ON FINDING A MINIMUM VERTEX COVER OF A SERIES-PARALLEL GRAPH
 Ioannis G. Tollis *

Abstract: We present a simple linear time algorithm for finding a minimum vertex cover for series-parallel graphs.

1. Introduction

The problem of finding a minimum vertex cover of a graph has been extensively studied in the literature, [1], [2], [3], [7]. In this paper we present a simple algorithm that finds a minimum vertex cover of a series-parallel graph in linear time. Our algorithm is based on an algorithm developed in [5] for solving the resource location problem on series-parallel graphs.

Let $G=(V, E)$ be a finite, simple, undirected graph with vertex set V and edge set E. We say that a vertex v covers an edge e if e is incident upon v. A vertex cover C is a set of vertices of G such that for every edge (v, w) in E at least one of v and w belongs to C. An independent set I is a set of vertices of G such that no two vertices in I are joined by an edge in E. Vertex covers and independent sets are quite closely related. Namely, the set C is a vertex cover if and only if the set $V-C$ is an independent set. Typically, one would like to find a minimum vertex cover C. This is a very practical problem because it arises in many applications. Notice that C is a minimum vertex cover if and only if $I=V-C$ is a maximum independent set.

It is very unlikely that there exists a polynomial-time algorithm to solve the minimum vertex cover problem (mVC) (or equivalently, the maximum independent set problem (MIS)), since the corresponding decision problems are NP-complete, [1]. However, MIS can be solved by polynomial-time algorithms for bipartite graphs, edge graphs, graphs with no vertex degree exceeding 2 [1], chordal graphs [2], circle graphs [3], comparability graphs [4], and claw-free graphs [1].

[^0]Takamizawa, Nishizeki, and Saito developed a general technique for series-parallel graphs and proved that several combinatorial problems, including the minimum vertex cover problem, are linear-time computable. Although all their algorithms run in time linear on the size of the input graph, they take time exponential on the size of the collection of forbidden graphs [7]. This means that the application of their general technique does not always yield a practical algorithm.

The main result of this paper is a linear-time algorithm that finds a minimum vertex cover for any series-parallel graph; this algorithm is based on a simple transformation to the resource location problem.

2. The main result

The Resource Location Problem is defined as follows: Consider a graph $G=(V, E)$ with source s and sink t. Each edge has a positive integer length and may be directed or undirected. Let R (range) be a given positive integer. We wish to locate the minimum number of gas-stations (or any facility center) on the vertices or edges of G such that a car with range R may start at s with no gas and drive to t along any simple path in G. Note that we do not mind arriving at t with an empty tank.

The decision problem associated with Resource Location Problem is NP-complete, but there exists a polynomial-time algorithm for the case when G is a series-parallel graph [5]. The time complexity of the algorithm of [5] is $O(|E| \min \{R,|V|\})$.

A graph is called essentially one-way if, for each edge e, all the simple paths from s to t using e, traverse e in the same direction. An integer point is a point (i.e., a position) on an edge whose distance from either end of the edge is an integer. Given a graph G with positive edge-lengths, a range R, and a configuration of gas-stations, a simple path P from s to t is reliable if there is a gas-station at s, one on P at most distance R away from t, and if any two consecutive gas-stations on P are at most R apart. All distances here are measured along P. The configuration itself is reliable if every simple path from s to t is reliable. An optimum reliable configuration is one for which the number of gas-stations is minimum. The following result was proved in [5]:
Theorem 1. Suppose that an essentially one-way graph has only integer edge-lengths and R is an integer. Then there is an optimum reliable configuration for which all gasstations lie on integer points.

The class of series-parallel graphs is recursively defined as follows:
(i) A graph consisting of two vertices s and t joined by a single edge is a series-parallel graph with source s and sink t.
(ii) If $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are two series-parallel graphs, with sources s_{1}, s_{2} and sinks t_{1}, t_{2} respectively, so are the graphs constructed by each of the following operations:
(a) Two-terminal series connection: The graph $H=\operatorname{ser}\left(G_{1}, G_{2}\right)$ is formed from $G_{1} \cup G_{2}$ by identifying t_{1} and s_{2}, then taking s_{1} as the source and t_{2} as the sink of H.
(b) Two-terminal parallel connection: The graph $H=\operatorname{par}\left(G_{1}, G_{2}\right)$ is formed from $G_{1} \cup G_{2}$ by identifying s_{1} and s_{2} (with the resulting single vertex becoming the source of H) and identifying t_{1} and t_{2} (making the sink of H).
(iii) Only graphs constructed by a finite number of applications of connections described above are series-parallel graphs.

These operations are depicted in Figure 1. Note that series-parallel graphs are essentially one-way graphs, [6].

Consider now a series-parallel graph $G=(V, E)$ with source s and sink t. Let all edge-lengths be equal to 1 and $R=2$. Let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ be the series-parallel graph constructed from G as follows, see Figure 2:

$$
V^{\prime}=V \cup\left\{s^{\prime}, t^{\prime}\right\}, E^{\prime}=E \cup\left\{\left(s^{\prime}, s\right),\left(t, t^{\prime}\right)\right\}
$$

Figure 1. Series-Parallel Graphs.

Figure 2. Construction of G^{\prime} from G .

An optimum reliable configuration for G^{\prime} can be found by the algorithm of [5] in $O\left(\left|E^{\prime}\right|\right)$ time, since $R=2$. Notice that $\left|E^{\prime}\right|=O\left(\left|V^{\prime}\right|\right)$ since G^{\prime} is a planar graph. Furthermore, by Theorem 1, all gas-stations lie on vertices of G^{\prime}. Let S be the set of all vertices of G^{\prime} that contain gas-stations in an optimum reliable configuration for G^{\prime}. Then we have the following:
Lemma 1. The set $C=V \cap S=S-\left\{s^{\prime}\right\}$ is a vertex cover for G.
Proof. Suppose that C is not a vertex cover. Then there exists an edge $(u, v) \in E$ such that neither of u and v is in C. Since G^{\prime} is a series-parallel graph, there is a path P in G^{\prime} from s to t that contains the subpath wuvy, for some $w, y \in V^{\prime}$ such that (w, u) $\in E^{\prime}$ and $(v, y) \in E^{\prime}$. However, the length of the subpath is 3 and since u and v do not contain any gas-station the path P is unreliable (not reliable), a contradiction. Finally, notice that $s^{\prime} \in S$. Therefore, $V \cap S=S-\left\{s^{\prime}\right\}$.

Let $S \subseteq V^{\prime}$. The configuration in which all the vertices of S contain a gas-station and all the other vertices in $V^{\prime}-S$ contain no gas-stations is the configuration induced by S.
Lemma 2. If C is a vertex cover for G, then the set S of vertices of G^{\prime}, where $S=C \cup\left\{s^{\prime}\right\}$, induces a reliable configuration of gas-stations on G^{\prime}.
Proof. Suppose that the configuration induced by S is unreliable. Then there is a path P in G^{\prime} from s^{\prime} to t^{\prime} which is unreliable. This means that there exist four consecutive vertices on $P w, u, v, y$ such that u and v are not in S. Hence, $(u, v) \in E$ and neither of u and v belongs to C. Therefore, C is not a vertex cover, a contradiction.

Given an optimum reliable configuration on G^{\prime}, let S be the set of all vertices of G^{\prime} that contain a gas-station. We can prove the following theorem:
Theorem 2. The set $C=V \cap S$ is a minimum vertex cover for G.
Proof. From Lemma 1 we know that C is a vertex cover for G. We will prove that it is a minimum one. Let $C_{\min }$ be a minimum vertex cover with $\left|C_{\text {min }}\right|<|C|$. Then by Lemma 2 the set $S_{\min }=C_{\min } \cup\left\{s^{\prime}\right\}$ induces a reliable configuration on G^{\prime}, and $\left|S_{\text {min }}\right|<|S|$. But this is a contradiction since we assumed that the set S induces a minimum reliable configuration on G^{\prime}.

It is now a simple matter to see that the following algorithm computes a minimum vertex cover for a series-parallel graph G :
Step 1. Construct G^{\prime} from G as discussed above. All edge-lengths are equal to 1 and $R=2$.
Step 2. Find an optimum reliable configuration for G^{\prime} in $O\left(\left|V^{\prime}\right|\right)$ time, [5].

Step 3. The set of vertices of G that contain a gas-station in the optimum reliable configuration found in Step 2 for G^{\prime} is a minimum vertex cover for G.
Theorem 3. The above algorithm computes a minimum vertex cover in time $O(|V|)$.

REFERENCES

[1] M.R. Garey and D.S. Johnson, Computers and Intractability-A Guide to the Theory of NP-Completeness (Freeman, San Francisco, 1979).
[2] F. Gavril, "Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph," SIAM J. Comput. 1, pp. 180-187.
[3] F. Gavril, "Algorithms for a maximum clique and a maximum independent set of a circle graph," Networks 3, pp. 261-273.
[4] M.C. Golumbic, "The complexity of comparability graph recognition and coloring," Computing 18, pp. 199-208.
[5] B.D. McKay and I.G. Tollis, "A resource location problem on graphs," Congressus Numeratium Vol. 40, Utilitas Mathematica Publishing, Winnipeg, (1983), pp. 223234.
[6] J. Riordan and C. Shannon, "The number of two-terminal series-parallel networks," J. Math. Phys. Mass. Inst. Tech. 21 (1942) pp. 83-93.
[7] K. Takamizawa, T. Nishizeki, and N. Saito, "Linear-Time Computability of Combinatorial Problems on Series-Parallel Graphs," J. ACM 29, 3, pp. 623-641.
[8] J. Valdes, R.E. Tarjan and E.L. Lawler, "The recognition of series-parallel digraphs," SIAM J. Comput. 11, pp. 298-313.

[^0]: * Department of Computer Science, The University of Texas at Dallas, P.O. Box 830688, MP 3.1, Richardson, TX 75083-0688.

