On the coloring of the annihilating-ideal graph of a commutative ring

G. Aalipour ${ }^{\text {a,c,* }}$, S. Akbari ${ }^{\text {a,c }}$, R. Nikandish ${ }^{\text {b,c }}$, M.J. Nikmehr ${ }^{\text {b }}$, F. Shaveisi ${ }^{\text {b,c }}$
${ }^{\text {a }}$ Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Faculty of Science, K.N. Toosi University of Technology, Tehran, Iran
${ }^{\text {c }}$ School of Mathematics, Institute for Research in Fundamental Sciences, (IPM), P.O. Box 19395-5746, Iran

ARTICLE INFO

Article history:

Received 13 October 2010
Accepted 21 October 2011
Available online 14 November 2011

Keywords:

Annihilating-ideal graph
Chromatic number
Clique number
Minimal prime ideal

Abstract

Suppose that R is a commutative ring with identity. Let $\mathbb{A}(R)$ be the set of all ideals of R with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph $\mathbb{A} \mathbb{G}(R)$ with the vertex set $\mathbb{A}(R)^{*}=\mathbb{A}(R) \backslash\{(0)\}$ and two distinct vertices I and J are adjacent if and only if $I J=(0)$. In Behboodi and Rakeei (2011) [8], it was conjectured that for a reduced ring R with more than two minimal prime ideals, $\operatorname{girth}(\mathbb{A} \mathbb{G}(R))=3$. Here, we prove that for every (not necessarily reduced) ring $R, \omega(\mathbb{A} \mathbb{G}(R)) \geq|\operatorname{Min}(R)|$, which shows that the conjecture is true. Also in this paper, we present some results on the clique number and the chromatic number of the annihilating-ideal graph of a commutative ring. Among other results, it is shown that if the chromatic number of the zero-divisor graph is finite, then the chromatic number of the annihilating-ideal graph is finite too. We investigate commutative rings whose annihilating-ideal graphs are bipartite. It is proved that $\mathbb{A} \mathbb{G}(R)$ is bipartite if and only if $\mathbb{A} \mathbb{G}(R)$ is triangle-free.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, assigning graphs to rings has played an important role in the study of structures of rings, for instance see $[3,4,6,7,11,14]$. Throughout this paper, all rings are assumed to be commutative with unity. We denote by $Z(R), \operatorname{Min}(R)$ and $\operatorname{Max}(R)$, the set of zero-divisors, the set of minimal ideals and the set of maximal ideals of R, respectively. The Jacobson radical and the nilradical of R are denoted by $J(R)$ and $\operatorname{Nil}(R)$, respectively. The ring R is said to be reduced if it has no non-zero nilpotent element. The set of all non-zero ideals of R is denoted by $\mathbb{I}(R)$. We call an ideal I of R, an annihilating-ideal if there exists a non-zero ideal J of R such that $I J=(0)$. We use the notation $\mathbb{A}(R)$ for the set of all annihilating-ideals of R. A subset S of a commutative ring R is called a multiplicative closed subset (m.c.s) of R if $1 \in S$ and $x, y \in S$ implies that $x y \in S$. If S is an m.c.s of R and M is an R-module, then we denote by R_{S} and M_{S}, the ring of fractions of R and the module of fractions of M with respect to S, respectively. If \mathfrak{p} is a prime ideal of R and $S=R \backslash \mathfrak{p}$, we use the notation $M_{\mathfrak{p}}$, for the localization of M with respect to S. By $T(R)$, we mean the total ring of R that is the ring of fractions, where $S=R \backslash Z(R)$. A non-zero ideal I of a ring R is said to be minimal if there is no non-trivial ideal of R contained in I. We denote by $\operatorname{Soc}(R)$, the sum of all minimal ideals of R (If there is no minimal ideal, then we define $\operatorname{Soc}(R)=(0)$).

Let G be a graph with the vertex set $V(G)$. For every positive integer n, we denote the path of order n, by P_{n}. The distance between two vertices in a graph is the number of edges in a shortest path connecting them. The diameter of a connected graph G, denoted by $\operatorname{diam}(G)$, is the maximum distance between any pair of the vertices of G. The girth of G, denoted by $\operatorname{girth}(G)$, is the order of a shortest cycle contained in G. If G does not contain a cycle, then $\operatorname{girth}(G)$ is defined to be infinity.

[^0]The complete graph is a graph in which any two distinct vertices are adjacent. A complete graph of order n is denoted by K_{n}. A bipartite graph is a graph whose vertices can be partitioned into two disjoint sets U and V such that every edge connects a vertex in U to one in V. A complete bipartite graph is a bipartite graph in which every vertex of one part is joined to every vertex of the other part. If the size of one of the parts is 1 , then the complete bipartite graph is said to be a star graph. The center of a star graph is a vertex that is adjacent to all other vertices. A clique of a graph is a complete subgraph and the supremum of the sizes of cliques in G, denoted by $\omega(G)$, is called the clique number of G. If the graph has no vertex, then its clique number is defined to be 0 . By $\chi(G)$, we denote the chromatic number of G, i.e., the minimum number of colors which can be assigned to the vertices of G in such a way that every two adjacent vertices have different colors. For some $U \subseteq V(G)$, we denote by $N(U)$, the set of all vertices of G adjacent to at least one vertex of U. For every vertex $v \in V(G)$, the size of $N(v)$ is denoted by $d(v)$. For any subset U of vertices, we use the notation U^{c} for the complement of U. Let G and G^{\prime} be two graphs. A graph homomorphism from G to G^{\prime} is a mapping $\phi: V(G) \longrightarrow V\left(G^{\prime}\right)$ such that for every edge $\{u, v\}$ of $G,\{\phi(u), \phi(v)\}$ is an edge of G^{\prime}. A retract of G is a subgraph H of G such that there exists a homomorphism $\phi: G \longrightarrow H$ such that $\phi(x)=x$, for every vertex x of H. The homomorphism ϕ is called the retract (graph) homomorphism.

Let R be a ring. The zero-divisor graph of $R, \Gamma(R)$, is a graph with the vertex set $Z(R) \backslash\{0\}$ and two distinct vertices x and y are adjacent if and only if $x y=0$. The concept of the zero-divisor graph was first introduced by Beck (see [6]). Since most properties of a ring are closely tied to the behavior of its ideals, it is worthy to replace the vertices of the zero-divisor graph by the non-zero annihilating-ideals. By the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ of R, we mean the graph with the vertex set $\mathbb{A}(R)^{*}=\mathbb{A}(R) \backslash\{(0)\}$. Two distinct vertices I and J are adjacent if and only if $I J=(0)$. Thus $\mathbb{A} \mathbb{G}(R)$ has no vertex if and only if R is an integral domain. The concept of the annihilating-ideal graph of a commutative ring was first introduced in [7].

The following theorems reflect some fundamental properties of the annihilating-ideal graph of a ring which will be used in this paper.

Theorem A ([7, Theorem 1.4]). Let R be a ring which is not an integral domain. Then the following statements are equivalent:
(1) $\mathbb{A} \mathbb{G}(R)$ is a finite graph.
(2) R has finitely many ideals.
(3) Every vertex of $\mathbb{A} \mathbb{G}(R)$ has finite degree.

Moreover, $\mathbb{A} \mathbb{G}(R)$ has n vertices, $n \geq 1$, if and only if R has exactly n non-trivial ideals.
Theorem B ([7,9]). For every ring R, the annihilating-ideal graph $\mathbb{A} \mathbb{G}(R)$ is connected and $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \leq 3$. Moreover, if $\mathbb{A} \mathbb{G}(R)$ contains a cycle, then girth $(\mathbb{A} \mathbb{G}(R)) \leq 4$.

2. The clique number and the chromatic number of the annihilating-ideal graphs

In this section, we study the vertex coloring of the annihilating-ideal graphs of some rings of fractions. Next, we provide some formulas for the clique and the chromatic numbers of the annihilating-ideal graph of a direct product of rings.

It is easy to see that if S is an m.c.s of R containing no zero-divisors, then for every ideal I of R, the localization $I_{S}=0$ if and only if $I=0$.

Theorem 1. Let R be a ring and S be an m.c.s of R containing no zero-divisors. Then $\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \leq \omega(\mathbb{A} \mathbb{G}(R))$. Moreover, $\mathbb{A} \mathbb{G}\left(R_{S}\right)$ is a retract of $\mathbb{A} \mathbb{G}(R)$ if R is reduced. In particular, $\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)=\omega(\mathbb{A} \mathbb{G}(R))$, whenever R is reduced.
Proof. Consider a vertex map $\phi: V(\mathbb{A} \mathbb{G}(R)) \longrightarrow V\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right), I \longrightarrow I_{S}$. Clearly, $I_{S} \neq J_{S}$ implies $I \neq J$ and $I J=(0)$ if and only if $I_{S} J_{S}=(0)$. Thus ϕ is surjective, and hence $\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \leq \omega(\mathbb{A} \mathbb{G}(R))$.

In what follows, assume that R is reduced. If $I \neq J$ and $I J=(0)$, then we show that $I_{S} \neq J_{S}$. On the contrary suppose that $I_{S}=J_{S}$. Then $I_{S}^{2}=I_{S} J_{S}=(I J)_{S}=(0)$ and so $I^{2}=(0)$, a contradiction. This shows that the map ϕ is a graph homomorphism. Now, for any vertex I_{S} of $\mathbb{A} \mathbb{G}\left(R_{S}\right)$, by the Axiom of Choice, fix an I. Then ϕ is a retract (graph) homomorphism. It clearly follows that $\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)=\omega(\mathbb{A} \mathbb{G}(R))$ under the assumption.

Corollary 2. If R is a reduced ring, then $\omega(\mathbb{A} \mathbb{G}(T(R)))=\omega(\mathbb{A} \mathbb{G}(R))$.
Since the chromatic number $\chi(G)$ of a graph G is the least positive integer r such that there exists a retract homomorphism $\psi: G \longrightarrow K_{r}$, the following corollaries follow directly from the proof of Theorem 1.

Corollary 3. Let R be a ring and S be an m.c.s of R containing no zero-divisor. Then $\chi\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \leq \chi(\mathbb{A} \mathbb{G}(R))$. Moreover, if R is reduced, then $\chi\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)=\chi(\mathbb{A} \mathbb{G}(R))$.

Corollary 4. If R is a reduced ring, then $\chi(\mathbb{A} \mathbb{G}(T(R)))=\chi(\mathbb{A} \mathbb{G}(R))$.
Before stating the next theorem, we need the following interesting result, due to Eben Matlis.
Theorem 5 ([13, Proposition 1.5]). Let R be a ring and $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ be a finite set of distinct minimal prime ideals of R. Let $S=R \backslash \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. Then $R_{S} \cong R_{\mathfrak{p}_{1}} \times \cdots \times R_{\mathfrak{p}_{n}}$.

Conjecture 1.11 of [8] states that for every reduced ring R with more than two minimal prime ideals, $\operatorname{girth}(\mathbb{A} \mathbb{G}(R))=3$. The following theorem settles this conjecture.

Theorem 6. Let R be a ring and $\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$ be a finite set of distinct minimal prime ideals of R. Then there exists a clique of $\mathbb{A} \mathbb{G}(R)$ of size n.
Proof. Let $S=R \backslash \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. By Theorem 5, there exists a ring isomorphism $\phi: R_{\mathfrak{p}_{1}} \times \cdots \times R_{\mathfrak{p}_{n}} \longrightarrow R_{S}$. Let $e_{i}=$ $(0, \ldots, 0,1,0, \ldots, 0)$ and $\phi\left(e_{i}\right)=\frac{a_{i}}{s_{i}}$, where $1 \leq i \leq n$ and 1 is in the i-th position of e_{i}. Consider the principal ideals $I_{i}=\left(\frac{a_{i}}{s_{i}}\right)=\left(\frac{a_{i}}{1}\right)$ in the ring R_{S}. Since ϕ is an isomorphism, there exists $t_{i j} \in S$ such that $t_{i j} a_{i} a_{j}=0$, for every $i, j, 1 \leq i<j \leq n$. Let $t=\prod_{1 \leq i<j \leq n} t_{i j}$. We show that $\left\{\left(t a_{1}\right), \ldots,\left(t a_{n}\right)\right\}$ is a clique of size n in $\mathbb{A} \mathbb{G}(R)$. Since $\left(t a_{i}\right)_{S}=\left(\frac{a_{i}}{1}\right)=I_{i}$, we deduce that $\left(t a_{i}\right)$ are distinct non-trivial ideals of R. Clearly, $\left(t a_{i}\right)\left(t a_{j}\right)=(0)$ and so $\mathbb{A} \mathbb{G}(R)$ has a clique of size n, as desired.

Corollary 7. For every ring $R, \omega(\mathbb{A} \mathbb{G}(R)) \geq|\operatorname{Min}(R)|$.
The next theorem improves [8, Corollary 2.11].
Theorem 8. Let R be a reduced ring. Then $\chi(\mathbb{A} \mathbb{G}(R))=\omega(\mathbb{A} \mathbb{G}(R))=|\operatorname{Min}(R)|$.
Proof. If $|\operatorname{Min}(R)|=\infty$, then by Corollary 7 there is nothing to prove. Thus, suppose that $\operatorname{Min}(R)=\left\{\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n}\right\}$, for some positive integer n. Let $S=R \backslash \bigcup_{i=1}^{n} \mathfrak{p}_{i}$. By Theorem 5, we have $R_{S} \cong R_{\mathfrak{p}_{1}} \times \cdots \times R_{\mathfrak{p}_{n}}$. Clearly, $\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \geq n$. Now, we show that $\chi\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \leq n$. Since R is reduced, by [13, Proposition 1.1], Part (1), every $R_{\mathfrak{p}_{i}}$ is a field. Now, we define the map $c: V\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \longrightarrow\{1, \ldots, n\}$ by $c\left(I_{1} \times \cdots \times I_{n}\right)=\min \left\{i \mid I_{i} \neq(0)\right\}$. Since each $R_{p_{i}}$ is a field, c is a proper vertex coloring of $\mathbb{A} \mathbb{G}\left(R_{S}\right)$. Thus $\chi\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right) \leq n$ and so $\chi\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)=\omega\left(\mathbb{A} \mathbb{G}\left(R_{S}\right)\right)=n$. By [13, Proposition 1.1], Part $(3), S \cap Z(R)=\varnothing$. Therefore, Theorem 1 and Corollary 3 complete the proof.

Remark 9. Using Theorems 3.2, 3.11 and 4.3 in [12], one can see that for every reduced semigroup S with 0 , the equality $\omega(\Gamma(S))=\chi(\Gamma(S))$ always holds, where $\Gamma(S)$ denotes the zero-divisor graph of S, and thus the first equality in Theorem 8 is obtained, since every annihilating-ideal graph of a ring is always the zero-divisor graph of a semigroup with 0 .

Lemma 10. Let R be a ring, I and J be two non-trivial ideals of R. If for every $\mathfrak{m} \in \operatorname{Max}(R), I_{\mathfrak{m}}=J_{\mathfrak{m}}$, then $I=J$.
Proof. Since $I_{\mathfrak{m}}=J_{\mathfrak{m}}$, we conclude that $((I+J) / J)_{\mathfrak{m}}=\left(I_{\mathfrak{m}}+J_{\mathfrak{m}}\right) / J_{\mathfrak{m}}=(0)$, for every $\mathfrak{m} \in \operatorname{Max}(R)$. So, by [5, Proposition 3.8], we deduce that $I \subseteq J$. Similarly, one can see that $J \subseteq I$ and the proof is complete.

Theorem 11. Let R be a ring and $|\operatorname{Max}(R)|<\infty$. If for every $\mathfrak{m} \in \operatorname{Max}(R), \omega\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}}\right)\right)$ is finite, then $\omega(\mathbb{A} \mathbb{G}(R))$ is finite.
Proof. Suppose that $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}\right\}$. On the contrary assume that $C=\left\{J_{i}\right\}_{i=1}^{\infty}$ is a clique of $\mathbb{A} \mathbb{G}(R)$. Since $\omega\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{1}}\right)\right)<\infty$, we deduce that there exists an infinite subset $A_{1} \subseteq \mathbb{N}$ such that for every $i, j \in A_{1},\left(J_{j}\right)_{\mathfrak{m}_{1}}=\left(J_{j}\right)_{\mathfrak{m}_{1}}$. Now, using $\omega\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{2}}\right)\right)<\infty$, we conclude that there exists an infinite subset $A_{2} \subseteq A_{1}$ such that for every $i, j \in A_{2}$, $\left(J_{i}\right)_{\mathfrak{m}_{2}}=\left(J_{j}\right)_{\mathfrak{m}_{2}}$. By continuing this procedure one can see that there exists an infinite subset $A_{n} \subseteq A_{n-1}$ such that for every $i, j \in A_{n},\left(J_{i}\right)_{\mathfrak{m}_{l}}=\left(J_{j}\right)_{\mathfrak{m}_{l}}$, for every $l, l=1, \ldots, n$. Therefore, by Lemma 10, we get a contradiction.

Theorem 12. Let R be a ring and $|\operatorname{Max}(R)|<\infty$. If for every $\mathfrak{m} \in \operatorname{Max}(R), \chi\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}}\right)\right)$ is finite, then $\chi(\mathbb{A} \mathbb{G}(R))$ is finite.
Proof. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}\right\}$ and $f_{i}: V\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{i}}\right)\right) \longrightarrow\left\{1, \ldots, \chi\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{i}}\right)\right)\right\}$ be a proper vertex coloring of $\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{i}}\right)$, for every $i, 1 \leq i \leq n$. Now, by defining $f_{i}(L)=1$, for every $L \in \mathbb{I}\left(R_{\mathfrak{m}_{i}}\right) \backslash V\left(\mathbb{A} \mathbb{G}\left(R_{\mathfrak{m}_{i}}\right)\right)$ (we recall that $\mathbb{I}\left(R_{\mathfrak{m}_{i}}\right)$ denotes the set of non-zero ideals of $\left.R_{\mathfrak{m}_{i}}\right)$, we extend the map f_{i} to $\mathbb{I}\left(R_{\mathfrak{m}_{i}}\right)$. We define a function f on $\mathbb{A}(R)^{*}$ by $f(I)=\left(g_{1}\left(I_{\mathfrak{m}_{1}}\right), \ldots, g_{n}\left(I_{\mathfrak{m}_{n}}\right)\right)$, where

$$
g_{i}\left(I_{\mathfrak{m}_{i}}\right)= \begin{cases}0 ; & I_{\mathfrak{m}_{i}}=(0) \\ -1 ; & I_{\mathfrak{m}_{i}}=R_{\mathfrak{m}_{i}} \\ f_{i}\left(I_{\mathfrak{m}_{i}}\right) ; & \text { otherwise }\end{cases}
$$

Now, by Lemma 10 , it is not hard to check that f is a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$.
In the next theorem, we provide some formulas for the clique number and the chromatic number of the annihilating-ideal graph of a direct product of rings.

Theorem 13. Let $A=R_{1} \times \cdots \times R_{k}, T=T_{1} \times \cdots \times T_{l}, R_{i}$ be a non-domain and T_{j} be a reduced ring, for $i=1, \ldots, k$ and $j=1, \ldots$, l. If $R=A \times T$, then the following statements hold:
(i) If T is not an integral domain, then $\omega(\mathbb{A} \mathbb{G}(R))=\omega(\mathbb{A} \mathbb{G}(A))+\omega(\mathbb{A} \mathbb{G}(T))$.
(ii) If every T_{i} is an integral domain, then $\omega(\mathbb{A} \mathbb{G}(R))=\omega(\mathbb{A} \mathbb{G}(A))+l$.
(iii) $\sum_{i=1}^{k} \omega\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+\max \left\{l, \sum_{i=1}^{l} \omega\left(\mathbb{A} \mathbb{G}\left(T_{i}\right)\right)\right\} \leq \omega(\mathbb{A}(R))$.
(iv) $\omega(\mathbb{A} \mathbb{G}(A)) \leq \prod_{i=1}^{k}\left(\omega\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+1\right)-1$. Moreover, the equality holds if and only if every R_{i} has a maximum clique C_{i} such that for every $I, I \in C_{i}, I^{2}=(0)$.

Proof. (i) If one of the sides of the equality is infinite, then obviously the assertion holds. So, suppose that both sides of the equality are finite. Now, we show that $\mathbb{A} \mathbb{G}(R)$ has a maximum clique of the form $\left\{I \times(0) \mid I \in C_{1}\right\} \cup\left\{(0) \times J \mid J \in C_{2}\right\}$, where C_{1} and C_{2} are two maximum cliques of $\mathbb{A} \mathbb{G}(A)$ and $\mathbb{A} \mathbb{G}(T)$, respectively. Let $C=\left\{I_{i} \times J_{i}\right\}_{i \in \Lambda}$ be a maximum clique of $\mathbb{A} \mathbb{G}(R)$. Assume that $I_{k} \times J_{k} \in C$. If $I_{k} \neq(0)$ and $J_{k} \neq(0)$, then let $C_{0}=\left(C \backslash\left\{I_{k} \times J_{k}\right\}\right) \cup\left\{I_{k} \times(0),(0) \times J_{k}\right\}$. Since T is a reduced ring, we conclude that $\left|C_{0}\right| \geq|C|$. Since $\left|C_{0}\right|<\infty$, by repeating this procedure, we obtain a maximum clique C_{0} such that every element of C_{0} is of the form $I_{r} \times(0)$ or $(0) \times J_{s}$. Let $C_{1}=\left\{I \mid I \times(0) \in C_{0}\right\}$ and $C_{2}=\left\{J \mid(0) \times J \in C_{0}\right\}$. Then C_{1} and C_{2} are maximum cliques of $\mathbb{A} \mathbb{G}(A)$ and $\mathbb{A} \mathbb{G}(T)$, respectively. Thus $C_{0}=\left\{I_{1} \times(0) \mid I_{1} \in C_{1}\right\} \cup\left\{(0) \times I_{2} \mid I_{2} \in C_{2}\right\}$ and the proof of (i) is complete.
(ii) If $l=1$, then it is not hard to check that the equality holds. Suppose that $l \geq 2$. By (i), $\omega(\mathbb{A} \mathbb{G}(R))=\omega(\mathbb{A} \mathbb{G}(A))+$ $\omega(\mathbb{A} G(T))$. Since $|\operatorname{Min}(T)|=l$, Theorem 8 completes the proof.
(iii) It is obvious.
(iv) It is clear that every clique of $\mathbb{A} \mathbb{G}(A)$ is a subset of $\prod_{i=1}^{k}\left(C_{i} \cup\{(0)\}\right) \backslash\{(0)\}$, where C_{i} is a clique of $\mathbb{A} \mathbb{G}\left(R_{i}\right)$. Thus $\omega(\mathbb{A} \mathbb{G}(A)) \leq \prod_{i=1}^{k}\left(\omega\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+1\right)-1$. Moreover, the equality holds if and only if every R_{i} has a maximum clique C_{i} with $I^{2}=(0)$, for every $I, I \in C_{i}, 1 \leq i \leq k$.
Now, using Theorem 13, we provide a simple proof for [2, Lemma 1].
Corollary 14. Let R_{1} and R_{2} be two rings and $R=R_{1} \times R_{2}$. If $\mathbb{A} \mathbb{G}(R)$ is a triangle-free graph, then exactly one of the following statements holds.
(i) Both R_{1} and R_{2} are integral domains.
(ii) One R_{i} is an integral domain and the other one is a ring with a unique non-trivial ideal.

Moreover, $\mathbb{A} \mathbb{G}(R)$ has no cycle if and only if either $R \cong F \times S$ or $R \cong F \times D$, where F is a field, S is a ring with a unique non-trivial ideal and D is an integral domain.
Proof. Since $\mathbb{A} \mathbb{G}(R)$ is triangle-free and $R_{1} \times(0)$ and (0) $\times R_{2}$ are adjacent, we conclude that $\omega(\mathbb{A} \mathbb{G}(R))=2$. If at least one of the $\omega\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)$ and $\omega\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right)$, say $\omega\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)$, is 2 , then by Theorem 13 , Part (iii), we deduce that $\omega\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right)=0$ and so R_{2} is an integral domain. Hence Theorem 13, Part (ii) implies that $\omega(\mathbb{A} \mathbb{G}(R))=3$, a contradiction. Therefore; one may assume that both $\omega\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)$ and $\omega\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right)$ are at most 1 . If $\omega\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)=\omega\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right)=1$, then Theorems A and B imply that every R_{i} is a ring with the unique non-trivial ideal \mathfrak{m}_{i} and so by Nakayama's Lemma $\mathfrak{m}_{i}^{2}=(0)$. Thus by Theorem 13 , Part (iv), we conclude that $\omega(\mathbb{A} \mathbb{G}(R))=3$, a contradiction. Hence $\omega\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)+\omega\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right) \leq 1$ and so by Theorem A , (i) and (ii) are proved. The last part of the corollary is clear.

Now, we would like to state some similar results for the chromatic number of the annihilating-ideal graph of direct product of rings.

Theorem 15. Let $A=R_{1} \times \cdots \times R_{k}, T=T_{1} \times \cdots \times T_{l}, R_{i}$ be a non-domain and T_{j} be a reduced ring, for $i=1, \ldots, k$ and $j=1, \ldots$, l. If $R=A \times T$, then the following statements hold:
(i) If T is not an integral domain, then $\chi(\mathbb{A} \mathbb{G}(R))=\chi(\mathbb{A} \mathbb{G}(A))+\chi(\mathbb{A} \mathbb{G}(T))$.
(ii) If every T_{i} is an integral domain, then $\chi(\mathbb{A} \mathbb{G}(R))=\chi(\mathbb{A} \mathbb{G}(A))+l$.
(iii) $\sum_{i=1}^{k} \chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+\max \left\{l, \sum_{i=1}^{l} \chi\left(\mathbb{A} \mathbb{G}\left(T_{i}\right)\right)\right\} \leq \chi(\mathbb{A} \mathbb{G}(R))$.
(iv) $\chi(\mathbb{A} \mathbb{G}(A)) \leq \prod_{i=1}^{k}\left(\chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+1\right)-1$.

Proof. (iii) Let f be a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$ with $\chi(\mathbb{A} \mathbb{G}(R))$ colors. Then the restriction of f to $\{(0) \times \cdots \times I \times$ $\left.\cdots \times(0) \mid I \in V\left(\mathbb{A} \mathbb{G}\left(S_{t}\right)\right)\right\}$ yields a proper vertex coloring of $\mathbb{A} \mathbb{G}\left(S_{t}\right)$, where $S_{t}=R_{t}$, for every $t, 1 \leq t \leq k$ and $S_{t}=T_{j}$, if $t=k+j$ for some $j, 1 \leq j \leq l$. Since every vertex of $\left\{(0) \times \cdots \times I \times \cdots \times(0) \mid I \in \mathbb{I}\left(S_{u}\right)\right\}$ is adjacent to every vertex of $\left\{(0) \times \cdots \times J \times \cdots \times(0) \mid J \in \mathbb{I}\left(S_{v}\right)\right\}$, for each $u \neq v$ and $\mathbb{A} \mathbb{G}(T)$ contains a clique of size l, we conclude that $\sum_{i=1}^{k} \chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+\max \left\{l, \sum_{i=1}^{l} \chi\left(\mathbb{A} \mathbb{G}\left(T_{i}\right)\right)\right\} \leq \chi(\mathbb{A} \mathbb{G}(R))$, as desired.
(i) By Part (iii), $\chi(\mathbb{A} \mathbb{G}(R)) \geq \chi(\mathbb{A} \mathbb{G}(A))+\chi(\mathbb{A} \mathbb{G}(T))$. Now, we define a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$ with $\chi(\mathbb{A} \mathbb{G}(A))+$ $\chi(\mathbb{A} \mathbb{G}(T))$ colors. Let $g: V(\mathbb{A} \mathbb{G}(A)) \longrightarrow\{1, \ldots, \chi(\mathbb{A} \mathbb{G}(A))\}$ and $h: V(\mathbb{A} \mathbb{G}(T)) \longrightarrow\{1, \ldots, \chi(\mathbb{A} \mathbb{G}(T))\}$ be proper vertex colorings of $\mathbb{A} \mathbb{G}(A)$ and $\mathbb{A} \mathbb{G}(T)$, respectively. By defining $g(I)=1$ and $h(J)=1$, for every $I \notin \mathbb{A}(A)$ and every $J \notin \mathbb{A}(T)$, we extend the maps g and h to $\mathbb{I}(A)$ and $\mathbb{I}(T)$, respectively. Define a map ϕ on $V(\mathbb{A} \mathbb{G}(R))$ as follows

$$
\phi(I \times J)= \begin{cases}(g(I), 0) ; & J=(0) \\ (0, h(J)) ; & \text { otherwise }\end{cases}
$$

Since T is a reduced ring, we deduce that ϕ is a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$ with $\chi(\mathbb{A} \mathbb{G}(A))+\chi(\mathbb{A} \mathbb{G}(T))$ colors and so (i) is proved.
(ii) First suppose that $l=1$ and $g: V(\mathbb{A} \mathbb{G}(A)) \longrightarrow\{1, \ldots, \chi(\mathbb{A} \mathbb{G}(A))\}$ is a proper vertex coloring of $\mathbb{A} \mathbb{G}(A)$. By defining $g(I)=1$, for every $I \notin \mathbb{A}(A)$, we extend the map g to $\mathbb{I}(A)$. Define a map ϕ on $V(\mathbb{A} \mathbb{G}(R))$ as follows

$$
\phi(I \times J)= \begin{cases}g(I) ; & J=(0) \\ \chi(\mathbb{A} G(A))+1 ; & \text { otherwise }\end{cases}
$$

It is not hard to check that ϕ is a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$ with $\chi(\mathbb{A} \mathbb{G}(R))+1$ colors and so by Part (iii) the equality holds for $l=1$. Now, suppose that $l \geq 2$. By $(\mathrm{i}), \chi(\mathbb{A} \mathbb{G}(R))=\chi(\mathbb{A} \mathbb{G}(A))+\chi(\mathbb{A} \mathbb{G}(T))$. Since $|\operatorname{Min}(T)|=l$, Theorem 8 completes the proof.
(iv) First we claim that

$$
\chi\left(\mathbb{A} \mathbb{G}\left(R_{1} \times R_{2}\right)\right) \leq\left(\chi\left(\mathbb{A} \mathbb{G}\left(R_{1}\right)\right)+1\right)\left(\chi\left(\mathbb{A} \mathbb{G}\left(R_{2}\right)\right)+1\right)-1
$$

Let $c_{i}: V\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right) \longrightarrow\left\{1, \ldots, \chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)\right\}$ be a proper vertex coloring of $\mathbb{A} \mathbb{G}\left(R_{i}\right), i=1,2$. We extend the map c_{i} to $\mathbb{I}\left(R_{i}\right)$ by defining $c_{i}(J)=1$, for every $J \notin \mathbb{A}\left(R_{i}\right)$. Now, define a vertex coloring c for $\mathbb{A} \mathbb{G}(R)$ as follows:

$$
c(I \times J)= \begin{cases}\left(0, c_{2}(J)\right) ; & I=(0) \\ \left(c_{1}(I), 0\right) ; & J=(0) \\ \left.\left(c_{1}(I), c_{2} J\right)\right) ; & I \neq(0) \text { and } J \neq(0)\end{cases}
$$

It is not hard to check that c is a proper vertex coloring of $\mathbb{A} \mathbb{G}\left(R_{1} \times R_{2}\right)$. So, the claim is proved. Now, by induction on k, we find that $\chi(\mathbb{A} \mathbb{G}(A)) \leq \prod_{i=1}^{k}\left(\chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)+1\right)-1$.

Now, we have the following immediate corollary.

Corollary 16. Let R_{1}, \ldots, R_{k} be rings and $R=R_{1} \times \cdots \times R_{k}$. Then
(i) $\omega(\mathbb{A} \mathbb{G}(R))<\infty$ if and only if $\omega\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)<\infty$, for every $i, 1 \leq i \leq k$.
(ii) $\chi(\mathbb{A} \mathbb{G}(R))<\infty$ if and only if $\chi\left(\mathbb{A} \mathbb{G}\left(R_{i}\right)\right)<\infty$, for every $i, 1 \leq i \leq k$.

In the sequel, the chromatic numbers of two graphs $\mathbb{A} \mathbb{G}(R)$ and $\Gamma(R)$ are compared. The following example shows that the chromatic numbers of the zero-divisor graph and the annihilating-ideal graph of a ring are not comparable in general.

Example 17. (a) Let k be a finite field with at least three elements, x be an indeterminate and $R=\frac{k[x]}{\left(x^{2}\right)}$. Then $\omega(\mathbb{A} \mathbb{G}(R))=$ $\chi(\mathbb{A} \mathbb{G}(R))=1$ but $\chi(\Gamma(R)) \geq \omega(\Gamma(R)) \geq|k|-1$.
(b) If $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, then $\omega(\mathbb{A} \mathbb{G}(R))=\chi(\mathbb{A} \mathbb{G}(R))=\omega(\Gamma(R))=\chi(\Gamma(R))=2$.
(c) If $R=\frac{\mathbb{Z}_{2}[x, y]}{(x, y)^{2}}$, then $\omega(\mathbb{A} \mathbb{G}(R))=\chi(\mathbb{A} \mathbb{G}(R))=4$ but $\omega(\Gamma(R))=\chi(\Gamma(R))=3$. Indeed, $\mathbb{A} \mathbb{G}(R) \cong K_{4}$ and $\Gamma(R) \cong K_{3}$.

Theorem 18. Let R be a ring and $\chi(\Gamma(R))<\infty$. Then $\chi(\mathbb{A} G(R)) \leq 2^{\chi(\Gamma(R))}-1$.
Proof. Suppose that $\chi(\Gamma(R))=k$ and $c: V(\Gamma(R)) \longrightarrow\{1, \ldots, k\}$ is a proper vertex coloring of $\Gamma(R)$. Let $A_{i}=c^{-1}(\{i\})$, for $i=1, \ldots, k$. We define a map $f: V(\mathbb{A} \mathbb{G}(R)) \longrightarrow P(\{1, \ldots, k\}) \backslash\{\varnothing\}$ by $f(I)=\left\{i \mid 1 \leq i \leq k, I \cap A_{i} \neq \varnothing\right\}$, where $P(X)$ denotes the power set of X. Now, we claim that f is a proper vertex coloring of $\mathbb{A} \mathbb{G}(R)$. Suppose that I and J are two distinct vertices of $\mathbb{A} \mathbb{G}(R)$ such that $I J=(0)$ and $f(I)=f(J)$. We show that $I \cap A_{t}=J \cap A_{t}$, for every $t \in f(I)$. Let $x \in I \cap A_{t}$. Then $t \in f(I)=f(J)$ and so there exists $y \in J \cap A_{t}$. Since every A_{i} is an independent set of $\Gamma(R)$ and $I J=(0)$, we deduce that $x=y \in J \cap A_{t}$. Thus $I \cap A_{t} \subseteq J \cap A_{t}$. Similarly, $J \cap A_{t} \subseteq I \cap A_{t}$ and hence $I \cap A_{t}=J \cap A_{t}$, for every $t \in f(I)$. Since for every $u \in\{1, \ldots, k\} \backslash f(I), I \cap A_{u}=J \cap A_{u}=\varnothing$ and $\left\{A_{1}, \ldots, A_{k}\right\}$ is a partition of $Z(R) \backslash\{0\}$, we deduce that $I=J$, a contradiction. So, the claim is proved and the proof is complete.

Theorem 19. Let R be a ring, $\chi(\Gamma(R))<\infty$ and every non-zero annihilating-ideal of R is infinite. Then $\chi(\mathbb{A} \mathbb{G}(R)) \leq \chi(\Gamma(R))$.
Proof. Suppose that $\chi(\Gamma(R))=k$ and $c: V(\Gamma(R)) \longrightarrow\{1, \ldots, k\}$ is a proper vertex coloring of $\Gamma(R)$. Let $A_{i}=c^{-1}(\{i\})$. We define a map $f: V(\mathbb{A} \mathbb{G}(R)) \longrightarrow\{1, \ldots, k\}$, where $f(I)$ is the maximum value of i for which $\left|I \cap A_{i}\right|=\infty$. Since every A_{i} is an independent set of $\Gamma(R)$, it is not hard to check that f is a proper coloring of $\mathbb{A} \mathbb{G}(R)$.

3. Bipartite annihilating-ideal graphs

This section is devoted to the study of rings whose the chromatic numbers of their annihilating-ideal graphs is two. For this aim, we start with the following theorem characterizing non-reduced rings with bipartite annihilating-ideal graphs.

Theorem 20. Let R be a non-reduced ring and $\mathbb{A} \mathbb{G}(R)$ be a triangle-free graph. Then $\mathbb{A} \mathbb{G}(R)$ is bipartite and R has at most two minimal ideals. Moreover, one of the following statements holds.
(i) R has exactly two minimal ideals and $R \cong F \times S$, where F is a field and S is a ring with exactly one non-trivial ideal.
(ii) R has exactly one minimal ideal, say $(x),(x)^{2}=(0)$ and $V_{1}=N((x))$ and V_{1}^{c} are the parts of $\mathbb{A} \mathbb{G}(R)$. Furthermore, for $A=\left\{L \in V_{1} \mid(x) \subseteq L\right\}$, the induced subgraph on $V_{1}^{c} \cup\left(V_{1} \backslash A\right)$ is a complete bipartite graph and $d(L)=1$, for every $L \in A$.

Proof. Since R is non-reduced, there exists $0 \neq z \in R$ such that $z^{2}=0$. By hypothesis, (z) contains at most one non-trivial ideal of R. Thus we can assume that R has at least one minimal ideal, say (x), with $x^{2}=0$. Also, R has at most two minimal ideals. Two cases can be considered:
Case 1. R has exactly two minimal ideals (x) and J. Then we show that $J^{2} \neq(0)$. On the contrary suppose that $J^{2}=(0)$. Then J, (x) and $J+(x)$ form a triangle, a contradiction. Thus $J^{2} \neq(0)$ and hence by Brauer's Lemma (see [10, 10.22]), there exists an idempotent element $e \in R$ such that $J=R e$ and $R \cong R e \times R(1-e)$. Since R is non-reduced, Corollary 14 implies that $R \cong D \times S$, where D is an integral domain and S is a ring with exactly one non-trivial ideal. Since R has two minimal ideals (x) and J, D is a field (Note that every integral domain which is not a field has no minimal ideal). Thus Part (i) is proved.
Case 2. Assume that (x) is the unique minimal ideal of R. Let $V_{1}=N((x)), V_{2}=V_{1}^{c}, A=\left\{L \in V_{1} \mid(x) \subseteq L\right\}, B=V_{1} \backslash A$ and $C=V_{2} \backslash\{(x)\}$. We show that $\mathbb{A G}(R)$ is a bipartite graph with parts V_{1} and V_{2} and the induced subgraph on $B \cup V_{2}$ is a complete bipartite graph. Since $\mathbb{A} \mathbb{G}(R)$ is triangle-free, we deduce that V_{1} is an independent set. We claim that one end of every edge of $\mathbb{A} \mathbb{G}(R)$ is adjacent to (x) and another end contains (x). To see this, suppose that $\{I, J\}$ is an edge of $\mathbb{A} \mathbb{G}(R)$ and $(x) \neq I,(x) \neq J$. Since $I(x) \subseteq(x)$ and (x) is a minimal ideal of R, either $I(x)=(0)$ or $(x) \subseteq I$. The latter case implies that $J(x)=(0)$. If $I(x)=(0)$, then $J(x) \neq(0)$ and hence $(x) \subseteq J$. Therefore, the claim is proved.

This implies that V_{2} is an independent set and $\mathbb{A} \mathbb{G}(R)$ is a bipartite graph with the parts V_{1} and V_{2}. Since every vertex of A contains (x) and $\mathbb{A} \mathbb{G}(R)$ is triangle-free, we deduce that $d(L)=1$, for every $L \in A$. So, $N(C) \subseteq B$. Since V_{2} is an independent set and (x) is a minimal ideal of R, we deduce that every vertex of C contains (x) and so every vertex of $A \cup V_{2}$ contains (x). Now, we show that the induced subgraph of $\mathbb{A} \mathbb{G}(R)$ on $B \cup V_{2}$ is a complete bipartite graph. Let $I \in V_{2}$ and $J \in B$. If $I J \neq(0)$, then $I J$ is a vertex of $\mathbb{A} \mathbb{G}(R)$. Since every vertex of $A \cup V_{2}$ contains (x) and $(x) \nsubseteq J$, we conclude that $I J \in B$. Since every vertex of A is just adjacent to (x) and by Theorem $B, \mathbb{A} \mathbb{G}(R)$ is connected, I has a neighbor in B, say K. If $K \neq I J$, then K and $I J$ are two adjacent vertices in B, a contradiction. So suppose that $K=I J$. Since (x) is the unique minimal ideal of R, there exists an ideal L properly contained in $K=I J$ and $L \in B$. It is clear that L is adjacent to $I J$, a contradiction. Therefore, $I J=(0)$. This proves (ii).

Example 21. Let $R=D \times S$, where D is an integral domain and S is a ring with exactly one non-trivial ideal. Then $\mathbb{A} \mathbb{G}(R)$ is a bipartite graph, satisfying Part (ii) of the previous theorem.

Remark 22. For a reduced ring R, if $\mathbb{A} \mathbb{G}(R)$ is a triangle-free graph, then it is a complete bipartite graph. To see this, by Theorem $6,|\operatorname{Min}(R)| \leq 2$. If $|\operatorname{Min}(R)|=1$, then R is an integral domain. Thus one can assume that $\operatorname{Min}(R)=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$. In this case, $\mathbb{A} \mathbb{G}(R)$ is a complete bipartite graph with the parts $X=\left\{I \mid I \in \mathbb{A}(R)^{*}, I \subseteq \mathfrak{p}_{1}\right\}$ and $Y=\left\{I \mid I \in \mathbb{A}(R)^{*}, I \subseteq \mathfrak{p}_{2}\right\}$.

Now, using Theorem 20 and Corollary 14, we provide a simple proof for [2, Theorem 2].
Corollary 23. Let R be a ring. Then $\mathbb{A} \mathbb{G}(R)$ is a tree if and only if $\mathbb{A} \mathbb{G}(R)$ is isomorphic to either a star graph or P_{4}.
Proof. First suppose that $\mathbb{A} \mathbb{G}(R)$ is a tree. If R is a reduced ring, then Remark 22 implies that $\mathbb{A} \mathbb{G}(R)$ is a star graph. Hence suppose that R is a non-reduced ring. If the Part (i) of Theorem 20 occurs, then $\mathbb{A} \mathbb{G}(R) \cong P_{4}$. Thus by Theorem 20, Part (ii) one may assume that $B=V_{1} \backslash A \neq \varnothing$ and $C=V_{1}^{c} \backslash\{(x)\} \neq \varnothing$. Since $\mathbb{A} \mathbb{G}(R)$ is tree, by Part (ii) of Theorem 20, we deduce that $B=\{J\}$. One can easily check that J is a minimal ideal. If $J^{2}=(0)$, then $J,(x)$ and $J+(x)$ form a triangle, a contradiction. Thus, by Brauer's Lemma and Corollary $14, \mathbb{A} \mathbb{G}(R)$ is isomorphic to P_{4}. The converse is trivial.

Corollary 24. Let R be a ring. Then $\mathbb{A} \mathbb{G}(R)$ is a complete bipartite graph if and only if $\mathbb{A} \mathbb{G}(R)$ is a star graph or R is a reduced ring and $|\operatorname{Min}(R)|=2$.

We note that empty graphs and the isolated vertex graphs are bipartite graphs. If R is a ring and $|V(\mathbb{A} G(R))| \geq 2$, then we obtain the following corollary immediately, which is a special case of [11, Theorem 2.1]. This result was also proved in [1] (see Theorem 13) by a different proof.

Corollary 25. Let R be a ring. Then $\mathbb{A} \mathbb{G}(R)$ is bipartite if and only if $\mathbb{A} \mathbb{G}(R)$ is triangle-free.
The next corollary in some sense is a generalization of Theorem 3 in [2].

Corollary 26. Let R be a ring.

(i) If R is reduced, then $\mathbb{A} G(R)$ is a star graph if and only if $R \cong F \times D$, where F is a field and D is an integral domain.
(ii) If R is non-reduced, then $\mathbb{A} \mathbb{G}(R)$ is a star graph if and only if $\mathbb{A} \mathbb{G}(R)$ is a bipartite graph and $Z(R)=A n n(x)$, for some $x \in R$.

Proof. (i) Suppose that $\mathbb{A} \mathbb{G}(R)$ is a star graph with center I. Since R is reduced, I is a minimal ideal of R. Thus by Brauer's Lemma, R is decomposable and so by Corollary $14, R \cong F \times D$, where F is a field and D is an integral domain. The converse is trivial.
(ii) Suppose that $\mathbb{A} \mathbb{G}(R)$ is a star graph. By Theorem 20, Part (ii), $V_{1}^{c}=\{(x)\}$ and so (x) is the center of $\mathbb{A} \mathbb{G}(R)$. Therefore, $Z(R)=A n n(x)$. The converse is clear.

In the next theorem, we obtain some properties of rings whose annihilating-ideal graphs are bipartite.

Theorem 27. Let $\mathbb{A} \mathbb{G}(R)$ be a bipartite graph. Then one of the following holds.
(i) $\mathbb{A} \mathbb{G}(R)$ is a star graph.
(ii) $\mathbb{A G}(R) \cong P_{4}$.
(iii) $\operatorname{Nil}(R)=\operatorname{Soc}(R)$.

Proof. First suppose that R is reduced. If R has no minimal ideal, then $\operatorname{Soc}(R)=(0)=\operatorname{Nil}(R)$. Thus one may assume that R has a minimal ideal, say I, and $I^{2} \neq(0)$. Since $\mathbb{A} \mathbb{G}(R)$ is bipartite, Brauer's Lemma and Corollary 14 imply that $R \cong D_{1} \times D_{2}$, where D_{1} and D_{2} are integral domains. But R has at least one minimal ideal. So, at least one of the integral domains D_{1} and D_{2}, say D_{1}, is a field. Thus $\mathbb{A}(R)$ is a star graph. Now, suppose that R is a non-reduced ring. By Theorem 20 , we have two cases. If (i) happens, then $R \cong F \times S$, where F is a field and S is a ring with exactly one non-trivial ideal and $\mathbb{A} \mathbb{G}(R) \cong P_{4}$. So, let (ii) happen. If $\operatorname{Nil}(R)=(x)$, then $\operatorname{Nil}(R)=\operatorname{Soc}(R)$. Therefore, one can assume that $\operatorname{Nil}(R) \neq(x)$. Since $\operatorname{Nil}(R) \subseteq J(R) \subseteq \operatorname{Ann}(x)$, we deduce that $(x) \operatorname{Nil}(R)=(0)$ and so $\operatorname{Nil}(R) \in V_{1}$. Let $K \in V_{1} \backslash A$. Then $K \cap \operatorname{Nil}(R)$ is a vertex of $\mathbb{A} \mathbb{G}(R)$ not containing (x). Since $\mathbb{A} \mathbb{G}(R)$ is triangle-free, we can find an element $z \in K \cap \operatorname{Nil}(R)$ such that (z) is a minimal ideal of R and $(z)^{2}=(0)$. Since (x) is the unique minimal ideal of R, we conclude that $(x)=(z) \subseteq K \cap \operatorname{Nil}(R)$, a contradiction. Therefore, every vertex of V_{1} contains (x). So by Theorem 20, Part (ii), $\mathbb{A} \mathbb{G}(R)$ is a star graph with the center (x) and the proof is complete.

We close this paper with the following theorem.
Theorem 28. Let R be a ring and $\mathbb{A} \mathbb{G}(R)$ be a bipartite graph. If $|\operatorname{Min}(R)|=1$, then $\mathbb{A} \mathbb{G}(R)$ is a star graph.
Proof. Let $\mathbb{A} G(R)$ be a bipartite graph and \mathfrak{p} be the unique minimal prime ideal of R. On the contrary suppose that $\mathbb{A} \mathbb{G}(R)$ is not a star. By Theorem 27, $\operatorname{Soc}(R)=\operatorname{Nil}(R)$ and so Theorem 20, Part (ii) implies that $(x)=\mathfrak{p}$. Hence $\mathbb{A} \mathbb{G}(R)$ is a star graph with the center $\mathfrak{p}=(x)$.

Acknowledgments

The authors are indebted to the School of Mathematics, Institute for Research in Fundamental Sciences, (IPM), for support. The research of the second author was in part supported by a grant from IPM (No. 90050212). Also, the authors would like to express their deep gratitude to the referees for their careful reading and their valuable suggestions.

References

[1] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish, M.J. Nikmehr, F. Shaveisi, The classification of the annihilating-ideal graph of a commutative ring, Algebra Colloq. (in press).
[2] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, F. Shaveisi, Minimal prime ideals and cycles in annihilating-ideal graphs, Rocky Mountain J. Math. (in press).
[3] S. Akbari, D. Kiani, F. Mohammadi, S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (12)(2009) $2224-2228$.
[4] S. Akbari, A. Mohammadian, On zero-divisor graphs of finite rings, J. Algebra 314 (2007) 168-184.
[5] M.F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Company, 1969.
[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226.
[7] M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (4) (2011) 727-739.
[8] M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (4) (2011) 741-753.
[9] F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graph of a commutative semigroup, Semigroup Forum 65 (2) (2002) 206-214.
[10] T.Y. Lam, A First Course in Non-Commutative Rings, Springer-Verlag, New York, 1991.
[11] D. Lu, T. Wu, On bipartite zero-divisor graphs, Discrete Math. 309 (2009) 755-762.
[12] D. Lu, T. Wu, The zero-divisor graphs of posets and an application to semigroups, Graphs Combin. 26 (2010) 793-804.
[13] E. Matlis, The minimal prime spectrum of a reduced ring, Illinois J. Math. 27 (3) (1983) 353-391.
[14] S.P. Redmond, On zero-divisor graphs of small finite commutative rings, Discrete Math. 307 (2007) 1155-1166.

[^0]: * Corresponding author at: Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran.

 E-mail addresses: alipour_ghodrat@mehr.sharif.ir (G. Aalipour), s_akbari@sharif.edu (S. Akbari), r_nikandish@sina.kntu.ac.ir (R. Nikandish), nikmehr@kntu.ac.ir (M.J. Nikmehr), f_shaveisi@dena.kntu.ac.ir (F. Shaveisi).

