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a b s t r a c t

In 2007, Szymański and Wojda proved that for positive integers n, k with k ≤ n, a self-
complementary k-uniform hypergraph of order n exists if and only if

( n
k

)
is even. In

this paper, we characterize the cycle type of a k-complementing permutation in Sym(n)
which has order equal to a power of 2. This yields a test for determining whether a finite
permutation is a k-complementing permutation, and an algorithm for generating all self-
complementary k-hypergraphs of order n, up to isomorphism, for feasible n. We also obtain
an alternative description of the necessary and sufficient conditions on the order of a self-
complementary k-uniform hypergraph, in terms of the binary representation of k. This
extends previous results for the cases k = 2, 3, 4 due to Ringel, Sachs, Suprunenko, Kocay
and Szymański.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

For a finite set V and a positive integer k, let V (k) denote the set of all k-subsets of V . A hypergraphwith vertex set V and
edge set E is a pair (V , E) in which V is a finite set and E is a collection of subsets of V . A hypergraph (V , E) is called k-uniform
(or a k-hypergraph) if E is a subset of V (k). The parameters k and |V | are called the rank and the order of the k-hypergraph,
respectively. The vertex set and the edge set of a hypergraph X will often be denoted by V (X) and E(X), respectively. Note
that a 2-hypergraph is a graph.
An isomorphism between k-hypergraphs X and X ′ is a bijection φ : V (X) → V (X ′) which induces a bijection from

E(X) to E(X ′). If such an isomorphism exists, the hypergraphs X and X ′ are said to be isomorphic. The complement XC
of a k-hypergraph X = (V , E) is the hypergraph with vertex set V and edge set V (k) \ E. A k-hypergraph X is called
self-complementary if it is isomorphic to its complement. An isomorphism between a self-complementary k-hypergraph
X = (V , E) and its complement XC is called an antimorphism of X . The set of all antimorphisms of X will be denoted by
Ant(X).
An antimorphism of a self-complementary k-hypergraph is also called a k-complementing permutation, and we have the

following natural characterization.

Proposition 1.1 ([7]). Let V be a finite set, let k be a positive integer, and let θ ∈ Sym(V ). Then the following three statements
are equivalent:

1. θ is a k-complementing permutation.
2. Aθ

j
6= A, for all A ∈ V (k), for all j odd.

3. The sequence A, Aθ , Aθ
2
, Aθ

3
, . . . has even length, for all A ∈ V (k).
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Conditions (2) and (3) of Proposition 1.1 depend entirely on the cycle lengths in the disjoint cycle decomposition of θ .
Wojda [7] gave the following characterization of the k-complementing permutations in Sym(n).

Theorem 1.2 (Wojda [7]). Let k,m and n be positive integers, let V be a finite set, |V | = n, and let us have σ ∈ Sym(V )
with orbits O1,O2, . . . ,Om. Let 2qi(2si + 1) denote the cardinality of the orbit Oi, for i = 1, 2, . . . ,m. The permutation σ is a
k-complementing permutation if and only if, for every ` ∈ {1, 2, . . . , k} and for every decomposition

k = k1 + k2 + · · · + k`

of k, where kj = 2pj(2rj + 1) for nonnegative integers pj, rj, for j = 1, 2, . . . , `, and for every subsequence of orbits

Oi1 ,Oi2 , . . . ,Oi`

such that kj ≤ |Oij | for j = 1, 2, . . . , `, there is a subscript j0 ∈ {1, 2, . . . , `} such that pj0 < qij0 . �

In Theorem 2.2 we give a more transparent characterization of the cycle types of k-complementing permutations which
have order equal to a power of 2, and Corollary 2.4 shows how we can use it to test whether a finite permutation is a
k-complementing permutation. In Section 4, we use the characterization of Theorem 2.2 to obtain an algorithm for
generating all of the self-complementary k-hypergraphs of order n, up to isomorphism, for feasible n.
In 2007, Szymański andWojda [6] solved the problem of the existence of a self-complementary k-hypergraph of order n.

Theorem 1.3 ([6]). Let k and n be positive integers such that k ≤ n. A self-complementary k-uniform hypergraph of order n
exists if and only if

( n
k

)
is even.

In Section 3, we give an alternative description of the condition that
( n
k

)
is even, in terms of the binary representation of

k (see Corollary 3.2). This yields more transparent conditions on the order of a self-complementary k-hypergraph when the
rank k is a sum of consecutive powers of 2.

2. Cycle lengths of antimorphisms

Theorem 2.2 gives a characterization of the cycle types of antimorphisms of k-hypergraphs which have order equal to a
power of 2, in terms of the binary representation of k. This yields an alternative description of the necessary and sufficient
conditions of Theorem 1.3. We will make use of the following technical lemma to prove Theorem 2.2.

Lemma 2.1. Let ` and x be positive integers, where x ≥ 2. Let a0, a1, . . . , a`−1 be nonnegative integers such that
∑`−1
i=0 aix

i
≥ x`.

Then there exist integers c0, c1, . . . , c`−1, where 0 ≤ ci ≤ ai, such that
∑`−1
i=0 cix

i
= x`.

Proof. The proof is by induction on `.
Base step: The statement is certainly true if ` = 1, for if there is a nonnegative integer a0 such that a0x0 ≥ x1 = x, then

a0 ≥ x, and so the result holds with c0 = x.
Induction step: Let ` ≥ 2 and assume that the statement is true for ` − 1. That is, assume that if there is a sequence of

nonnegative integers â0, . . . , â`−2 such that
∑`−2
i=0 âix

i
≥ x`−1, then there exists a sequence of integers ĉ0, . . . , ĉ`−2 with

0 ≤ ĉi ≤ âi, for 0 ≤ i ≤ `− 2, such that
∑`−2
i=0 ĉix

i
= x`−1.

Now suppose that a0, . . . , a`−1 is a sequence of nonnegative integers such that
∑`−1
i=0 aix

i
≥ x`. If a`−1 ≥ x, then to obtain

the desired sequence, set ci = 0 for 0 ≤ i ≤ ` − 2, and set c`−1 = x. Then 0 ≤ ci ≤ ai for all i, and
∑`−1
i=0 cix

i
= x`, as

required.
Hence we may assume that a`−1 ≤ x − 1. Suppose that a`−1 = x − k for an integer k such that 1 ≤ k ≤ x. In this case

a0, a1, . . . , a`−2 is a sequence such that

`−2∑
i=0

aixi ≥ x` − (x− k)x`−1 = kx`−1,

and so we may apply the induction hypothesis k times to obtain k sequences of integers {c1i }, {c
2
i }, . . . , {c

k
i } such that

0 ≤
∑k
j=0 c

j
i ≤ ai, for 0 ≤ i ≤ ` − 2, and

∑`−2
i=0 c

j
ix
i
= x`−1, for 1 ≤ j ≤ k. Now to obtain the desired sequence, set

ci =
∑k
j=1 c

j
i for 0 ≤ i ≤ `− 2, and set c`−1 = a`−1 = x− k. Then certainly 0 ≤ ci ≤ ai for 0 ≤ i ≤ `− 1. Moreover,

`−1∑
i=0

cixi =
`−2∑
i=0

cixi + c`−1x`−1

=

`−2∑
i=0

[
k∑
j=1

c ji

]
xi + (x− k)x`−1
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=

k∑
j=1

[
`−2∑
i=0

c jix
i

]
+ (x− k)x`−1

=

k∑
j=1

x`−1 + (x− k)x`−1

= kx`−1 + (x− k)x`−1 = x`,

as required. �

To state and prove Theorem 2.2, we require some terminology and notation. We will denote the binary representation of
an integer k by a vector b = (bm, bm−1, . . . , b1, b0)2. That is, b is the vector such that k =

∑m
i=0 bi2

i, bm = 1, and bi ∈ {0, 1}
for 0 ≤ i ≤ m. The support of the binary representation b is the set {i ∈ {0, 1, 2, . . . ,m} : bi = 1}, and is denoted by
supp(b). For positive integersm and n, let n[m] denote the unique integer in {0, 1, . . . ,m− 1} such that n ≡ n[m](mod m).

Theorem 2.2. Let V be a finite set, let k be a positive integer such that k ≤ |V |, and let b = (bm, bm−1, . . . , b2, b1, b0)2 be the
binary representation of k. Let θ ∈ Sym(V ) be a permutation whose order is a power of 2. Given ` ∈ supp(b), let A` denote
those points of V contained in cycles of θ of length< 2`, and let B` denote those points of V contained in cycles of θ of length
> 2`. Then θ is a k-complementing permutation if and only if, for some ` ∈ supp(b), V = A` ∪ B` and |A`| < k[2`+1].

Proof. (⇒) Suppose that θ is a k-complementing permutation of order a power of 2. Then every cycle of θ has length a
power of 2. If θ contained a cycle of length 2i for every i ∈ supp(b), then there would be an invariant set of θ of cardinality∑
i∈supp(b) 2

i
= k, a contradiction. Hence, for some ` ∈ supp(b), θ does not contain a cycle of length 2`.

Let

L = {` ∈ supp(b) : θ does not contain a cycle of length 2`}. (1)

Then V = A` ∪ B` for all ` ∈ L. It remains to show that |A`| < k[2`+1] for some ` ∈ L.
Suppose to the contrary that |A`| ≥ k[2`+1] for all ` ∈ L. Write |A`| =

∑`−1
i=0 ai2

i, where ai is the number of cycles of θ of
length 2i. Note that k[2`+1] =

∑`
i=0 bi2

i. Thus, by assumption, |A`| ≥
∑`
i=0 bi2

i for all ` ∈ L. Suppose L = {`1, `2, . . . , `t}
where `1 < `2 < · · · < `t .

• Claim A. Let x ∈ {1, 2, . . . , t}. If |A`j | ≥
∑`j
i=0 bi2

i for all j ∈ {1, 2, . . . , x}, then θ |A`x has an invariant set of size
∑`x
i=0 bi2

i.

Proof of Claim A. The proof is by induction on x. First note that
∑`j−1
i=0 ai2

i
= |A`j |, for j = 1, 2, . . . , t . Also, for any

sequence of integers â0, â1, . . . , â`j−1 such that 0 ≤ âi ≤ ai for 0 ≤ i ≤ `j − 1, the sum
∑`j−1
i=0 âi2

i is the sum of the
lengths of a collection of cycles of θ |A`j , and hence it is the size of an invariant set of θ |A`j . Conversely, any invariant set
S of θ |A`j corresponds to a collection of cycles of θ |A`j whose lengths sum to |S|, and hence there exists a sequence of

integers â0, â1, . . . , â`j−1 such that 0 ≤ âi ≤ ai for 0 ≤ i ≤ `j − 1, and |S| =
∑`j−1
i=0 âi2

i.

Base step: If x = 1 and |A`1 | ≥
∑`1
i=0 bi2

i, then

|A`1 | =
`1−1∑
i=0

ai2i ≥
`1∑
i=0

bi2i. (2)

By the definition of L in (1), it follows that ai ≥ bi for 0 ≤ i ≤ `1 − 1. Hence (2) implies that
`1−1∑
i=0

(ai − bi)2i ≥ 2`1

holds with ai − bi ≥ 0 for all i = 1, 2, . . . , `1 − 1. Thus by Lemma 2.1, there is a sequence c0, c1, . . . , c`1−1 such that
0 ≤ ci ≤ (ai − bi) for 0 ≤ i ≤ `1 − 1, and

`1−1∑
i=0

ci2i = 2`1 .

Now let âi = bi + ci. Then

0 ≤ âi = bi + ci ≤ bi + (ai − bi) = ai

and hence

0 ≤ âi ≤ ai
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for 0 ≤ i ≤ `1 − 1, and

`1−1∑
i=0

âi2i =
`1−1∑
i=0

bi2i +
`1−1∑
i=0

ci2i =
`1−1∑
i=0

bi2i + 2`1 =
`1∑
i=0

bi2i.

Thus θ |A`1 has an invariant set of size
∑`1
i=0 bi2

i, as required.

Induction step: Let 2 ≤ x ≤ t and assume that if |A`j | ≥
∑`j
i=0 bi2

i for all j ∈ {1, 2, . . . , x−1}, then θ |A`x−1 has an invariant

set of size
∑`x−1
i=0 bi2

i. Now suppose that |A`j | ≥
∑`j
i=0 bi2

i for all j ∈ {1, 2, . . . , x}. Then certainly |A`j | ≥
∑`j
i=0 bi2

i for all

j ∈ {1, 2, . . . , x− 1}, and so by the induction hypothesis, θ |A`x−1 has an invariant set of size
∑`x−1
i=0 bi2

i. This implies that
there is a sequence of integers c0, c1, . . . , c`x−1−1 such that 0 ≤ ci ≤ ai for 0 ≤ i ≤ `x−1 − 1, and

`x−1−1∑
i=0

ci2i =
`x−1∑
i=0

bi2i. (3)

Since |A`x | ≥
∑`x
i=0 bi2

j, we have

`x−1∑
i=0

ai2i ≥
`x∑
i=0

bi2i. (4)

Since `x−1 ∈ L, a`x−1 = 0, so (4) implies that

|A`x | =
`x−1∑
i=0

ai2i =
`x−1−1∑
i=0

ai2i +
`x−1∑

i=`x−1+1

ai2i ≥
`x∑
i=0

bi2i.

Hence by (3), we have

`x−1−1∑
i=0

(ai − ci)2i +
`x−1∑

i=`x−1+1

ai2i ≥
`x∑

i=`x−1+1

bi2i.

This implies that

`x−1−1∑
i=0

(ai − ci)2i +
`x−1∑

i=`x−1+1

(ai − bi)2i ≥ 2`x . (5)

By the definition of L in (1), we have ai − bi ≥ 0 for `x−1 + 1 ≤ i ≤ `x − 1. Also, ai − ci ≥ 0 for 0 ≤ i ≤ `x−1 − 1. Thus
(5) and Lemma 2.1 guarantee that there exists a sequence of integers d0, d1, . . . , d`x−1 such that 0 ≤ di ≤ (ai − ci) for
0 ≤ i ≤ `x−1 − 1, d`x−1 = 0, 0 ≤ di ≤ (ai − bi) for `x−1 + 1 ≤ i ≤ `x − 1, and

`x−1∑
i=0

di2i = 2`x .

Now define a sequence of integers â0, â1, . . . , â`x−1 by

âi =

{ci + di, if 0 ≤ i ≤ `x−1 − 1
0, if i = `x−1
bi + di, if `x−1 + 1 ≤ i ≤ `x − 1.

Then one can check that 0 ≤ âi ≤ ai for 0 ≤ i ≤ `x − 1, and

`x−1∑
i=0

âi2i =
`x∑
i=0

bi2i.

Thus θ |A`x has an invariant set of size
∑`x
i=0 bi2

i, as required.

Hence by mathematical induction, Claim A holds for all x ∈ {1, 2, . . . , t}.

Now applying Claim A with x = t , we observe that |A`j | ≥
∑`j
i=0 bi2

i for all j ∈ {1, 2, . . . , t}. Hence θ |A`t has an invariant
set of size

∑`t
i=0 bi2

i. But since `t is the largest element of L, θ |B`t (and hence θ ) contains a cycle of length 2
` for all ` ∈ supp(b)
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with `t < ` ≤ m, and hence θ contains an invariant set of size
∑m
i=0 bi2

i
= k. This contradicts the fact that θ is a k-

complementing permutation.
We conclude that for some j ∈ {1, 2, . . . , t}, |A`j | <

∑`j
i=0 bi2

i. For this j, set ` = `j. Then ` ∈ supp(b) and |A`| < k[2`+1],
as required.
(⇐) Let θ ∈ Sym(V )with order a power of 2 and suppose that, for some ` ∈ supp(b), V = A`∪B` and |A`| < k[2`+1]. This

implies that θ does not have an invariant set of size k. Moreover, since the order of θ is a power of 2, for each odd integer j,
θ j has the same cycle type as θ , and hence θ j also has no invariant set of size k. Hence Aθ

j
6= A for all odd integers j and all

A ∈ V (k), and so Proposition 1.1 implies that θ is a k-complementing permutation. �

Lemma 2.3. Let V be a finite set, and let s be an integer. A permutation θ ∈ Sym(V ) is a k-complementing permutation if and
only if θ2s+1 is a k-complementing permutation.

Proof. If θ ∈ Sym(V ) is a k-complementing permutation, then θ ∈ Ant(X) for some self-complementary k-hypergraph
X = (V , E), and so θ is a bijection from E to EC and a bijection from EC to E. It follows that θ2s+1 ∈ Ant(X).
Conversely, suppose that θ2s+1 is a k-complementing permutation. Then Proposition 1.1 guarantees that each orbit of

θ2s+1 on V (k) has even cardinality. Observe that each orbit of θ2s+1 on V (k) is contained in an orbit of θ on V (k). Also, every
k-subset in an orbit of θ on V (k) must certainly lie in an orbit of θ2s+1 on V (k). Since the orbits of θ2s+1 on V (k) are pairwise
disjoint, it follows that every orbit of θ on V (k) is a union of pairwise disjoint orbits of θ2s+1 on V (k), each of which has
even cardinality. Hence every orbit of θ on V (k) has even cardinality, and so by Proposition 1.1, θ is a k-complementing
permutation. �

For a permutation θ on a set V , the symbol |θ | denotes the order of θ in Sym(V ). Lemma 2.3 and Theorem 2.2 together
yield the following characterization of k-complementing permutations.

Corollary 2.4. Let k be a positive integer, let b be the binary representation of k, and let V be a finite set. A permutation
σ ∈ Sym(V ) is a k-complementing permutation if and only if |σ | = 2i(2t + 1) for some integers t, i such that i ≥ 1 and
t ≥ 0, and θ = σ 2t+1 satisfies the conditions of Theorem 2.2 for some ` ∈ supp(b). �

Corollary 2.4 and the conditions of Theorem 2.2 can be used to test a permutation algorithmically to determine whether
it is a k-complementing permutation.

3. Necessary and sufficient conditions on order

In this section, we present an alternative description of the necessary and sufficient condition on the order n of a self-
complementary k-hypergraph of Theorem 1.3.

Lemma 3.1. A self-complementary k-hypergraph has an antimorphism whose order is equal to a power of 2.

Proof. Let X be a self-complementary k-hypergraph, and let θ ∈ Ant(X). Proposition 1.1 guarantees that θ has even order,
so |θ | = 2zs for some positive integer z and some odd integer s. Since s is odd, θ s ∈ Ant(X), and θ s has order equal to a
power of 2. �

Lemma 3.1 and Theorem 2.2 immediately imply the following necessary and sufficient conditions on the order of a self-
complementary uniform hypergraph of rank k.

Corollary 3.2. Let k and n be positive integers, k ≤ n, and let b be the binary representation of k. There exists a self-
complementary k-hypergraph of order n if and only if

n[2`+1] < k[2`+1] for some ` ∈ supp(b). � (6)

In Lemma A.1 it is shown directly that condition (6) is equivalent to the condition that
( n
k

)
is even.

When k = 2` or k = 2` + 1, Corollary 3.2 yields the following result.

Corollary 3.3. Let ` be a positive integer.

1. If k = 2`, then there exists a self-complementary k-hypergraph of order n if and only if n[2`+1] < k.
2. If k = 2` + 1, then there exists a self-complementary k-hypergraph of order n if and only if n is even or n[2`+1] < k. �

For example, Corollary 3.3 states that there exists a self-complementary graph of order n if and only if n ≡ 0 or 1
(mod 4), there exists a self-complementary 3-hypergraph of order n if and only if n ≡ 0, 1, or 2 (mod 4), and there exists a
self-complementary 4-hypergraph of order n if and only if n ≡ 0, 1, 2 or 3 (mod 8).
In the case where k is a sum of consecutive powers of 2, the condition of Corollary 3.2 holds for the largest integer in the

support of the binary representation of k, as the next result shows.
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Corollary 3.4. Let r and ` be nonnegative integers, and suppose that k =
∑r
i=0 2

`+i. Then there exists a self-complementary
k-hypergraph of order n if and only if n[2`+r+1] < k.

Proof. Suppose that there exists a self-complementary k-hypergraph of order n, and let b be the binary representation of k.
Then

supp(b) = {`, `+ 1, . . . , `+ r},

and so Corollary 3.2 guarantees that

n[2`+j+1] < k[2`+j+1], (7)

for some j ∈ {0, 1, 2, . . . , r}. If (7) holds for some j < r , then the fact that

n[2`+(j+1)+1] ≤ 2
`+j+1

+ n[2`+j+1]
implies that

n[2`+(j+1)+1] < 2
`+j+1

+ k[2`+j+1]. (8)

Now since 2`+j+1 + k[2`+j+1] = 2
`+j+1

+
∑j
i=0 2

`+i
= k[2`+(j+1)+1], (8) implies that

n[2`+(j+1)+1] < k[2`+(j+1)+1],

and hence (7) also holds for j + 1. Thus, by induction on j, the fact that (7) holds for some j ∈ {0, 1, . . . , r} implies that (7)
holds for j = r . Hence n[2`+r+1] < k[2`+r+1] = k.
Conversely, Corollary 3.2 guarantees that there exists a self-complementary k-hypergraph of order n for every integer n

such that n[2`+r+1] < k[2`+r+1] = k. �

Corollary 3.5. Let ` be a positive integer and suppose that k = 2`− 1. There exists a self-complementary k-hypergraph of order
n if and only if n[2`] < k.

Proof. Since k = 2` − 1 =
∑`−1
i=0 2

i, this follows directly from Corollary 3.4. �

4. Generating self-complementary hypergraphs

We will describe a simple algorithm which takes a k-complementing permutation in Sym(V ) as input, and returns the
set Hθ of all self-complementary k-hypergraphs X on V that have θ as an antimorphism. This algorithm was previously
described by Sachs [3] and Ringel [2] for k = 2, by Suprunenko [4] and Kocay [1] for k = 2, 3, and by Szymański [5]
for k = 3, 4. From each orbit A, Aθ , Aθ

2
, . . . of θ on V (k), we either take the alternating k-sets A, Aθ

2
, Aθ

4
, . . . for X , or

the alternating k-sets Aθ , Aθ
3
, Aθ

5
, . . . for X . Then within each orbit, θ maps edges of X onto non-edges of X , and vice

versa. If there are m orbits of θ on V (k), we can use this method to generate the set Hθ of all 2m self-complementary k-
hypergraphs on V for which θ is an antimorphism. Lemma 3.1 guarantees that every self-complementary k-hypergraph has
an antimorphism which has order a power of 2, and so we can generate all of the self-complementary k-hypergraphs of
order n, up to isomorphism, by applying this simple algorithm to findHθ for every permutation θ in Sym(n) satisfying the
conditions of Theorem 2.2. Moreover, if we just wish to generate at least one representative of each isomorphism class of
self-complementary k-hypergraphs of order n, it suffices to apply this algorithm to one permutation θ from each conjugacy
class of permutations in Sym(n) satisfying the conditions of Theorem 2.2.
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Appendix

In Lemma A.1, we will show directly that the necessary and sufficient condition (6) of Corollary 3.2 on the order n of
a self-complementary k-hypergraph is equivalent to Szymański and Wojda’s condition that

( n
k

)
is even. First we will need

some notation.
For positive integersm and n, recall that n[m] denotes the unique integer in {0, 1, . . . ,m−1} such that n ≡ n[m](mod m).

Let
[ n
m

]
denote the quotient upon division of n by m. Finally, for any prime number p, let n(p) denote the largest integer i

such that pi divides n.
It is well known that for any positive integerm and prime number p, we have

m!(p) =
∑
r≥1

[
m
pr

]
.
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It follows that(m
n

)
(p)
=

(
m!

n!(m− n)!

)
(p)

= m!(p) − n!(p) − (m− n)!(p)

=

∑
r≥1

{[
m
pr

]
−

[
n
pr

]
−

[
m− n
pr

]}
. (9)

We can evaluate each term in the sum above using the well-known fact that[
m
pr

]
−

[
n
pr

]
−

[
m− n
pr

]
=

{
1 ifm[pr ] < n[pr ]
0 otherwise. (10)

Lemma A.1. Let k and n be positive integers, k ≤ n, and let b be the binary representation of k. Then
( n
k

)
is even if and only if

n[2`+1] < k[2`+1] for some ` ∈ supp(b). (11)

Proof. Observe that
( n
k

)
is even if and only if

( n
k

)
(2) ≥ 1. By (9) we have(n

k

)
(2)
=

∑
r≥1

{[ n
2r

]
−

[
k
2r

]
−

[
n− k
2r

]}
. (12)

By (10), for each r ≥ 1 we have[ n
2r

]
−

[
k
2r

]
−

[
n− k
2r

]
=

{
1 if n[2r ] < k[2r ]
0 otherwise.

Hence (12) implies that
( n
k

)
is even if and only if

n[2r ] < k[2r ] for some r ≥ 1,

that is, if and only if

n[2`+1] < k[2`+1] for some ` ≥ 0. (13)

Nowwewill show that the condition in (13) holds for some ` ≥ 0 if and only if it holds for some ` ∈ supp(b). If (13) holds
for some ` ∈ supp(b), then (13) certainly holds for some ` ≥ 0. Conversely, assume for the sake of contradiction that the
condition in (13) does not hold for any ` ∈ supp(b), but it holds for some ` 6∈ supp(b). Now if i 6∈ supp(b) for all i such that
0 ≤ i ≤ `, then k[2`+1] =

∑`
i=0 bi2

i
= 0, and so (13) implies that n[2`+1] < 0, giving a contradiction. Hence theremust exist a

nonnegative integer i < ` such that i ∈ supp(b). Let `∗ denote the largest such integer i. Then k[2`+1] =
∑`∗
i=0 bi2

i
= k[2`∗+1],

and so (13) implies that

n[2`+1] < k[2`∗+1]. (14)

Since `∗ < `, we have n[2`∗+1] ≤ n[2`+1], and so (14) implies that

n[2`∗+1] < k[2`∗+1].

Hence `∗ ∈ supp(b) and (13) holds for `∗, contradicting our assumption. We conclude that (13) holds if and only if
n[2`+1] < k[2`+1] for some ` ∈ supp(b), and thus

( n
k

)
is even if and only if (11) holds. �

References

[1] W. Kocay, Reconstructing graphs as subsumed graphs of hypergraphs, and some self-complementary triple systems, Graphs Combin. 8 (1992) 259–276.
[2] G. Ringel, Selbstkomplementäre graphen, Arch. Math. (Basel) 14 (1963) 354–358.
[3] H. Sachs, Über selbstkomplementäre graphen, Publ. Math. Debrecen 9 (1962) 270–288.
[4] D.A. Suprunenko, Self-complementary graphs, Cybernetica 21 (1985) 559–567.
[5] A. Szymański, A note on self-complementary 4-uniform hypergraphs, Opuscula Math. 25 (2) (2005) 319–323.
[6] A. Szymański, A.P. Wojda, A note on k-uniform self-complementary hypergraphs of given order, Discuss. Math. Graph Theory 29 (2009) 199–202.
[7] A.P. Wojda, Self-complementary hypergraphs, Discuss. Math. Graph Theory 26 (2006) 217–224.


	Generating self-complementary uniform hypergraphs
	Introduction
	Cycle lengths of antimorphisms
	Necessary and sufficient conditions on order
	Generating self-complementary hypergraphs
	Acknowledgement
	Appendix
	References


