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1. Introduction

There are numerous results in the literature that show that the diagonal of X2 carries enormous amount of information
about X . In particular, a space X satisfies axiom T2 iff the diagonal �X = {〈x, x〉: x ∈ X} is closed in X2. Another classical
example is the Sneider theorem stating that a compactum with a Gδ-diagonal is metrizable [10]. A good account of results
of such a kind can be found in any survey on generalized metric spaces. Diagonal properties often appear in formulas that
estimate certain cardinal invariants of a space. Thus, no justification is needed for our curiosity in diagonals. However, to
motivate our interest in this particular study let us consider the following quite obvious statement: If X has a Gδ-diagonal
and X2 is normal then X has a zeroset diagonal. Having a zeroset diagonal is considerably a stronger property than having
just a Gδ-diagonal. Indeed, a separable space with a zeroset diagonal admits a continuous injection into a second-countable
metrizable space [8]. A separable space with a Gδ-diagonal need not have metrizable subtopology as witnessed by the
classical Mrowka space [9]. A quick analysis of a mental proof of the above statement reveals that not much is needed from
the normality property of X2. We only need to know that for any closed set A of X2 that misses the diagonal there exists
a continuous map from X2 to [0,1] that maps A to {0} and the diagonal to {1}. This example and many other results by
different mathematicians motivate the following definitions:

Definition 1.1. A space X is �-normal if for every A ⊂ X2 \ �X closed in X2 there exist disjoint open U and V in X2 such
that A ⊂ U and �X ⊂ V .
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Definition 1.2. A space X is functionally �-normal if for every A ⊂ X2 \ �X closed in X2 there exists a continuous function
f : X2 → [0,1] such that f (A) = {1} and f (�X ) = {0}.

Definition 1.3. A space X is �-paracompact if for every A ⊂ X2 \ �X closed in X2 there exists a locally finite open cover U
of X such that

⋃{U × U : U ∈ U } does not meet A.

Definition 1.4. A space X is regular �-paracompact if for every A ⊂ X2 \ �X closed in X2 there exists a locally finite open
cover U of X such that

⋃{U × U : U ∈ U } does not meet A.

Definition 1.5. A space X is functionally �-paracompact if for every A ⊂ X2 \ �X closed in X2 there exists a locally finite
cover U of X by functionally open sets such that

⋃{U × U : U ∈ U } does not meet A.

The notion of �-normality was already studied in [3] and the introduction of the concept is attributed to Eva Lowen-
Colebunders. After reading this manuscript, K.P. Hart informed the author that he can prove the equivalence of functional
�-paracompactness and divisibility. Recall that a space X is divisible [1] if for every open set U containing �X there
exists an open set V containing �X such that V ◦ V ⊂ U , where V ◦ V = {〈x, z〉: 〈x, y〉 ∈ V and 〈y, z〉 ∈ V , for some y}.
In this paper we will nevertheless use the name “functional �-paracompactness” to stress a unified approach to different
separation properties of the diagonal of a space. Another reason for using this name instead of divisibility is because in our
proofs we will use the property described in the definition of functional �-paracompactness, which some may find more
intuitively clear than that in the definition of divisibility. We believe that almost everyone who worked with properties of
a diagonal or the square of a space implicitly used some of the five properties we just listed or their natural modifications.
Since these properties have already justified their right for existence we think it is quite natural to give them names and
devote a study. We will concentrate our study around the following three general problems.

Problem 1.6. Which of these properties are distinguishable in the class of Tychonoff spaces? In the class of normal spaces?

Problem 1.7. Find classes of spaces in which two or more of these properties are equivalent or one property is stronger than
another.

Problem 1.8. Let X have one of the properties. What additional conditions on X guarantee that X is normal?

It is not hard to show that in the class of Tychonoff spaces, the property of being functionally �-paracompact implies the
other four properties as well as normality. In the class of countably compact normal spaces, functional �-paracompactness
is equivalent to �-paracompactness. Majority of our results are proved for countably compact spaces. We show, in partic-
ular, that a �-paracompact countably compact space need not be normal, while any functionally �-paracompact space is
necessarily normal. We also show that a countably compact normal space need not be �-paracompact. This follows from
an interesting, yet not hard to prove, connection between �-paracompactness and the theory of fixed-point free maps. We
find a wide class of spaces in which �-normality is stronger than normality. This class consists of all spaces whose closed
subsets are star-Lindelöf. Recall that a space X is star-Lindelöf if for every open cover U of X one can find a countable
subset C ⊂ X such that X = ⋃{St(c, U ): c ∈ C}. While the description of the class is rather technical it contains such nice
objects as countably compact spaces, and more generally, spaces of countable extent. The class also contains hereditarily
separable spaces.

In notation and terminology we will follow [2]. All spaces are assumed to be Tychonoff. To distinguish ordered pairs from
open intervals, we will use angular parenthesis 〈a,b〉 for ordered pairs and regular parenthesis (a,b) for open intervals.

2. Study

In our proofs we will often use the fact that every locally finite cover {Us}s∈S of X by functionally open sets admits
a functionally closed shrinking {Fs}s∈S and a functionally open shrinking {W s}s∈S such that Fs ⊂ W s ⊂ W s ⊂ Us [2, Exer-
cise 7.1.B]. The following needs no proof.

Fact 2.1. The following hold:

1. If X is functionally �-normal then X is �-normal;
2. If X is functionally �-paracompact then X is regular �-paracompact;
3. If X is regular �-paracompact then X is �-paracompact;
4. If X is regular �-paracompact then X is �-normal.

The next two statements are folklore-type results.
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Lemma 2.2. (Folklore) If X is paracompact then X is functionally �-paracompact.

Proof. Fix A ⊂ X2 \ �X closed in X2. For each x ∈ X fix an open neighborhood Ux of x such that Ux × Ux does not meet A.
Since X is paracompact there exists a locally finite open cover U of X inscribed in {Ux: x ∈ X} such that U is functionally
open for any U ∈ U [2, Theorem 5.1.9]. It is clear that

⋃{U × U : U ∈ U } does not meet A. �
Theorem 2.3. (Folklore) If X is functionally �-paracompact then X is functionally �-normal.

Proof. Fix A ⊂ X2 \ �X closed in X2. Fix a locally finite cover U of X by functionally open sets such that
⋃{U × U : U ∈ U }

misses A. Since U is locally finite and consists of functionally open sets there exists a shrinking F = {FU : FU ⊂ U , U ∈ U }
by functionally closed sets.

Now for every U ∈ U fix a family WU = {W q
U : q ∈ (0,1) is rational} of open sets such that

a. FU ⊂ W q
U ⊂ W q

U ⊂ U ;
b. W p

U ⊂ W q
U if p < q.

Such families exist because FU and X \ U are disjoint functionally closed subsets. For each rational number q ∈ (0,1) put
Wq = ⋃

U∈U W q
U × W q

U . The family {Wq: q ∈ (0,1) is rational} has the following properties:

1. �X ⊂ Wq for every q. This is because {W q
U : U ∈ U } is a cover of X .

2. W p ⊂ Wq if p < q. This is because of (b) and the fact that {W q
U : U ∈ U } is a shrinking of U , which is locally finite.

3. Wq ⊂ ⋃
U∈U U × U .

By 1–3, the family {Wq: q ∈ (0,1) is rational} is Urysohn-type and, therefore, defines a continuous function f : X2 → [0,1]
such that f (�X ) = {0} and f (A) = {1}. �

Fact 2.1 and statements 1–3 collectively give the following information about paracompact spaces.

Theorem 2.4. Every paracompact space is �-normal, functionally �-normal, �-paracompact, regular �-paracompact, and function-
ally �-paracompact.

In our next result we will show that every generalized ordered space is functionally �-paracompact and therefore has
all the properties under consideration. As was mentioned in the introduction, K.P. Hart communicated to the author that he
proved the equivalence of functional �-paracompactness and divisibility. In the same communication, K.P. Hart mentioned
that his proof in conjunction with an alteration of one of Mansfield’s results give an alternative proof of our next theorem.
Namely, Mansfield [7] proved that every linearly ordered space is ℵ0-normal which implies divisibility. Mansfield’s proof
also can be re-written for generalized ordered spaces. Thus Hart’s equivalence result and a modified version of Mansfield
theorem already imply what we are about to prove. However, the author has decided to keep the proof since it uses the
property described in the definition of functional �-paracompactness and gives another strategy for establishing divisibility
in certain spaces. For our proof we need the following classical theorem.

Theorem. (R. Engelking and D. Lutzer [6]) A generalized ordered space X is paracompact iff no closed subspace of X is homeomorphic
to a stationary subset of a regular uncountable cardinal.

Theorem 2.5. Every generalized ordered space is �-paracompact, regular �-paracompact, functionally �-paracompact, �-normal,
and functionally �-normal.

Proof. Fix a generalized ordered space X . Let b X be a linearly ordered compactification of X such that every point x ∈ b X \ X
is a limit point for X from one side only. That is, either [−∞, x)b X or (x,∞]b X is clopen in b X , where −∞ = min b X and
∞ = max b X . Such a compactification can be obtained from the Dedekind compactification by replacing every point x in the
remainder of the Dedekind compactification, which is a limit point for X on both sides, by a pair {x′, x′′}. That is, perform
the double arrow trick on all such points.

Fix closed A ⊂ X2 that misses �X . For every x ∈ b X select, if possible, a convex open neighborhood J x of x in b X that
satisfies the following property:

(Ix × Ix) ∩ A = ∅, where Ix = J x ∩ X .

Denote the set of all such x’s by S . Clearly, X ⊂ S .

Claim. S is paracompact.
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To prove the claim, assume the contrary. By the Engelking–Lutzer theorem stated before this theorem, there exist z ∈
b X \ S and a set T z ⊂ S homeomorphic to a stationary subset of an uncountable regular cardinal τz such that z is the
only complete accumulation point for T z in b X . We may assume that all of T z are to the left of z. We may also assume
that if y ∈ T z is a limit point for T z then y is a limit point for T z on the left side. For every y ∈ T z , which is a limit
point for T z , fix ay ∈ J y ∩ T z ∩ [−∞, y)b X . Such an ay exists because J y is an open neighborhood of y in b X and y is
a limit point for T z on the left side. The correspondence y → ay defines a regressive function from a stationary subset
of T z into T z . By the Pressing Down Lemma (see, for example, [5, 6.15]), there exist a ∈ T z and a τz-sized P z ⊂ T z such
that ay = a for every y ∈ P z .
Now consider Iz = (a, z]b X ∩ X . Since X ⊂ S , we have z ∈ b X \ X . Since z is a limit point for X from one side only, (a, z]b X
is a convex open neighborhood of z in b X . To reach a contradiction we need to show that Iz × Iz does not meet A. For
this it is enough to show that Iz × Iz ⊂ ⋃{I y × I y: y ∈ P z}. Fix 〈x0, y0〉 ∈ Iz × Iz . Since P z is not bounded on the right
in T z , there exists y ∈ P z such that x0, y0 < y. By the choice of P z , we have (a, y]b X ∩ X ⊂ I y . Applying the fact that
x0, y0 ∈ (a, y)X we conclude that 〈x0, y0〉 is in I y × I y . The claim is proved.

Thus, we have ClS×S(A) does not meet �S . Since S is paracompact, by Theorem 2.4, there exists a continuous function
from S × S that sends �S to {0} and ClS×S(A) to {1}. The restriction of the function to X × X proves that X is functionally
�-normal. The other three properties are proved similarly applying Theorem 2.4 to ClS×S(A) and �S . �

Next we study when one or more of our properties implies normality.

Proposition 2.6. If X is regular �-paracompact then X is normal.

Proof. Let A and B be closed and disjoint subsets of X . Since A and B are disjoint closed sets the set A × B is closed and
misses the diagonal. Fix a locally finite open cover V such that

⋃{V × V : V ∈ V } misses A × B . Put V A = {V ∈ V : V ∩ A = ∅}.
Clearly, V A is a cover of A. Hence

⋃
V A is an open neighborhood of A in X . Since

⋃{V × V : V ∈ V } misses A × B the
set V does not meet B for every V ∈ V A . Since V A is locally finite we have B ⊂ X \ ⋃

V A . Normality is proved. �
Corollary 2.7. If X is �-paracompact and �-normal then X is normal.

Theorem 2.8. Let X2 be pseudocompact. If X is functionally �-normal then X is normal.

Proof. Since X2 is pseudocompact β(X × X) = β X ×β X . Assume X is not normal. Then there exists x ∈ β X \ X and disjoint
closed A, B ⊂ X such that x ∈ Clβ X (A) ∩ Clβ X (B). Consider C = A × B . Since A and B are closed, C is closed as well. Since A
and B are disjoint C does not meet the diagonal. Since x ∈ Clβ X (A) ∩ Clβ X (B) we have 〈x, x〉 ∈ Clβ X×β X (A × B). Therefore, C
and �X are not functionally separated. Hence X is not functionally �-normal. �

Our next result gives a wide class of spaces in which �-normality implies normality. To prove it we will use
Lemma 1.5.14 in [2] that states the following: Let X be a T1-space. Suppose for any closed F ⊂ X and any open W contain-
ing F there exists a countable family U of open sets in X such that U ⊂ W for every U ∈ U and F ⊂ ⋃

U . Then X is normal.

Theorem 2.9. Suppose every closed subset of X is star-Lindelöf. If X is �-normal then X is normal.

Proof. Let A and B be disjoint closed subsets of X . The set S = A × B is closed and misses the diagonal. Therefore there
exists an open W that contains �X and whose closure misses S . Let U be the collection of all open subsets U ⊂ X with
U × U ⊂ W .

Claim. St(a, U ) ∩ B = ∅ for all a ∈ A.

To prove the claim assume the contrary and pick any b in the intersection. Since 〈a,b〉 ∈ S there exist O a and O b open
neighborhoods of a and b, respectively, such that (O a × O b) ∩ W = ∅. Since b ∈ St(a, U ) there exists Ua ∈ U such that
a ∈ Ua and Ua ∩ O b = ∅. Pick b1 ∈ Ua ∩ O b . Then 〈a,b1〉 ∈ Ua × Ua ⊂ W . On the other hand, since a ∈ O a we have
〈a,b1〉 ∈ O a × O b ⊂ X × X \ W . This contradiction proves the claim.

Since A is closed it is star-Lindelöf. Therefore there exists a countable C ⊂ A such that A ⊂ ⋃{St(c, U ), c ∈ C}. By Claim
and Lemma 1.5.14 of [2], X is normal. �

Recall that a space X has countable extent if every closed discrete subset of X is countable. In particular, every countably
compact space has countable extent. It is a known folklore fact that every closed subset of a space of countable extent or
a hereditarily separable space is star-Lindelöf. Therefore, we have the following corollaries.
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Corollary 2.10. Let X have countable extent. If X is �-normal then X is normal.

Corollary 2.11. Let X be hereditarily separable. If X is �-normal then X is normal.

A particular case of the above theorem, namely, when X is first-countable and countably compact, was proved in [3].
Our theorem prompts to ask the following: Let X be pseudocompact and �-normal. Is X countably compact? Observe that the
answer is “yes” if the space is star-Lindelöf due to Theorem 2.9.

Next example shows that �-paracompactness does not imply normality.

Example 2.12. The space X = {〈α,β〉 ∈ (ω1 + 1) × (ω1 + 1) \ {〈ω1,ω1〉}: α � β} is �-paracompact.

Proof. First observe that X2 is countably compact. Therefore, β X2 = β X ×β X and is equal to the closure of X2 in (ω1 +1)4.
Let F ⊂ X2 be closed and F ∩�X = ∅. If Clβ X2(F ) does not contain 〈〈ω1,ω1〉, 〈ω1,ω1〉〉 then Clβ X2(F ) and Clβ X2(�X ) do not
meet. Since β X is compact, the conclusion follows.

We now assume that Clβ X2(F ) contains 〈〈ω1,ω1〉, 〈ω1,ω1〉〉. Our strategy is completely contained in the statement of
Claim 5 and a short proof after Claim 5. Before we dive into the details of our argument let us agree that by π1 and π2 we
denote the projections of X2 onto the first and second coordinate axes, respectively. Also if p ∈ X2, by p(1), . . . , p(4) we
denote the coordinates of p in (ω1 + 1)4.

Claim 1. There exists λ < ω1 such that π1(F ∩ [λ,ω1]4) is first-countable.

To prove the claim, assume the contrary. Then we have the following

Property: For every β < ω1 there exists α > β such that a closed ω1-sized subset of {α} × (ω1 + 1) is in π1(F ).

We have two cases to consider.

Case 1. Assume that for any α < ω1 there exists pα ∈ F ∩[α,ω1]4 such that π1(pα) and π2(pα) have countable characters
in X .

We can select a strictly increasing sequence {αn}n of countable ordinals and pαn ∈ F ∩ [α,ω1]4 with the following
properties:
1. πi(pαn ) has countable character in X for i = 1,2;
2. pαn ( j) < pαn+1 (i) for i, j = 1, . . . ,4.
Put limn→∞ pαn (1) = x. By 2, limn→∞ pαn (i) = x for every i = 1, . . . ,4. Since F is closed, we have 〈〈x, x〉, 〈x, x〉〉 ∈ F ,
contradicting the fact that F ∩ �X = ∅.

Case 2. Assume a failure of Case 1.

By the Property and the failure of Case 1, we conclude that for every β < ω1 there exist countable α > β and subset
Fα ⊂ F such that π1(Fα) is an ω1-sized closed subset of {α} × (ω1 + 1) and π2(Fα) ⊂ {〈γ ,ω1〉: γ < ω1}.
Therefore, we can select a strictly increasing sequence {αn}n of countable ordinals and pαn ∈ F ∩ [αn,ω1]4 with the
following properties:
1. pαn (2) = pαn (4) = ω1;
2. pαn+1 (1), pαn+1 (3) > max{pαn (1), pαn (3)}.
Put limn→∞ pαn (1) = x. By 2, limn→∞ pαn (3) = x. Since F is closed, we have 〈〈x,ω1〉, 〈x,ω1〉〉 ∈ F , contradicting the
fact that F ∩ �X = ∅.

The claim is proved.

Claim 2. If S is a first-countable closed subspace of X , then S \ {〈α,ω1〉: α < ω1} is closed in S.

Claim 3. If S is closed in X2 , S ∩ �X = ∅, and π1(S) ⊂ {〈α,ω1〉: α < ω1}, then there exists λ < ω1 such that π2(S ∩ [λ,ω1]4) does
not meet {〈α,ω1〉: α < ω1}.

Assume the conclusion is not true. Then we can select a strictly increasing sequence {αn}n of countable ordinals and
pαn ∈ S ∩ [αn,ω1]4 with the following properties:
1. πi(pαn ) ∈ {〈α,ω1〉: α < ω1} for i = 1,2;
2. pαn+1 (1), pαn+1 (3) > max{pαn (1), pαn (3)}.
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Put limn→∞ pαn (1) = x. By 2, limn→∞ pαn (3) = x. Since S is closed, we have 〈〈x,ω1〉, 〈x,ω1〉〉 ∈ S , contradicting the fact
that S ∩ �X = ∅. The claim is proved.

Claim 4. Suppose S is closed in X2 , �X ∩ S = ∅, and π1(S) ⊂ X \ {〈α,ω1〉: α < ω1}. Then there exists λ < ω1 such that π2(S ∩
[λ,ω1]4) ⊂ {〈α,ω1〉: α < ω1}.

The proof is similar to that of Claim 3 but the final point that leads to a contradiction is 〈〈x, x〉, 〈x, x〉〉.

Claim 5. There exist disjoint closed subsets A and B of X and λ < ω1 such that F ∩ [λ,ω1]4 is a subset of (A × B) ∪ (B × A).

To prove the claim let λ satisfy the conclusion of Claim 1 for both π1 and π2. By Claim 2, πi(F ∩ [λ,ω1]4) ⊂ Ai ⊕ Bi ,
where Ai is closed and does not meet {〈α,ω1〉: α < ω1} and Bi is a closed subset of {〈α,ω1〉: α < ω1}. Since Claims 3
and 4 hold if we interchange π1 with π2, we may assume that λ satisfies the conclusions of Claims 3 and 4 for every
S ∈ {π−1

1 (A1) ∩ F ,π−1
2 (A2) ∩ F ,π−1

1 (B1) ∩ F ,π−1
2 (B2) ∩ F }.

We have, F ∩ [λ,ω1]4 ⊂ (A1 × A2) ∪ (A1 × B2) ∪ (B1 × A2) ∪ (B1 × B2). By Claims 3 and 4, F meets neither A1 × A2 nor
B1 × B2. Thus, F ∩ [λ,ω1]4 is a subset of (A1 × B2) ∪ (B1 × A2). Put A = A1 ∪ A2 and B = B1 ∪ B2. The claim is proved.

Let A, B , and λ be as in Claim 5. We may assume that λ is isolated. To finish the proof, put U A = (X ∩ [λ,ω1]2) \ A and
U B = (X ∩ [λ,ω1]2) \ B . We have F ∩ [λ,ω1]4 is a subset of (A × B) ∪ (B × A). Since A ∩ B = ∅ we have U A × U A ∪ U B × U B

covers �X ∩ [λ,ω1]4 and does not meet (A × B) ∪ (B × A), which, in its turn, contains F ∩ [λ,ω1]4.
If π1(x, x) misses [λ,ω1]2, then x ∈ [0, λ) × [0,ω1]. Since X ∩ ([0, λ) × [0,ω1]) is compact �X ∩ ([0, λ) × [0,ω1])2 is

compact as well. Therefore there exists a finite open cover U of �X ∩ ([0, λ) × [0,ω1])2 such that
⋃{U × U : U ∈ U } does

not meet F . Clearly, the cover U ∪ {U A, U B} proves that X is �-paracompact. �
The space in the example is not normal. The example together with Fact 2.1, Proposition 2.6, and Corollary 2.7 lead to

Corollary 2.13. �-paracompactness implies neither normality, nor �-normality, nor functional �-normality, nor regular �-
paracompactness, nor functional �-paracompactness.

Next we will show that �-paracompactness cannot be distinguished from functional �-paracompactness in the class of
countably compact normal spaces. For this we need the following folklore statement.

Lemma 2.14 (Folklore). Let X be normal and let {U1, . . . , Un} be a finite open cover of X . Let U ′
i be the largest open set in β X such

that Ui = X ∩ U ′
i . Then β X = U ′

1 ∪ · · · ∪ U ′
n.

Proof. Since X is normal, by Lemma 1.5.H of [2], there exists an open cover {V 1, . . . , Vn} of X such that V i ⊂ Ui . Then
Clβ X (V 1) ∪ · · · ∪ Clβ X (Vn) = U ′

1 ∪ · · · ∪ U ′
n . Since the left side covers β X we are done. �

Theorem 2.15. Let X be countably compact and normal. If X is �-paracompact, then X is functionally �-paracompact.

Proof. Fix A ⊂ X2 \ �X closed in X2 and fix an open locally finite cover U of X such that
⋃{U × U : U ∈ U } misses A.

Since X is countably compact U is finite. By Lemma 2.14, U ′ = {U ′: U ∈ U } is a cover of β X , where U ′ is the largest open
set in β X such that U = U ′ ∩ X . Since β X is compact, we can inscribe a finite open cover V of β X in U ′ that consists
of functionally open sets. Then

⋃{V × V : V ∈ V } covers �β X in β X × β X and misses Clβ X×β X (A). This proves that X is
functionally �-paracompact. �

The above theorem and Fact 2.1 imply the following.

Corollary 2.16. �-paracompactness, regular �-paracompactness, and functional �-paracompactness are equivalent in the class of
countably compact normal spaces.

Thus, if a countably compact normal space X is �-paracompact then it has the other four properties as well. Our next
goal is to show that normality does not imply �-paracompactness.

Lemma 2.17. Let X be normal and countably compact. Suppose there exists a continuous fixed-point free map f : X → X such that
f̃ :β X → β X fixes a point. Then X is not �-paracompact.
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Table 1

n �n f�n �p r�p f�p

n yes no [3, 3.1] no [3, 3.1] + 2.1 no 2.18 no 2.18 + 2.1 no 2.18 + 2.1
�n ? yes ? ? ? ?
f�n ? yes 2.1 yes ? ? ?
�p no 2.13 no 2.13 no 2.13 yes no 2.13 no 2.13
r�p yes 2.6 yes 2.1 ? yes 2.1 yes ?
f�p yes 2.6 + 2.1 yes 2.1 yes 2.3 yes 2.1 yes 2.1 yes

Table 2

�n f�n �p r�p f�p

�n yes ? ? ? ?
f�n yes 2.1 yes ? ? ?
�p yes 2.16 + 2.3 + 2.1 yes 2.16 + 2.3 yes 2.16 yes 2.16
r�p yes 2.1 yes 2.16 + 2.3 yes 2.1 yes yes 2.16
f�p yes 2.1 yes 2.3 yes 2.1 yes 2.1 yes

Proof. By the hypothesis there exists p ∈ β X \ X such that f̃ (p) = p. Put A = {〈x, f (x)〉: x ∈ X}. Since f is continuous, the
set A is closed in X2. Since f is fixed-point free, A does not meet the diagonal.

Let U be a locally finite open cover of X . We need to show that there exists U ∈ U such that U × U meets A.
Since X is countably compact, U is finite. By Lemma 2.14, {U ′: U ∈ U } is a cover of β X , where U ′ is the largest open

set of β X such that X ∩ U ′ = U . Therefore, there exists U p ∈ U such that p ∈ U ′
p . Since f̃ (p) = p and f is continuous there

exists x ∈ U p such that f (x) ∈ U p . Then 〈x, f (x)〉 ∈ U p × U p . �
Example 2.18. Assume Continuum Hypothesis. Then there exists a countably compact normal space which is not �-
paracompact.

Proof. In [4, 3.1], the authors show that under Continuum Hypothesis there exists an example of a space that meets the
hypothesis of Lemma 2.17. �

Examples 2.12 and 2.18 show that normality and �-paracompactness are incomparable in the class of countably compact
spaces.

We finish this work with two tables that present and justify questions that naturally arise from the presented results. In
the tables, “n”, “�n”, “f�n”, “�p”, “r�p”, and “f�p” stand for normality, �-normality, and so on. In Table 1, an entry that
appears in row “R” and column “C” gives an answer to the question “Is it true that every Tychonoff space with property R
has property C?”.

In Table 2, an entry that appears in row “R” and column “C” gives an answer to the question “Is it true that every
countably compact normal space with property R has property C?”.
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