression in mouse placental vesicles to human placen
and MVM isolates from human placenta (H) probed for TAUT, with mouse kidney lysate (K)
lysate (25 mg). An immunoreactive signal was seen in all human MVM lanes with a molec
vesicles. Signals were also observed in mouse kidney lysate at w145 and w47 kDa. Film expo
excess blocking peptide. (C) The same blot re-probed for b-actin showing immunoreactive
between layers I and II, whereas further movement into
trophoblast layer II was minimal. This supports the concept that
the maternal-facing plasma membrane of trophoblast layer II
represents the first major plasma membrane barrier to mater-
nofetal transport.
tal MVM. (A) A representative Western blot of four mouse placental vesicle isolates (M)
included as positive control. Protein loading was 40 mg/lane other than mouse kidney

ular weight of w86 and w67 kDa. These bands were less intense in mouse placental
sure was 30 min. (B) Negative control showing that all TAUT signals were abolished by
signal in all samples. Film exposure was 5 min.
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The usefulness of the Mg2þ-precipitation and differential
centrifugation approach employed here to isolate apical plasma
membranes from placenta relies on there being a contiguous
anionic charge within the plasma membrane, which allows
cross-linkage with Mg2þ without aggregation, in contrast to other
non-apical plasma membranes [34]. The effectiveness of this
approach in isolating MVM in a relatively pure form, as judged by
marker analysis, from human syncytiotrophoblast [18], the
maternal-facing plasma membrane from trophoblast layer II of rat
[17,28,30,35] and mouse placenta as shown here, implies that all
these trophoblast plasma membranes have a highly negative
surface charge density in common.

In this study we elected to use one round of Mg2þ-precipitation,
rather than the two rounds previously employed for isolating
human MVM [18] and rat [17] placental membrane vesicles. The
reason for this was concern that the amount of protein recovered
after a second round of Mg2þ-precipitation and differential
centrifugation steps would be inadequate for performing subse-
quent marker and transport assays; only about 8% of the protein
present after one Mg2þ-precipitation treatment is recovered
following a second Mg2þ-precipitation and differential centrifuga-
tion cycle [17]. However, in the isolation of rat placental membrane
vesicles [17] it is the second Mg2þ-precipitation cycle (at 10 mM)
that improves the purity of the preparation [17]. To mitigate against
this in the current study, the concentration of Mg2þ in the single
cycle treatment was increased to 12 mM. This protocol appeared to
be effective as judged by the enrichment of alkaline phosphatase as
a purity marker, which accords well with rat placental membrane
preparations (10.6–13.6-fold; [17,30]) and the observation of others
employing a 12 mM MgCl2 purification step to isolate mouse
placental membranes (13-fold; [36]). Furthermore, the single
magnesium purification step was effective in limiting contamina-
tion from plasma membranes of intracellular organelles as
evidenced by the lack of enrichment in markers of the endoplasmic
reticulum and mitochondria.

Our data support preservation of functional activity within the
isolated mouse placental membrane vesicle fraction. We were able
to demonstrate the presence of Naþ-dependent system A amino
acid transporter activity using radiolabelled MeAIB as substrate.
Importantly, our data show that this activity was similar to human
placental MVM vesicles at initial rate and could be competitively
inhibited by model system A substrates. System A activity is
mediated by three highly homologous isoforms of the sodium-
coupled neutral amino acid transporter (SNAT) family, namely
SNAT1, SNAT2 and SNAT4 which are encoded by the genes SLC38A1,
SLC38A2 and SLC38A4 respectively [37]. All three SNAT isoforms,
SNAT1, SNAT2 and SNAT4, are expressed in mouse placenta, at least
at the mRNA level [38], in common with rat [15,39] and human [40]
placenta. SNAT1 and SNAT2 protein show prominent distribution to
rat labyrinth [39] whilst SNAT1 [41], SNAT2 [25,41] and SNAT4
[40,41] are localised to human syncytiotrophoblast MVM. It is
unclear which of these three isoforms contribute to the activity
demonstrated here in mouse placental vesicles but the recent
localisation of SNAT2 and SNAT4 to the maternal-facing plasma
membrane of syncytiotrophoblast layer II of mouse placenta makes
these attractive candidates [36].

Taurine transport across human syncytiotrophoblast plasma
membranes is mediated by system b amino acid transporter [11],
a Naþ- and Cl� dependent transporter which also accepts other
b-amino acids such as b-alanine and hypotaurine as substrates
[42–44]. Based on these characteristics, we have confirmed the
presence of system b transporter in mouse placental vesicles
derived from the maternal-facing plasma membrane of syncytio-
trophoblast layer II. Uptake of taurine into mouse placental vesicles
at initial rate was Naþ-dependent but of significantly lower
magnitude compared to human placental MVM. This cannot be
accounted for by either a lower purity or a greater dissipation of the
Naþ gradient in mouse placental vesicles compared to human
placental MVM as this effect was not observed for system A uptakes
performed in parallel. We and others, have previously demon-
strated that TAUT protein is localised to the MVM of human
syncytiotrophoblast [25,45,46]. Here we demonstrate that TAUT is
also distributed to the maternal-facing plasma membrane of
syncytiotrophoblast layer II. Interestingly, several TAUT species
were detected in mouse placental vesicles, similar, in part, to the
banding pattern observed in human placental MVM. This may
reflect the existence of differentially glycosylated TAUT variants in
the plasma membrane of syncytiotrophoblast layer II [45]. The
trend towards a less intense TAUT signal in mouse placental vesicles
compared to human placental MVM would accord with the
lower system b activity measured in mouse vesicles. There is
also the possibility is that the kinetic properties of system b are
different between the maternal-facing plasma membrane of
syncytiotrophoblast layer II of mouse placenta and human syncy-
tiotrophoblast MVM. This suggestion is consistent with the
observation that the affinity (Km) for this transport mechanism
varies by more than two orders of magnitude between different
tissues and species [47].

The similarity between system A uptake in mouse placental
vesicles compared to human placental MVM vesicles at initial rate,
suggests the mouse might be a useful model to further investigate
the activity of placental system A, particularly as its activity is
downregulated in both human placental MVM [8–10] and rodent
placenta [15,38] in pregnancies compromised by FGR. In contrast,
the lack of correspondence between the activity of system b in
mouse placental vesicles and human placental MVM limits this
species’ utility in examining the mechanisms underlying the
reduced system b activity associated with FGR [11].

In summary, we have established a protocol for isolating the
maternal-facing plasma membrane of trophoblast layer II of mouse
placenta, as judged by the enrichment of alkaline phosphatase in
this membrane fraction and the lack of contamination from other
plasma membranes of intracellular organelles. We have demon-
strated comparability in system A activity at initial rate between
mouse syncytiotrophoblast layer II vesicles and human syncytio-
trophoblast MVM vesicles, contrasting with the disparate system
b activity observed in plasma membranes isolated from these
species. We have also demonstrated that TAUT protein expression
in mouse placental vesicles is relatively low as compared to human
placental MVM, consistent with the lower system b activity
observed in the former. This study suggests that isolated mouse
placental plasma membrane vesicles may be useful to examine
system A-induced FGR, and further, placental transport dysfunction
in genetically modified mice.
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[28] Carbó N, López-Soriano FJ, Argilés JM. Neutral amino acid transport in
placental plasma membrane vesicles in the late pregnant rat. Evidence for
a B0-like transport system. Eur J Obstet Gynecol Reprod Biol 1997;71:
85–90.

[29] Novak DA, Beveridge MJ, Malandro M, Seo J. Ontogeny of amino acid transport
system A in rat placenta. Placenta 1996;17:643–51.

[30] Glazier JD, Sibley CP, Carter AM. Effect of fetal growth restriction on system A
amino acid transporter activity in the maternal facing plasma membrane of
rat syncytiotrophoblast. Pediatr Res 1996;40:325–9.

[31] Malandro MS, Beveridge MJ, Kilberg MS, Novak DA. Effect of low-protein
diet-induced intrauterine growth retardation on rat placental amino acid
transport. Am J Physiol 1996;271:C295–303.

[32] Matthews JC, Beveridge MJ, Malandro MS, Rothstein JD, Campbell-
Thompson M, Verlander JW, et al. Activity and protein localization of multiple
glutamate transporters in gestation day 14 vs. day 20 rat placenta. Am J
Physiol 1998;274:C603–14.

[33] Metz J, Aoki A, Forssmann WG. Studies on the ultrastructure and permeability
of the hemotrichorial placenta. I. Intercellular junctions of layer I and tracer
administration into the maternal compartment. Cell Tissue Res 1978;192:
391–407.

[34] Booth AG, Kenny AJ. A rapid method for the preparation of microvilli from
rabbit kidney. Biochem J 1974;142:575–81.
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