
Discrete Mathematics 312 (2012) 2620–2626

Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

On the coloring of the annihilating-ideal graph of a commutative ring
G. Aalipour a,c,∗, S. Akbari a,c, R. Nikandish b,c, M.J. Nikmehr b, F. Shaveisi b,c
a Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
b Department of Mathematics, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
c School of Mathematics, Institute for Research in Fundamental Sciences, (IPM), P.O. Box 19395–5746, Iran

a r t i c l e i n f o

Article history:
Received 13 October 2010
Accepted 21 October 2011
Available online 14 November 2011

Keywords:
Annihilating-ideal graph
Chromatic number
Clique number
Minimal prime ideal

a b s t r a c t

Suppose that R is a commutative ringwith identity. LetA(R) be the set of all ideals of Rwith
non-zero annihilators. The annihilating-ideal graph of R is defined as the graph AG(R)with
the vertex set A(R)∗ = A(R) \ {(0)} and two distinct vertices I and J are adjacent if and
only if IJ = (0). In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced
ring R with more than two minimal prime ideals, girth(AG(R)) = 3. Here, we prove that
for every (not necessarily reduced) ring R, ω(AG(R)) ≥ |Min(R)|, which shows that the
conjecture is true. Also in this paper, we present some results on the clique number and
the chromatic number of the annihilating-ideal graph of a commutative ring. Among other
results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the
chromatic number of the annihilating-ideal graph is finite too.We investigate commutative
rings whose annihilating-ideal graphs are bipartite. It is proved that AG(R) is bipartite if
and only if AG(R) is triangle-free.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, assigning graphs to rings has played an important role in the study of structures of rings, for instance
see [3,4,6,7,11,14]. Throughout this paper, all rings are assumed to be commutative with unity. We denote by Z(R), Min(R)
and Max(R), the set of zero-divisors, the set of minimal ideals and the set of maximal ideals of R, respectively. The Jacobson
radical and the nilradical of R are denoted by J(R) andNil(R), respectively. The ring R is said to be reduced if it has no non-zero
nilpotent element. The set of all non-zero ideals of R is denoted by I(R). We call an ideal I of R, an annihilating-ideal if there
exists a non-zero ideal J of R such that IJ = (0). We use the notation A(R) for the set of all annihilating-ideals of R. A subset
S of a commutative ring R is called a multiplicative closed subset (m.c.s) of R if 1 ∈ S and x, y ∈ S implies that xy ∈ S. If S is
anm.c.s of R andM is an R-module, then we denote by RS andMS , the ring of fractions of R and the module of fractions ofM
with respect to S, respectively. If p is a prime ideal of R and S = R \ p, we use the notationMp, for the localization ofM with
respect to S. By T (R), we mean the total ring of R that is the ring of fractions, where S = R \ Z(R). A non-zero ideal I of a ring
R is said to beminimal if there is no non-trivial ideal of R contained in I . We denote by Soc(R), the sum of all minimal ideals
of R (If there is no minimal ideal, then we define Soc(R) = (0)).

Let G be a graph with the vertex set V (G). For every positive integer n, we denote the path of order n, by Pn. The distance
between two vertices in a graph is the number of edges in a shortest path connecting them. The diameter of a connected
graph G, denoted by diam(G), is the maximum distance between any pair of the vertices of G. The girth of G, denoted by
girth(G), is the order of a shortest cycle contained in G. If G does not contain a cycle, then girth(G) is defined to be infinity.
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The complete graph is a graph in which any two distinct vertices are adjacent. A complete graph of order n is denoted by Kn.
A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets U and V such that every edge connects
a vertex in U to one in V . A complete bipartite graph is a bipartite graph in which every vertex of one part is joined to every
vertex of the other part. If the size of one of the parts is 1, then the complete bipartite graph is said to be a star graph. The
center of a star graph is a vertex that is adjacent to all other vertices. A clique of a graph is a complete subgraph and the
supremum of the sizes of cliques in G, denoted by ω(G), is called the clique number of G. If the graph has no vertex, then its
clique number is defined to be 0. By χ(G), we denote the chromatic number of G, i.e., the minimum number of colors which
can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. For some U ⊆ V (G),
we denote by N(U), the set of all vertices of G adjacent to at least one vertex of U . For every vertex v ∈ V (G), the size of N(v)
is denoted by d(v). For any subset U of vertices, we use the notation U c for the complement of U . Let G and G′ be two graphs.
A graph homomorphism from G to G′ is a mapping φ : V (G) −→ V (G′) such that for every edge {u, v} of G, {φ(u), φ(v)} is
an edge of G′. A retract of G is a subgraph H of G such that there exists a homomorphism φ : G −→ H such that φ(x) = x,
for every vertex x of H . The homomorphism φ is called the retract (graph) homomorphism.

Let R be a ring. The zero-divisor graph of R, Γ (R), is a graph with the vertex set Z(R) \ {0} and two distinct vertices x
and y are adjacent if and only if xy = 0. The concept of the zero-divisor graph was first introduced by Beck (see [6]). Since
most properties of a ring are closely tied to the behavior of its ideals, it is worthy to replace the vertices of the zero-divisor
graph by the non-zero annihilating-ideals. By the annihilating-ideal graph AG(R) of R, we mean the graph with the vertex
set A(R)∗ = A(R) \ {(0)}. Two distinct vertices I and J are adjacent if and only if IJ = (0). Thus AG(R) has no vertex if and
only if R is an integral domain. The concept of the annihilating-ideal graph of a commutative ring was first introduced in [7].

The following theorems reflect some fundamental properties of the annihilating-ideal graph of a ring which will be used
in this paper.

Theorem A ([7, Theorem 1.4]). Let R be a ring which is not an integral domain. Then the following statements are equivalent:

(1) AG(R) is a finite graph.
(2) R has finitely many ideals.
(3) Every vertex of AG(R) has finite degree.

Moreover, AG(R) has n vertices, n ≥ 1, if and only if R has exactly n non-trivial ideals.

Theorem B ([7,9]). For every ring R, the annihilating-ideal graphAG(R) is connected and diam(AG(R)) ≤ 3. Moreover, if AG(R)
contains a cycle, then girth(AG(R)) ≤ 4.

2. The clique number and the chromatic number of the annihilating-ideal graphs

In this section, we study the vertex coloring of the annihilating-ideal graphs of some rings of fractions. Next, we provide
some formulas for the clique and the chromatic numbers of the annihilating-ideal graph of a direct product of rings.

It is easy to see that if S is an m.c.s of R containing no zero-divisors, then for every ideal I of R, the localization IS = 0 if
and only if I = 0.

Theorem 1. Let R be a ring and S be anm.c.s of R containing no zero-divisors. Thenω(AG(RS)) ≤ ω(AG(R)). Moreover, AG(RS)
is a retract of AG(R) if R is reduced. In particular, ω(AG(RS)) = ω(AG(R)), whenever R is reduced.

Proof. Consider a vertex map φ : V (AG(R)) −→ V (AG(RS)), I −→ IS . Clearly, IS ≠ JS implies I ≠ J and IJ = (0) if and only
if IS JS = (0). Thus φ is surjective, and hence ω(AG(RS)) ≤ ω(AG(R)).

In what follows, assume that R is reduced. If I ≠ J and IJ = (0), then we show that IS ≠ JS . On the contrary suppose that
IS = JS . Then I2S = IS JS = (IJ)S = (0) and so I2 = (0), a contradiction. This shows that the map φ is a graph homomorphism.
Now, for any vertex IS of AG(RS), by the Axiom of Choice, fix an I . Then φ is a retract (graph) homomorphism. It clearly
follows that ω(AG(RS)) = ω(AG(R)) under the assumption. �

Corollary 2. If R is a reduced ring, then ω(AG(T (R))) = ω(AG(R)).

Since the chromatic numberχ(G)of a graphG is the least positive integer r such that there exists a retract homomorphism
ψ : G −→ Kr , the following corollaries follow directly from the proof of Theorem 1.

Corollary 3. Let R be a ring and S be an m.c.s of R containing no zero-divisor. Then χ(AG(RS)) ≤ χ(AG(R)). Moreover, if R is
reduced, then χ(AG(RS)) = χ(AG(R)).

Corollary 4. If R is a reduced ring, then χ(AG(T (R))) = χ(AG(R)).

Before stating the next theorem, we need the following interesting result, due to Eben Matlis.

Theorem 5 ([13, Proposition 1.5]). Let R be a ring and {p1, . . . , pn} be a finite set of distinct minimal prime ideals of R. Let
S = R \

n
i=1 pi. Then RS ∼= Rp1 × · · · × Rpn .
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Conjecture 1.11 of [8] states that for every reduced ring R with more than two minimal prime ideals, girth(AG(R)) = 3.
The following theorem settles this conjecture.

Theorem 6. Let R be a ring and {p1, . . . , pn} be a finite set of distinct minimal prime ideals of R. Then there exists a clique of
AG(R) of size n.

Proof. Let S = R \
n

i=1 pi. By Theorem 5, there exists a ring isomorphism φ : Rp1 × · · · × Rpn −→ RS . Let ei =

(0, . . . , 0, 1, 0, . . . , 0) and φ(ei) =
ai
si
, where 1 ≤ i ≤ n and 1 is in the i-th position of ei. Consider the principal ideals

Ii =


ai
si


=

 ai
1


in the ring RS . Sinceφ is an isomorphism, there exists tij ∈ S such that tijaiaj = 0, for every i, j, 1 ≤ i < j ≤ n.

Let t =


1≤i<j≤n tij. We show that {(ta1), . . . , (tan)} is a clique of size n in AG(R). Since (tai)S =
 ai

1


= Ii, we deduce that

(tai) are distinct non-trivial ideals of R. Clearly, (tai)(taj) = (0) and so AG(R) has a clique of size n, as desired. �

Corollary 7. For every ring R, ω(AG(R)) ≥ |Min(R)|.

The next theorem improves [8, Corollary 2.11].

Theorem 8. Let R be a reduced ring. Then χ(AG(R)) = ω(AG(R)) = |Min(R)|.

Proof. If |Min(R)| = ∞, then by Corollary 7 there is nothing to prove. Thus, suppose that Min(R) = {p1, . . . , pn}, for some
positive integer n. Let S = R \

n
i=1 pi. By Theorem 5, we have RS ∼= Rp1 × · · · × Rpn . Clearly, ω(AG(RS)) ≥ n. Now, we

show that χ(AG(RS)) ≤ n. Since R is reduced, by [13, Proposition 1.1], Part (1), every Rpi is a field. Now, we define the map
c : V (AG(RS)) −→ {1, . . . , n} by c(I1 × · · · × In) = min{i | Ii ≠ (0)}. Since each Rpi is a field, c is a proper vertex coloring
of AG(RS). Thus χ(AG(RS)) ≤ n and so χ(AG(RS)) = ω(AG(RS)) = n. By [13, Proposition 1.1], Part (3), S ∩ Z(R) = ∅.
Therefore, Theorem 1 and Corollary 3 complete the proof. �

Remark 9. Using Theorems 3.2, 3.11 and 4.3 in [12], one can see that for every reduced semigroup S with 0, the equality
ω(Γ (S)) = χ(Γ (S)) always holds, where Γ (S) denotes the zero-divisor graph of S, and thus the first equality in Theorem 8
is obtained, since every annihilating-ideal graph of a ring is always the zero-divisor graph of a semigroup with 0.

Lemma 10. Let R be a ring, I and J be two non-trivial ideals of R. If for every m ∈ Max(R), Im = Jm, then I = J .

Proof. Since Im = Jm, we conclude that ((I + J)/J)m = (Im + Jm)/Jm = (0), for every m ∈ Max(R). So, by [5, Proposition 3.8],
we deduce that I ⊆ J . Similarly, one can see that J ⊆ I and the proof is complete. �

Theorem 11. Let R be a ring and |Max(R)| < ∞. If for every m ∈ Max(R), ω(AG(Rm)) is finite, then ω(AG(R)) is finite.

Proof. Suppose that Max(R) = {m1, . . . ,mn}. On the contrary assume that C = {Ji}∞i=1 is a clique of AG(R). Since
ω(AG(Rm1)) < ∞, we deduce that there exists an infinite subset A1 ⊆ N such that for every i, j ∈ A1, (Ji)m1 = (Jj)m1 .
Now, using ω(AG(Rm2)) < ∞, we conclude that there exists an infinite subset A2 ⊆ A1 such that for every i, j ∈ A2,
(Ji)m2 = (Jj)m2 . By continuing this procedure one can see that there exists an infinite subset An ⊆ An−1 such that for every
i, j ∈ An, (Ji)ml = (Jj)ml , for every l, l = 1, . . . , n. Therefore, by Lemma 10, we get a contradiction. �

Theorem 12. Let R be a ring and |Max(R)| < ∞. If for every m ∈ Max(R), χ(AG(Rm)) is finite, then χ(AG(R)) is finite.

Proof. Let Max(R) = {m1, . . . ,mn} and fi : V (AG(Rmi)) −→ {1, . . . , χ(AG(Rmi))} be a proper vertex coloring of AG(Rmi),
for every i, 1 ≤ i ≤ n. Now, by defining fi(L) = 1, for every L ∈ I(Rmi) \ V


AG(Rmi)


(we recall that I(Rmi) denotes the set

of non-zero ideals of Rmi ), we extend the map fi to I(Rmi). We define a function f on A(R)∗ by f (I) = (g1(Im1), . . . , gn(Imn)),
where

gi(Imi) =

0; Imi = (0)
−1; Imi = Rmi
fi(Imi); otherwise.

Now, by Lemma 10, it is not hard to check that f is a proper vertex coloring of AG(R). �

In the next theorem,we provide some formulas for the clique number and the chromatic number of the annihilating-ideal
graph of a direct product of rings.

Theorem 13. Let A = R1 × · · · × Rk, T = T1 × · · · × Tl, Ri be a non-domain and Tj be a reduced ring, for i = 1, . . . , k and
j = 1, . . . , l. If R = A × T , then the following statements hold:
(i) If T is not an integral domain, then ω(AG(R)) = ω(AG(A))+ ω(AG(T )).
(ii) If every Ti is an integral domain, then ω(AG(R)) = ω(AG(A))+ l.
(iii)

k
i=1 ω(AG(Ri))+ max


l,

l
i=1 ω(AG(Ti))


≤ ω(AG(R)).

(iv) ω(AG(A)) ≤
k

i=1(ω(AG(Ri))+ 1)− 1. Moreover, the equality holds if and only if every Ri has a maximum clique Ci such
that for every I, I ∈ Ci, I2 = (0).
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Proof. (i) If one of the sides of the equality is infinite, then obviously the assertion holds. So, suppose that both sides of the
equality are finite. Now, we show that AG(R) has a maximum clique of the form {I × (0) | I ∈ C1} ∪ {(0)× J | J ∈ C2},
where C1 and C2 are twomaximum cliques of AG(A) and AG(T ), respectively. Let C = {Ii × Ji}i∈Λ be a maximum clique
of AG(R). Assume that Ik × Jk ∈ C . If Ik ≠ (0) and Jk ≠ (0), then let C0 = (C \ {Ik × Jk})∪ {Ik × (0), (0)× Jk}. Since T is a
reduced ring, we conclude that |C0| ≥ |C |. Since |C0| < ∞, by repeating this procedure, we obtain amaximum clique C0
such that every element of C0 is of the form Ir ×(0) or (0)×Js. Let C1 = {I | I×(0) ∈ C0} and C2 = {J | (0)×J ∈ C0}. Then
C1 and C2 are maximum cliques of AG(A) and AG(T ), respectively. Thus C0 = {I1 × (0) | I1 ∈ C1} ∪ {(0)× I2 | I2 ∈ C2}

and the proof of (i) is complete.
(ii) If l = 1, then it is not hard to check that the equality holds. Suppose that l ≥ 2. By (i), ω(AG(R)) = ω(AG(A)) +

ω(AG(T )). Since |Min(T )| = l, Theorem 8 completes the proof.
(iii) It is obvious.
(iv) It is clear that every clique of AG(A) is a subset of

k
i=1(Ci ∪ {(0)}) \ {(0)}, where Ci is a clique of AG(Ri). Thus

ω(AG(A)) ≤
k

i=1(ω(AG(Ri)) + 1) − 1. Moreover, the equality holds if and only if every Ri has a maximum clique
Ci with I2 = (0), for every I , I ∈ Ci, 1 ≤ i ≤ k. �

Now, using Theorem 13, we provide a simple proof for [2, Lemma 1].

Corollary 14. Let R1 and R2 be two rings and R = R1 × R2. If AG(R) is a triangle-free graph, then exactly one of the following
statements holds.
(i) Both R1 and R2 are integral domains.
(ii) One Ri is an integral domain and the other one is a ring with a unique non-trivial ideal.

Moreover, AG(R) has no cycle if and only if either R ∼= F × S or R ∼= F ×D, where F is a field, S is a ring with a unique non-trivial
ideal and D is an integral domain.

Proof. Since AG(R) is triangle-free and R1 × (0) and (0)× R2 are adjacent, we conclude that ω(AG(R)) = 2. If at least one
of the ω(AG(R1)) and ω(AG(R2)), say ω(AG(R1)), is 2, then by Theorem 13, Part (iii), we deduce that ω(AG(R2)) = 0 and
so R2 is an integral domain. Hence Theorem 13, Part (ii) implies that ω(AG(R)) = 3, a contradiction. Therefore; one may
assume that both ω(AG(R1)) and ω(AG(R2)) are at most 1. If ω(AG(R1)) = ω(AG(R2)) = 1, then Theorems A and B imply
that every Ri is a ring with the unique non-trivial ideal mi and so by Nakayama’s Lemma m2

i = (0). Thus by Theorem 13, Part
(iv), we conclude that ω(AG(R)) = 3, a contradiction. Hence ω(AG(R1))+ω(AG(R2)) ≤ 1 and so by Theorem A, (i) and (ii)
are proved. The last part of the corollary is clear. �

Now, we would like to state some similar results for the chromatic number of the annihilating-ideal graph of direct
product of rings.

Theorem 15. Let A = R1 × · · · × Rk, T = T1 × · · · × Tl, Ri be a non-domain and Tj be a reduced ring, for i = 1, . . . , k and
j = 1, . . . , l. If R = A × T , then the following statements hold:
(i) If T is not an integral domain, then χ(AG(R)) = χ(AG(A))+ χ(AG(T )).
(ii) If every Ti is an integral domain, then χ(AG(R)) = χ(AG(A))+ l.
(iii)

k
i=1 χ(AG(Ri))+ max


l,

l
i=1 χ(AG(Ti))


≤ χ(AG(R)).

(iv) χ(AG(A)) ≤
k

i=1


χ(AG(Ri))+ 1


− 1.

Proof. (iii) Let f be a proper vertex coloring of AG(R) with χ(AG(R)) colors. Then the restriction of f to {(0) × · · · × I ×

· · · × (0) | I ∈ V (AG(St))} yields a proper vertex coloring of AG(St), where St = Rt , for every t , 1 ≤ t ≤ k and St = Tj,
if t = k + j for some j, 1 ≤ j ≤ l. Since every vertex of {(0) × · · · × I × · · · × (0) | I ∈ I(Su)} is adjacent to every
vertex of {(0) × · · · × J × · · · × (0) | J ∈ I(Sv)}, for each u ≠ v and AG(T ) contains a clique of size l, we conclude thatk

i=1 χ(AG(Ri))+ max

l,

l
i=1 χ(AG(Ti))


≤ χ(AG(R)), as desired.

(i) By Part (iii), χ(AG(R)) ≥ χ(AG(A))+χ(AG(T )). Now, we define a proper vertex coloring of AG(R)with χ(AG(A))+
χ(AG(T )) colors. Let g : V (AG(A)) −→ {1, . . . , χ(AG(A))} and h : V (AG(T )) −→ {1, . . . , χ(AG(T ))} be proper vertex
colorings of AG(A) and AG(T ), respectively. By defining g(I) = 1 and h(J) = 1, for every I ∉ A(A) and every J ∉ A(T ), we
extend the maps g and h to I(A) and I(T ), respectively. Define a map φ on V (AG(R)) as follows

φ(I × J) =


(g(I), 0); J = (0)
(0, h(J)); otherwise.

Since T is a reduced ring, we deduce that φ is a proper vertex coloring of AG(R)with χ(AG(A))+ χ(AG(T )) colors and so
(i) is proved.

(ii) First suppose that l = 1 and g : V (AG(A)) −→ {1, . . . , χ(AG(A))} is a proper vertex coloring of AG(A). By defining
g(I) = 1, for every I ∉ A(A), we extend the map g to I(A). Define a map φ on V (AG(R)) as follows

φ(I × J) =


g(I); J = (0)
χ(AG(A))+ 1; otherwise.
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It is not hard to check that φ is a proper vertex coloring of AG(R)with χ(AG(R))+ 1 colors and so by Part (iii) the equality
holds for l = 1. Now, suppose that l ≥ 2. By (i), χ(AG(R)) = χ(AG(A)) + χ(AG(T )). Since |Min(T )| = l, Theorem 8
completes the proof.

(iv) First we claim that

χ(AG(R1 × R2)) ≤ (χ(AG(R1))+ 1)(χ(AG(R2))+ 1)− 1.

Let ci : V (AG(Ri)) −→ {1, . . . , χ(AG(Ri))} be a proper vertex coloring of AG(Ri), i = 1, 2. We extend the map ci to I(Ri)
by defining ci(J) = 1, for every J ∉ A(Ri). Now, define a vertex coloring c for AG(R) as follows:

c(I × J) =


(0, c2(J)); I = (0)
(c1(I), 0); J = (0)
(c1(I), c2(J)); I ≠ (0) and J ≠ (0).

It is not hard to check that c is a proper vertex coloring of AG(R1 × R2). So, the claim is proved. Now, by induction on k, we
find that χ(AG(A)) ≤

k
i=1(χ(AG(Ri))+ 1)− 1. �

Now, we have the following immediate corollary.

Corollary 16. Let R1, . . . , Rk be rings and R = R1 × · · · × Rk. Then
(i) ω(AG(R)) < ∞ if and only if ω(AG(Ri)) < ∞, for every i, 1 ≤ i ≤ k.
(ii) χ(AG(R)) < ∞ if and only if χ(AG(Ri)) < ∞, for every i, 1 ≤ i ≤ k.

In the sequel, the chromatic numbers of two graphs AG(R) and Γ (R) are compared. The following example shows that
the chromatic numbers of the zero-divisor graph and the annihilating-ideal graph of a ring are not comparable in general.

Example 17. (a) Let k be a finite field with at least three elements, x be an indeterminate and R =
k[x]
(x2)

. Then ω(AG(R)) =

χ(AG(R)) = 1 but χ(Γ (R)) ≥ ω(Γ (R)) ≥ |k| − 1.
(b) If R = Z2 × Z2, then ω(AG(R)) = χ(AG(R)) = ω(Γ (R)) = χ(Γ (R)) = 2.
(c) If R =

Z2[x,y]
(x,y)2

, then ω(AG(R)) = χ(AG(R)) = 4 but ω(Γ (R)) = χ(Γ (R)) = 3. Indeed, AG(R) ∼= K4 and Γ (R) ∼= K3.

Theorem 18. Let R be a ring and χ(Γ (R)) < ∞. Then χ(AG(R)) ≤ 2χ(Γ (R)) − 1.

Proof. Suppose that χ(Γ (R)) = k and c : V (Γ (R)) −→ {1, . . . , k} is a proper vertex coloring of Γ (R). Let Ai = c−1({i}),
for i = 1, . . . , k. We define a map f : V (AG(R)) −→ P({1, . . . , k}) \ {∅} by f (I) = {i | 1 ≤ i ≤ k, I ∩ Ai ≠ ∅}, where P(X)
denotes the power set of X . Now, we claim that f is a proper vertex coloring of AG(R). Suppose that I and J are two distinct
vertices of AG(R) such that IJ = (0) and f (I) = f (J). We show that I ∩ At = J ∩ At , for every t ∈ f (I). Let x ∈ I ∩ At . Then
t ∈ f (I) = f (J) and so there exists y ∈ J ∩ At . Since every Ai is an independent set of Γ (R) and IJ = (0), we deduce that
x = y ∈ J ∩ At . Thus I ∩ At ⊆ J ∩ At . Similarly, J ∩ At ⊆ I ∩ At and hence I ∩ At = J ∩ At , for every t ∈ f (I). Since for every
u ∈ {1, . . . , k} \ f (I), I ∩ Au = J ∩ Au = ∅ and {A1, . . . , Ak} is a partition of Z(R) \ {0}, we deduce that I = J , a contradiction.
So, the claim is proved and the proof is complete. �

Theorem 19. Let R be a ring, χ(Γ (R)) < ∞ and every non-zero annihilating-ideal of R is infinite. Then χ(AG(R)) ≤ χ(Γ (R)).

Proof. Suppose that χ(Γ (R)) = k and c : V (Γ (R)) −→ {1, . . . , k} is a proper vertex coloring of Γ (R). Let Ai = c−1({i}).
We define a map f : V (AG(R)) −→ {1, . . . , k}, where f (I) is the maximum value of i for which |I ∩ Ai| = ∞. Since every Ai
is an independent set of Γ (R), it is not hard to check that f is a proper coloring of AG(R). �

3. Bipartite annihilating-ideal graphs

This section is devoted to the study of rings whose the chromatic numbers of their annihilating-ideal graphs is two. For
this aim, we start with the following theorem characterizing non-reduced rings with bipartite annihilating-ideal graphs.

Theorem 20. Let R be a non-reduced ring and AG(R) be a triangle-free graph. Then AG(R) is bipartite and R has at most two
minimal ideals. Moreover, one of the following statements holds.

(i) R has exactly two minimal ideals and R ∼= F × S, where F is a field and S is a ring with exactly one non-trivial ideal.
(ii) R has exactly one minimal ideal, say (x), (x)2 = (0) and V1 = N((x)) and V c

1 are the parts of AG(R). Furthermore, for
A = {L ∈ V1 | (x) ⊆ L}, the induced subgraph on V c

1 ∪ (V1 \ A) is a complete bipartite graph and d(L) = 1, for every L ∈ A.
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Proof. Since R is non-reduced, there exists 0 ≠ z ∈ R such that z2 = 0. By hypothesis, (z) contains at most one non-trivial
ideal of R. Thus we can assume that R has at least one minimal ideal, say (x), with x2 = 0. Also, R has at most two minimal
ideals. Two cases can be considered:
Case 1. R has exactly two minimal ideals (x) and J . Then we show that J2 ≠ (0). On the contrary suppose that J2 = (0). Then
J, (x) and J + (x) form a triangle, a contradiction. Thus J2 ≠ (0) and hence by Brauer’s Lemma (see [10, 10.22]), there exists
an idempotent element e ∈ R such that J = Re and R ∼= Re × R(1 − e). Since R is non-reduced, Corollary 14 implies that
R ∼= D × S, where D is an integral domain and S is a ring with exactly one non-trivial ideal. Since R has two minimal ideals
(x) and J , D is a field (Note that every integral domain which is not a field has no minimal ideal). Thus Part (i) is proved.
Case 2. Assume that (x) is the unique minimal ideal of R. Let V1 = N((x)), V2 = V c

1 , A = {L ∈ V1 | (x) ⊆ L}, B = V1 \ A
and C = V2 \ {(x)}. We show that AG(R) is a bipartite graph with parts V1 and V2 and the induced subgraph on B ∪ V2 is a
complete bipartite graph. Since AG(R) is triangle-free, we deduce that V1 is an independent set. We claim that one end of
every edge of AG(R) is adjacent to (x) and another end contains (x). To see this, suppose that {I, J} is an edge of AG(R) and
(x) ≠ I, (x) ≠ J . Since I(x) ⊆ (x) and (x) is a minimal ideal of R, either I(x) = (0) or (x) ⊆ I . The latter case implies that
J(x) = (0). If I(x) = (0), then J(x) ≠ (0) and hence (x) ⊆ J . Therefore, the claim is proved.

This implies that V2 is an independent set and AG(R) is a bipartite graph with the parts V1 and V2. Since every vertex of A
contains (x) and AG(R) is triangle-free, we deduce that d(L) = 1, for every L ∈ A. So, N(C) ⊆ B. Since V2 is an independent
set and (x) is a minimal ideal of R, we deduce that every vertex of C contains (x) and so every vertex of A ∪ V2 contains (x).
Now, we show that the induced subgraph of AG(R) on B ∪ V2 is a complete bipartite graph. Let I ∈ V2 and J ∈ B. If IJ ≠ (0),
then IJ is a vertex of AG(R). Since every vertex of A∪V2 contains (x) and (x) ⊈ J , we conclude that IJ ∈ B. Since every vertex
of A is just adjacent to (x) and by Theorem B, AG(R) is connected, I has a neighbor in B, say K . If K ≠ IJ , then K and IJ are
two adjacent vertices in B, a contradiction. So suppose that K = IJ . Since (x) is the unique minimal ideal of R, there exists
an ideal L properly contained in K = IJ and L ∈ B. It is clear that L is adjacent to IJ , a contradiction. Therefore, IJ = (0). This
proves (ii). �

Example 21. Let R = D × S, where D is an integral domain and S is a ring with exactly one non-trivial ideal. Then AG(R) is
a bipartite graph, satisfying Part (ii) of the previous theorem.

Remark 22. For a reduced ring R, if AG(R) is a triangle-free graph, then it is a complete bipartite graph. To see this, by
Theorem 6, |Min(R)| ≤ 2. If |Min(R)| = 1, then R is an integral domain. Thus one can assume that Min(R) = {p1, p2}. In this
case, AG(R) is a complete bipartite graph with the parts X = {I | I ∈ A(R)∗, I ⊆ p1} and Y = {I | I ∈ A(R)∗, I ⊆ p2}.

Now, using Theorem 20 and Corollary 14, we provide a simple proof for [2, Theorem 2].

Corollary 23. Let R be a ring. Then AG(R) is a tree if and only if AG(R) is isomorphic to either a star graph or P4.

Proof. First suppose that AG(R) is a tree. If R is a reduced ring, then Remark 22 implies that AG(R) is a star graph. Hence
suppose that R is a non-reduced ring. If the Part (i) of Theorem 20 occurs, then AG(R) ∼= P4. Thus by Theorem 20, Part (ii)
one may assume that B = V1 \ A ≠ ∅ and C = V c

1 \ {(x)} ≠ ∅. Since AG(R) is tree, by Part (ii) of Theorem 20, we deduce
that B = {J}. One can easily check that J is a minimal ideal. If J2 = (0), then J , (x) and J + (x) form a triangle, a contradiction.
Thus, by Brauer’s Lemma and Corollary 14, AG(R) is isomorphic to P4. The converse is trivial. �

Corollary 24. Let R be a ring. Then AG(R) is a complete bipartite graph if and only if AG(R) is a star graph or R is a reduced ring
and |Min(R)| = 2.

We note that empty graphs and the isolated vertex graphs are bipartite graphs. If R is a ring and |V (AG(R))| ≥ 2, then we
obtain the following corollary immediately, which is a special case of [11, Theorem 2.1]. This result was also proved in [1]
(see Theorem 13) by a different proof.

Corollary 25. Let R be a ring. Then AG(R) is bipartite if and only if AG(R) is triangle-free.

The next corollary in some sense is a generalization of Theorem 3 in [2].

Corollary 26. Let R be a ring.

(i) If R is reduced, then AG(R) is a star graph if and only if R ∼= F × D, where F is a field and D is an integral domain.
(ii) If R is non-reduced, then AG(R) is a star graph if and only if AG(R) is a bipartite graph and Z(R) = Ann(x), for some x ∈ R.

Proof. (i) Suppose that AG(R) is a star graph with center I . Since R is reduced, I is a minimal ideal of R. Thus by Brauer’s
Lemma, R is decomposable and so by Corollary 14, R ∼= F×D, where F is a field andD is an integral domain. The converse
is trivial.

(ii) Suppose that AG(R) is a star graph. By Theorem 20, Part (ii), V c
1 = {(x)} and so (x) is the center of AG(R). Therefore,

Z(R) = Ann(x). The converse is clear. �

In the next theorem, we obtain some properties of rings whose annihilating-ideal graphs are bipartite.



2626 G. Aalipour et al. / Discrete Mathematics 312 (2012) 2620–2626

Theorem 27. Let AG(R) be a bipartite graph. Then one of the following holds.

(i) AG(R) is a star graph.
(ii) AG(R) ∼= P4.
(iii) Nil(R) = Soc(R).

Proof. First suppose that R is reduced. If R has no minimal ideal, then Soc(R) = (0) = Nil(R). Thus one may assume that R
has a minimal ideal, say I , and I2 ≠ (0). Since AG(R) is bipartite, Brauer’s Lemma and Corollary 14 imply that R ∼= D1 × D2,
whereD1 andD2 are integral domains. But R has at least oneminimal ideal. So, at least one of the integral domainsD1 andD2,
say D1, is a field. Thus AG(R) is a star graph. Now, suppose that R is a non-reduced ring. By Theorem 20, we have two cases.
If (i) happens, then R ∼= F × S, where F is a field and S is a ring with exactly one non-trivial ideal and AG(R) ∼= P4. So, let
(ii) happen. IfNil(R) = (x), thenNil(R) = Soc(R). Therefore, one can assume thatNil(R) ≠ (x). SinceNil(R) ⊆ J(R) ⊆ Ann(x),
we deduce that (x)Nil(R) = (0) and so Nil(R) ∈ V1. Let K ∈ V1 \ A. Then K ∩ Nil(R) is a vertex of AG(R) not containing (x).
Since AG(R) is triangle-free, we can find an element z ∈ K ∩ Nil(R) such that (z) is a minimal ideal of R and (z)2 = (0).
Since (x) is the unique minimal ideal of R, we conclude that (x) = (z) ⊆ K ∩Nil(R), a contradiction. Therefore, every vertex
of V1 contains (x). So by Theorem 20, Part (ii), AG(R) is a star graph with the center (x) and the proof is complete. �

We close this paper with the following theorem.

Theorem 28. Let R be a ring and AG(R) be a bipartite graph. If |Min(R)| = 1, then AG(R) is a star graph.

Proof. Let AG(R) be a bipartite graph and p be the unique minimal prime ideal of R. On the contrary suppose that AG(R) is
not a star. By Theorem 27, Soc(R) = Nil(R) and so Theorem 20, Part (ii) implies that (x) = p. Hence AG(R) is a star graph
with the center p = (x). �
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