ON FINDING A MINIMUM VERTEX COVER
OF A SERIES-PARALLEL GRAPH

Ioannis G. Tollis *

Abstract: We present a simple linear time algorithm for finding a minimum vertex cover
for series-parallel graphs.

1. Introduction

The problem of finding a minimum vertex cover of a graph has been extensively
studied in the literature, [1], [2], [3], [7]. In this paper we present a simple algorithm that
finds a minimum vertex cover of a series-parallel graph in linear time. Our algorithm is
based on an algorithm developed in [5] for solving the resource location problem on
series-parallel graphs.

Let $G=(V,E)$ be a finite, simple, undirected graph with vertex set V and edge set
E. We say that a vertex v covers an edge e if e is incident upon v. A vertex cover C is
a set of vertices of G such that for every edge (v,w) in E at least one of v and w belongs
to C. An independent set I is a set of vertices of G such that no two vertices in I are
joined by an edge in E. Vertex covers and independent sets are quite closely related.
Namely, the set C is a vertex cover if and only if the set $V-C$ is an independent
set. Typically, one would like to find a minimum vertex cover C. This is a very practical
problem because it arises in many applications. Notice that C is a minimum vertex cover
if and only if $I=V-C$ is a maximum independent set.

It is very unlikely that there exists a polynomial-time algorithm to solve the
minimum vertex cover problem (mVC) (or equivalently, the maximum independent set
problem (MIS)), since the corresponding decision problems are NP-complete, [1]. How-
ever, MIS can be solved by polynomial-time algorithms for bipartite graphs, edge graphs,
graphs with no vertex degree exceeding 2 [1], chordal graphs [2], circle graphs [3], com-
parability graphs [4], and claw-free graphs [1].

* Department of Computer Science, The University of Texas at Dallas, P.O. Box 830688, MP 3.1,
Richardson, TX 75083-0688.

Typeset by AMS-TEX
Takamizawa, Nishizeki, and Saito developed a general technique for series-parallel graphs and proved that several combinatorial problems, including the minimum vertex cover problem, are linear-time computable. Although all their algorithms run in time linear on the size of the input graph, they take time exponential on the size of the collection of forbidden graphs [7]. This means that the application of their general technique does not always yield a practical algorithm.

The main result of this paper is a linear-time algorithm that finds a minimum vertex cover for any series-parallel graph; this algorithm is based on a simple transformation to the resource location problem.

2. The main result

The Resource Location Problem is defined as follows: Consider a graph $G = (V,E)$ with source s and sink t. Each edge has a positive integer length and may be directed or undirected. Let R (range) be a given positive integer. We wish to locate the minimum number of gas-stations (or any facility center) on the vertices or edges of G such that a car with range R may start at s with no gas and drive to t along any simple path in G. Note that we do not mind arriving at t with an empty tank.

The decision problem associated with Resource Location Problem is NP-complete, but there exists a polynomial-time algorithm for the case when G is a series-parallel graph [5]. The time complexity of the algorithm of [5] is $O(|E| \min \{R, |V|\})$.

A graph is called essentially one-way if, for each edge e, all the simple paths from s to t using e, traverse e in the same direction. An integer point is a point (i.e., a position) on an edge whose distance from either end of the edge is an integer. Given a graph G with positive edge-lengths, a range R, and a configuration of gas-stations, a simple path P from s to t is reliable if there is a gas-station at s, one on P at most distance R away from t, and if any two consecutive gas-stations on P are at most R apart. All distances here are measured along P. The configuration itself is reliable if every simple path from s to t is reliable. An optimum reliable configuration is one for which the number of gas-stations is minimum. The following result was proved in [5]:

Theorem 1. Suppose that an essentially one-way graph has only integer edge-lengths and R is an integer. Then there is an optimum reliable configuration for which all gas-stations lie on integer points.

The class of series-parallel graphs is recursively defined as follows:

(i) A graph consisting of two vertices s and t joined by a single edge is a series-parallel graph with source s and sink t.
(ii) If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are two series-parallel graphs, with sources s_1, s_2 and sinks t_1, t_2 respectively, so are the graphs constructed by each of the following operations:

(a) **Two-terminal series connection**: The graph $H = \text{ser}(G_1, G_2)$ is formed from $G_1 \cup G_2$ by identifying t_1 and s_2, then taking s_1 as the source and t_2 as the sink of H.

(b) **Two-terminal parallel connection**: The graph $H = \text{par}(G_1, G_2)$ is formed from $G_1 \cup G_2$ by identifying s_1 and s_2 (with the resulting single vertex becoming the source of H) and identifying t_1 and t_2 (making the sink of H).

(iii) Only graphs constructed by a finite number of applications of connections described above are series-parallel graphs.

These operations are depicted in Figure 1. Note that series-parallel graphs are essentially one-way graphs, [6].

Consider now a series-parallel graph $G = (V, E)$ with source s and sink t. Let all edge-lengths be equal to 1 and $R = 2$. Let $G' = (V', E')$ be the series-parallel graph constructed from G as follows, see Figure 2:

$$V' = V \cup \{s', t'\}, \quad E' = E \cup \{(s', s), (t, t')\}.$$
An optimum reliable configuration for G' can be found by the algorithm of [5] in $O(1E'1)$ time, since $R=2$. Notice that $1E'1=O(1V'1)$ since G' is a planar graph. Furthermore, by Theorem 1, all gas-stations lie on vertices of G'. Let S be the set of all vertices of G' that contain gas-stations in an optimum reliable configuration for G'. Then we have the following:

Lemma 1. The set $C = \emptyset \cap S = S - \{s'\}$ is a vertex cover for G.

Proof. Suppose that C is not a vertex cover. Then there exists an edge $(u, v) \in E$ such that neither of u and v is in C. Since G' is a series-parallel graph, there is a path P in G' from s to t that contains the subpath $wuvy$, for some $w, y \in V'$ such that $(w, u) \in E'$ and $(v, y) \in E'$. However, the length of the subpath is 3 and since u and v do not contain any gas-station the path P is unreliable (not reliable), a contradiction. Finally, notice that $s' \in S$. Therefore, $V \cap S = S - \{s'\}$. \[\square \]

Let $S \subseteq V'$. The configuration in which all the vertices of S contain a gas-station and all the other vertices in $V' - S$ contain no gas-stations is the configuration induced by S.

Lemma 2. If C is a vertex cover for G, then the set S of vertices of G', where $S = C \cup \{s'\}$, induces a reliable configuration of gas-stations on G'.

Proof. Suppose that the configuration induced by S is unreliable. Then there is a path P in G' from s' to t' which is unreliable. This means that there exist four consecutive vertices on P w, u, v, y such that u and v are not in S. Hence, $(u, v) \in E'$ and neither of u and v belongs to C. Therefore, C is not a vertex cover, a contradiction. \[\square \]

Given an optimum reliable configuration on G', let S be the set of all vertices of G' that contain a gas-station. We can prove the following theorem:

Theorem 2. The set $C = \emptyset \cap S$ is a minimum vertex cover for G.

Proof. From Lemma 1 we know that C is a vertex cover for G. We will prove that it is a minimum one. Let C_{min} be a minimum vertex cover with $|C_{\text{min}}| < |C|$. Then by Lemma 2 the set $S_{\text{min}} = C_{\text{min}} \cup \{s'\}$ induces a reliable configuration on G', and $|S_{\text{min}}| < |S|$. But this is a contradiction since we assumed that the set S induces a minimum reliable configuration on G'. \[\square \]

It is now a simple matter to see that the following algorithm computes a minimum vertex cover for a series-parallel graph G:

Step 1. Construct G' from G as discussed above. All edge-lengths are equal to 1 and $R = 2$.

Step 2. Find an optimum reliable configuration for G' in $O(1V'1)$ time, [5].
Step 3. The set of vertices of G that contain a gas-station in the optimum reliable configuration found in Step 2 for G' is a minimum vertex cover for G.

Theorem 3. The above algorithm computes a minimum vertex cover in time $O(|V|)$.

□

REFERENCES

