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Abstract

Given an rc-graph R of permutation w and an rc-graph Y of a permutation v; we provide an

insertion algorithm which defines an rc-graph R’Y in the case when v is a shuffle with the

descent at r and w has no descents greater than r or in the case when v is a shuffle whose shape

is a hook. This algorithm gives a combinatorial rule for computing the generalized

Littlewood–Richardson coefficients cu
wv in the two cases mentioned above.

r 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Rc-graphs were originally introduced by Fomin and Kirillov [4] as graphical
representations of reduced compatible sequences of Billey et al. [3]. They are explicit
combinatorial objects which encode monomials of Schubert polynomials. Rc-graphs
proved to be very useful for providing combinatorial rules for computing certain
generalized Littlewood–Richardson (or just LR) coefficients (see [1,8,9]). In this
paper we extend these results to more general cases.

Denote by Sw the Schubert polynomial of the permutation wASN: Then the
generalized LR coefficients cu

wv for u; v;wASN are defined by

Sw � Sv ¼
X

u

cu
wvSu:

(If u; v;w are shuffles, also called grassmannian permutations, with the descents at r;
the coefficients cu

wv are just the LR coefficients.) The generalized LR coefficients are
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also the structure constants of the cohomology ring of the flag manifold for the basis
given by Schubert varieties. In particular, they count the number of points in certain
intersections of algebraic varieties. Therefore, all cu

wv are non-negative integers. There
are many totally positive rules for computing the LR coefficients (see [6] for further
references), but there is no known totally positive rule for the generalized LR
coefficients. (By a totally positive rule we understand a construction of an explicit
combinatorial set for each triple ðu; v;wÞ; such that cu

wv is equal to the number of
elements in this set.)

In certain cases (see [2,7]) a totally positive rule can by given by equating the
generalized LR coefficients to the LR coefficients. In other cases, such as the Pieri
formula (see [11,16]), a totally positive rule is given in terms of certain paths in the
Bruhat order.

Yet another approach to produce a totally positive rule, adopted in [1,8,9] and in
this paper, is to generalize the Schensted insertion algorithm [15] to rc-graphs. The
outline of the rule, which we believe will be eventually generalized to the most
general case, is the following. An algorithm is constructed. This algorithm inserts an
rc-graph Y of v into an rc-graph R of w to produce an rc-graph R’Y : Then, for a
fixed rc-graph U of u; cu

wv is the number of tuples ðR;YÞ with U ¼ R’Y : We
present such an algorithm in the cases when v is an r-shuffle and w is an r-semi-
shuffle or when v is a shuffle whose shape is a hook. (An r-shuffle is a shuffle with the
descent at r; an r-semi-shuffle is a permutation with no descents greater than r:)

The first such algorithm was constructed by Bergeron and Billey [1] to prove
Monk’s formula (the case when v is a simple transposition). The author [8] showed
that their algorithm works in the case when w is an r-semi-shuffle and v is an r-
shuffle. A modified algorithm was constructed by Kumar and the author [9] to give
another proof of the row case of the Pieri formula (the case when v is an r-shuffle
whose shape is a row). Kumar [10] constructed an analogous algorithm for the
column case of the Pieri formula. The analogy between the two algorithms in [9,10] is
similar to the analogy between the row and column Schensted insertion algorithms
for Young tableaux.

This paper presents an algorithm which works in all mentioned above cases as well
as in the case when v is a shuffle whose shape is a hook. (A rule in this case written in
terms of r-Bruhat paths was originally constructed by Sottile [16].) In many cases
(see [1,8,9]) the algorithm can be simplified. But the algorithm is new for the case of
hooks when no simplification of the algorithm is known.

Using the new insertion algorithm we also provide a rule for computing
generalized LR coefficients in the cases mentioned above using r-Bruhat paths.
This rule can be thought of as a generalized RSK correspondence. In the case when
the shape of v is a hook, it is just a restatement of the formula from [16]. In the case
when v is an r-shuffle and w is an r-semi-shuffle it is a new result.

All the generalized LR coefficients computed in this paper can be found using
previously known methods. The novelty of the results in this paper is in the methods
used for computations, namely, the new algorithm for the hook case and the new
generalization of the RSK correspondence in the semi-shuffle case. Both of these
approaches can potentially lead to a complete solution of the problem.

M. Kogan / Journal of Combinatorial Theory, Series A 102 (2003) 110–135 111



The paper is organized as follows. Section 2 introduces most of the notations and
definitions and contains the statements of the main results in Theorems 2.2–2.4.
Theorem 2.2 states that the algorithm defined in Section 3 works, it is proved in
Section 4. Theorem 2.3 states that the inverse algorithm defined in Section 5 works, it
is given without a proof, since the proof is very similar to the proof of Theorem 2.2.
Theorem 2.4 gives a rule for computing certain generalized LR coefficients in terms
of r-Bruhat paths. Section 6 contains examples of the algorithm, this section should
be read together with Section 3 to understand how the algorithm works.

2. Notation, definitions and main results

2.1. Permutations. Let Sn be the group of permutations w ¼ ðwð1Þ;y;wðnÞÞ and let
SN ¼

S
n Sn be the group of permutations on N which fix all but finitely many

integers. For 1pioj; denote by tij the transposition which exchanges i and j: The

simple transpositions si ¼ ti;iþ1 for 1pipn � 1 generate Sn:
A word i1yil in the alphabet ½1; 2;y� is a reduced word of wASN; if w ¼ si1ysil

and l is minimal. The length lðwÞ of w is set to be l: The longest permutation wn
0 of

the group Sn is given by wn
0ðiÞ ¼ n þ 1� i for ipn:

A permutation wASN is an r-shuffle if wðiÞowði þ 1Þ for iar: It is an r-semi-

shuffle if wðiÞowði þ 1Þ for i4r: To each shuffle we associate a partition l ¼
ðl1X?Xlr040Þ given by lj ¼ wðr þ 1� jÞ � r � 1þ j for jpr where lr0þ1 ¼ 0:

Then w is uniquely determined by l and r and we write w ¼ vðl; rÞ: A partition l is a

row if l ¼ ðl1Þ; it is a column if l ¼ ð1;y; 1Þ; and it is a hook if l ¼ ðl1; 1;y; 1Þ:

2.2. Rc-graphs. Let W n
0 be the reduced word ðn � 1y1yn � 1 n � 2 n � 1Þ of wn

0: A

subword R of W n
0 is called a graph. Each graph R ¼ i1yim defines a permutation

wðRÞ ¼ si1ysim : If R is a reduced word of wðRÞ; it is called an rc-graph of wðRÞ:1
Note that two different subwords of W n

0 which produce the same words are two

different graphs. For example, if n ¼ 3; w ¼ s2; then W 3
0 ¼ 212 has two different

subwords whose permutation is w; namely the subword 2 placed at the first or third
slot. The set of all rc-graphs of w is denoted by RCðwÞ:

We think of graphs using the following pictorial presentation. Think of W n
0 as a

triangular set of crossings shown in the first picture of Fig. 1 for n ¼ 5: Each crossing
is labelled by a letter from the alphabet ½1;y; n � 1�: To get back W n

0 we read those

labels from top to bottom row, from right to left in each row. Then each subword R

of W n
0 is presented as a subset of the crossings for W n

0 : Two illustrations are provided

in Fig. 1 where the second picture corresponds to the subword 2323, while the third
picture corresponds to the subword 4132.

Connect the crossings of R by strands which intersect at the places where there is a
crossing and do not intersect otherwise. For illustration see Fig. 2 where the graphs
correspond to the graphs from Fig. 1. Notice that when we draw pictures of graphs

1Throughout the paper we make the distinction between graphs and rc-graphs. Namely, whenever R is

called a graph it means it might or might not be a reduced word of wðRÞ: If R is called an rc-graph it means

it is a reduced word of wðRÞ:
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we omit those parts of graphs which have no crossings. So, graphs from Figs. 1 and 2
can be extended down and to the right by non-intersecting strands.

It is easy to see that for each graph R and iAN; wðRÞðiÞ is given by the column
where the strand, which starts at row i; ends. (Instead of referring to a strand as
‘‘a strand, which starts at row i’’, we will say ‘‘strand i’’. So, the above statement
transforms to: strand i ends in column wðRÞðiÞ:) This immediately leads to

(2.1) If a graph R is constructed out of another graph R0 by adding or removing a
crossing of strands c and d then wðRÞ ¼ wðR0Þtcd :

Denote by jRj the length of the corresponding subword, or, in other words, the
number of crossings in R: Clearly, jRjXlðwðRÞÞ: The following two statements are
easy to check. The first one originally appeared in [4], while the second one is a
restatement of the definition.

(2.2) A graph R is an rc-graph if and only if no two strands intersect twice.
(2.3) A graph R is an rc-graph if and only if jRj ¼ lðwðRÞÞ:

For example, the first and third graphs of Fig. 2 are rc-graphs, since both graphs
have no double crossings and for both jRj ¼ lðwðRÞÞ: But the second graph is not an
rc-graph, since strands 3 and 4 intersect twice, or jRj ¼ 44lðwðRÞÞ ¼ 2:

Given a graph R; let Rpc be the graph which coincides with R below or at row c
and has no crossings above row c: Let Rc be the graph which coincides with R at row
c and has no crossings outside row c:

Fig. 1. Examples of graphs.

Fig. 2. Examples of graphs.
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Given two graphs R;S the union R,S is defined to be the graph, which contains
crossings of both R and S: If R lies above row c; while S lies at or below row c; then
it is easy to see wðR,SÞ ¼ wðRÞwðSÞ:

‘‘Place ði; jÞ’’ of a graph R will refer to either crossing or non-crossing of strands in
row i and column j: For example, in the second graph from Fig. 2 strands intersect at
place (2,1), but do not intersect at place (3,2). We refer to those strands which
intersect or do not intersect at place ði; jÞ as strands, which pass place ði; jÞ: For
instance, strands 2, 4 pass places (2,2) and (1,3) in the third graph of Fig. 2. For two
strands a and b let a1b be the set of rows where strand a intersects strand b

horizontally. Then cAa1b means that strand a intersects strand b in row c and
strand a is the horizontal strand of the crossing. For example, 3A314 and 1A413
for the second graph from Fig. 2.

2.3. Schubert polynomials. For detailed discussions of Schubert polynomials Sw we
refer the reader to [13] or [14]. The only property of Schubert polynomials used in
this paper is stated in Theorem 2.1, proved in [3,5]. So, for purposes of this paper, we
treat Theorem 2.1 as a definition.

For an rc-graph R define xR ¼ x
jR1j
1 x

jR2j
2 y (recall that in our notations jRij is the

number of crossings of R in row i).

Theorem 2.1. For wASN;

Sw ¼
X

RARCðwÞ
xR:

If w is a shuffle vðl; rÞ; then the Schubert polynomial Sw is known to be equal to
the Schur polynomial Slðx1;y; xrÞ (for a definition of Schur polynomials see [12]).

Schubert polynomials Sw for all n-semi-shuffles form a basis for C½x1;y; xn�:
Hence, for u; v;wASN; we can uniquely define the generalized LR coefficients cu

wv by

Sw � Sv ¼
X

u

cu
wvSu: ð2:4Þ

2.4. Tableaux. To a partition l ¼ ðl1X?Xlr40Þ associate a Young diagram,

which is given by li boxes in row i: If m ¼
Pr

i¼1 li; label the boxes of the Young

diagram by integers 1 to m starting with the bottom row going up and going from
left to right in each row as shown in the first picture of Fig. 3 for l ¼ ð3; 3; 1Þ:

Given a Young diagram D; a tableau of shape D is a filling of boxes of the diagram
D by elements of certain alphabets (we will talk later about the types of tableaux we
consider). For any tableau U ; produce the word of U by reading the content of the
boxes 1 through m; denote it by wordðUÞ: For example, the word of the second
tableau of Fig. 3 is 4356145. Set jU j to be the number of boxes of U :

Sometimes we consider only partially filled tableaux: we say that a tableau is filled

up to i when boxes 1 to i are filled and the other boxes are empty.
A tableau filled with positive integers is row (column) strict if the numbers

increase (do not decrease) from left to right and do not decrease (increase)
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from top to bottom. For example, the second tableau of Fig. 3 is row and column
strict.

A tableau T filled by tuples ðabÞ is called a tableau of transpositions. Given a
shuffle vðl; rÞ; T is a tableau of transpositions of vðl; rÞ if its shape is l and it is filled
by tuples ðabÞ with aprob: For example, see the third picture of Fig. 3 where
l ¼ ð3; 3; 1Þ and r ¼ 3: For a tableau of transpositions T ; let its word wordðTÞ be
ða1b1ÞyðambmÞ: Define the permutations

wiðTÞ ¼ ta1b1
ytaibi

for 1pipm; and wðTÞ ¼ wmðTÞ:

For wASN; we say that a tableau of transpositions T of vðl; rÞ is an r-Bruhat path of

w; if for 1pipm

lðwwiðTÞÞ ¼ lðwÞ þ i: ð2:5Þ

If T is filled up to j; we say that T is an r-Bruhat path of w if (2.5) holds for 1pipj:
For a discussion of r-Bruhat paths see [2], where any sequence ða1b1ÞyðambmÞ;
satisfying lðwta1b1

ytaibi
Þ ¼ lðwÞ þ i and aiprobi for all i; is an r-Bruhat path. For

us it is convenient to think about ðaibiÞ as entries of tableaux.
We say that a triple ðw;R;TÞ consisting of a permutation w; an rc-graph R and a

tableau of transpositions T is an r-Bruhat package if wwðTÞ ¼ wðRÞ and T is an
r-Bruhat path of w:

Associate to each permutation w and each tableau of transpositions T of vðl; rÞ
another tableau Eðw;TÞ of the same shape. Fill box i of Eðw;TÞ with wwiðTÞðbiÞ:
(If T is filled up to j; then Eðw;TÞ will be filled up to j:) For example,
if w ¼ ð1; 3; 4; 2; 5; 6;yÞ and T is the third tableaux from Fig. 3, then the second
tableau from Fig. 3 is Eðw;TÞ:

2.5. Main results. We are now ready to state our main results. Given RARCðwÞ and
YARCðvðl; rÞÞ satisfying certain conditions, in Section 3 we present an insertion
algorithm which defines a graph R’Y together with a tableau of transpositions
TðR;YÞ of vðl; rÞ:

Theorem 2.2. Let w; vðl; rÞASN satisfy one the following:

(2.6) w is an r-semi-shuffle,
(2.7) l is a hook.

Fig. 3. A Young diagram and two tableaux.
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Let RARCðwÞ and YARCðvðl; rÞÞ: Then U ¼ R’Y is an rc-graph and

(2.8) Eðw;TðR;YÞÞ is a row and column strict tableau,
(2.9) ðw;U ;TðR;Y ÞÞ is an r-Bruhat package,

(2.10) xU ¼ xRxY :

In Section 5 we describe an inverse insertion algorithm that, given a certain
rc-graph U and a tableau of transpositions T ; constructs rc-graphs R ¼ U-T

and Y ðU ;TÞ: The following theorem is given without a proof. Proving it amounts
to showing that the statement about the inverse insertion algorithm ana-
logous to Theorem 2.2 holds. It can be done similarly to the proof of
Theorem 2.2.

Theorem 2.3. Let w; vðl; rÞASN satisfy (2.6) or (2.7). Define the following sets

* Lw;vðl;rÞ: Pairs ðR;YÞ of rc-graphs of w and vðl; rÞ;
* Rw;vðl;rÞ: Pairs ðU ;TÞ of an rc-graph U of a permutation u and a tableau of

transpositions T of vðl; rÞ such that Eðw;TÞ is a row and column strict tableau and

ðw;U ;TÞ is an r-Bruhat package.

Then the maps given by the insertion algorithm and the inverse insertion algorithms

Lw;vðl;rÞ-Rw;vðl;rÞ and Rw;vðl;rÞ-Lw;vðl;rÞ are inverses of each other which define a

bijection between these two sets. Moreover, this bijections preserves the monomials

associated to the pairs (xRxY for ðR;Y Þ and xU for ðU ;TÞ).

Since the set Lw;vðl;rÞ indexes the monomials of the left-hand side of Eq. (2.4). The

next theorem is an immediate corollary of Theorems 2.1 and 2.3.

Theorem 2.4. Assume w; u; vðl; rÞASN satisfy (2.6) or (2.7). Then cu
wvðl;rÞ is equal to

the number of tableaux of transpositions T of vðl; rÞ such that T is an r-Bruhat path of

w; Eðw;TÞ is row and column strict and wwðTÞ ¼ u:

Let us restate Theorem 2.4 in the case when the shape of v is a hook in the form it

appeared in [16]. Given w and a tableau of transpositions T of v; define wðiÞ ¼
wwiðTÞ: If the shape of v is a hook ðp; 1q�1Þ then Eðw;TÞ is row and column strict if
and only if

wð1Þðb1Þ4?4wðpÞðbpÞ and wðpÞðbpÞo?owðmÞðbmÞ; ð2:11Þ

where m ¼ lðvÞ ¼ p þ q � 1: Using the fact that tab and ta0b0 commute as long as
a; b; a0; b0 are distinct, it can be shown that there is a one to one correspondence
between r-Bruhat paths of w which satisfy (2.11) and r-Bruhat paths of w which
satisfy

wð1Þða1Þ4?4wðpÞðapÞ and wðpÞðapÞo?owðmÞðamÞ: ð2:12Þ
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(This correspondence can be constructed by starting with a path which satisfies
(2.11) and commuting transpositions of this path to make sure (2.12) holds.)

So Theorem 2.4 in case (2.7) can be restated as it originally appeared in [16].

Theorem 2.5. Assume v ¼ ððp; 1q�1Þ; rÞ: Then SwSv ¼
P

SwwðTÞ; the sum over all

r-Bruhat paths T of w of shape ðp; 1q�1Þ which satisfy (2.12).

3. Insertion algorithm

3.1. Preliminaries. We need some preliminaries before defining the algorithm.
First, let Y be an rc-graph with wðYÞ ¼ vðl; rÞ: We think of the Young diagram of

l as the shape of Y ; denoted by shðYÞ: It is easy to see that any strand s with spr

intersects exactly lrþ1�s other strands. Let these intersections be in the rows
i1X?Xilrþ1�s

(one number for each crossing, so that repetitions are allowed),

then define wordðY ; sÞ ¼ i1yilrþ1�s
: Define wordðYÞ to be the concatenation

wordðY ; 1ÞywordðY ; rÞ: Notice that if two strands a; b intersect in Y and aob;
then aprob: Hence, every crossing of Y corresponds to a single letter in wordðY Þ:
Also notice that for any c; the permutation of Ypc is again a shuffle. Moreover, the
shape of Ypc is a subdiagram of the shape of Y :

Secondly, we need the following lemma and the construction after the lemma.

Lemma 3.1. (1) If R is an rc-graph and lðwðRÞtcdÞ ¼ lðwðRÞÞ � 1; then strands c and d

intersect in R; and removing their crossing produces another rc-graph.
(2) Let R be an rc-graph with strands c and d passing place ðc; jÞ but never

intersecting in R: Then inserting a crossing into place ðc; jÞ produces an rc-graph.

Proof. For wASN; its length is lðwÞ ¼ #fði; jÞ: ioj;wðiÞ4wðjÞg: Hence,

for cod; lðwtcdÞ ¼ lðwÞ þ 1 if and only if wðcÞowðdÞ and

there is no i with coiod; wðcÞowðiÞowðdÞ: ð3:1Þ

To prove the first part of the lemma, notice that (3.1) applied to w ¼ wðRÞtcd

immediately implies that wðRÞðcÞ4wðRÞðdÞ: In particular, strands c and d must
intersect in R: Remove their crossing to produce the graph R0: Using (2.3), (2.1) and
lðwðR0ÞÞ ¼ lðwðRÞtcdÞ ¼ lðwðRÞÞ � 1 ¼ jR0j we conclude R0 is an rc-graph.

To prove the second part, add the crossing of strands c and d in place ðc; jÞ of R to
produce a graph R0: By (2.3) it is enough to check lðwðR0ÞÞ ¼ lðwðRÞÞ þ 1: Since
strands c and d do not intersect in R; wðRÞðcÞowðRÞðdÞ; hence by (3.1), it is enough
to check that there is no i with

coiod; wðRÞðcÞowðRÞðiÞowðRÞðdÞ:

It is very easy to see that if such i existed, strand i would have to intersect either
strand c or strand d twice in R; which is impossible. &
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As a consequence to Lemma 3.1 let us present the following construction. Given
an r-Bruhat package P ¼ ðw;R;TÞ; let m ¼ jT j: Set SmðPÞ ¼ R: Then, by Lemma
3.1, rc-graphs SjðPÞ for 0pjpm are uniquely defined once we require that

wðSjðPÞÞ ¼ wwjðTÞ; and SjðPÞ is constructed out of Sjþ1ðPÞ by removing exactly

one crossing. An example is provided in Section 6.1.

3.2. Outline. Here is an informal outline of the algorithm. The formal definitions
start in Section 3.3.

Assume we are given an rc-graph R with w ¼ wðRÞ and an rc-graph Y with
vðl; rÞ ¼ wðY Þ satisfying (2.6) or (2.7). Our goal is to define a graph R’Y and a
tableau of transpositions TðR;YÞ of vðl; rÞ: By analogy with the Schensted
algorithm we would like to insert one by one the letters of wordðYÞ into R: It
does not work, but something similar does.

The algorithm starts with row r and goes up. After it finishes with row c; it
produces the result of the insertion of Ypc into Rpc: RðcÞ ¼ Rpc’Ypc and TðcÞ ¼
TðRpc;YpcÞ: Think of TðcÞ as ‘‘the history’’ of this insertion. Namely, TðcÞ says
how to go from wðRpcÞ to wðRðcÞÞ along a path in the Bruhat order labelled by the
letters of the word of Ypc:

Assume the algorithm has been performed up to row cþ 1 so that Rðcþ 1Þ and
Tðcþ 1Þ are defined. The next row where it operates is row c: To define RðcÞ and
TðcÞ the algorithm goes through steps which mimic inserting the letters of
wordðYpcÞ into R: But it essentially operates only in row c so that the rc-graphs
RðcÞ and Rðcþ 1Þ are identical outside row c: Moreover, the r-Bruhat path from
wðRpcÞ to wðRðcÞÞ given by TðcÞ is constructed out of the path from wðRpcþ1Þ to
wðRðcþ 1ÞÞ such that properties (2.8) and (2.9) always hold. The shape of TðcÞ
contains all the boxes of the shape of Tðcþ 1Þ: In the simplest case, which rarely
happens, TðcÞ is constructed out of Tðcþ 1Þ by filling the boxes of TðcÞ which are
not in Tðcþ 1Þ:

3.3. Steps of the algorithm. Throughout the rest of this section the statements which
require proofs are underlined and then proved in Section 4. The footnotes supply the
reader with the references to the relevant examples in Section 6.

For each ðc; iÞ with rXcX1 and 0pipmc (where mc ¼ jYpcj) the
algorithm performs a step which we call step ðc; iÞ: The steps go in the following
order. Step ðc; i þ 1Þ goes after step ðc; iÞ if mc � 1XiX0: Step ðc; 0Þ follows step
ðcþ 1;mcþ1Þ:

Before giving the detailed description of each step let us present the data produced
by each step and the conditions this data satisfies. Step ðc; iÞ constructs

(3.2) rc-graphs Rðc; iÞ; with no crossings above row c;
(3.3) tableau of transpositions Tðc; iÞ for the shuffle wðYpcÞ filled up to i:

Here, Rðc; iÞ and Tðc; iÞ play the role of the intermediate result of the algorithm.
After each step, Rðc; iÞ and Tðc; iÞ must satisfy the following conditions
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(3.4) EðwðRpcÞ;Tðc; iÞÞ is a row and column strict tableau,
(3.5) Pðc; iÞ ¼ ðwðRpcÞ; Rðc; iÞ;Tðc; iÞÞ is an r-Bruhat package.

Remark 3.2. Conditions (3.4) and (3.5) are analogues of (2.8) and (2.9) from
Theorem 2.2. That is why they have to be satisfied by the intermediate results of the
algorithm. Condition (3.4) is the condition, which we do not know how to generalize
to cases other than (2.6) and (2.7).

For each row c we start with a row-to-row step ðc; 0Þ which sets up the data needed
for performing the algorithm in this row. Then we perform a step for each letter of
wordðYpcÞ: If this letter is equal to c it is an insertion step and we will insert a
crossing in row c to the current rc-graph. If the letter is not c; then we perform a

rectification and rectify, if necessary, both the rc-graph Rðc; iÞ and the path given by
Tðc; iÞ to guarantee both (3.4) and (3.5) are satisfied.

The rest of Section 3.3 introduces the additional notations and states the two
additional conditions which clarify certain parts of the algorithm and simplify
certain proofs.

After we are finished with all the steps for row c; we are given Rðc;mcÞ and
Tðc;mcÞ; which, to shorten the notations, we denote by RðcÞ and TðcÞ: Denote by
PðcÞ the r-Bruhat package ðwðRpcÞ;RðcÞ;TðcÞÞ:

Fix c; let wordðYpcÞ ¼ k1ykmc : Each letter ki of wordðYpcÞ corresponds to a

crossing of Ypc in row ki: If ki4c; then the letter ki is also a part of wordðYpcþ1Þ ¼
k0
1yk0

mcþ1
; let the index of ki inside wordðYpcþ1Þ be iþ: Set iþ ¼ 0; if i ¼ 0: (So, if we

think of shðYpcþ1Þ as a subdiagram of shðYpcÞ; then box i of Ypc coincides with box
iþ of shðYpcþ1Þ:) The two additional conditions are

(3.6) xRðcÞ ¼ xRpcxYpc ;
(3.7) If kioc; then Rðc; iÞpcþ1 ¼ SiþðPðcþ 1ÞÞ:

It will be obvious from the description of the algorithm that these conditions are
always satisfied. Condition (3.6) implies that (2.10) holds for the final result, while
(3.7) indicates that step ðc; iÞ only operates in row c; as the part of Rðc; iÞ which lies
below row c is uniquely determined by Pðcþ 1Þ:

3.4. Start of the algorithm. 2 Set Rðr; 0Þ ¼ Rpr and let Tðr; 0Þ be the empty tableau of
shape shðYprÞ; then Rðr; 0Þ and Tðr; 0Þ satisfy ð3:4Þ and ð3:5Þ:

3.5. Row-to-row steps. 3Each step ðc; 0Þ is called a row-to-row step. This step sets
Tðc; 0Þ to be the empty tableau of shape shðYpcÞ and

Rðc; 0Þ ¼ S0ðPðcþ 1ÞÞ,Rc: ð3:8Þ
Then Rðc; 0Þ is an rc� graphs and Rðc; 0Þ and Tðc; 0Þsatisfy ð3:4Þ and ð3:5Þ:

2See steps (3,0) from Example 6.3 and (2,0) from Example 6.4.
3See steps (1,0) from Example 6.2 and (1,0) from Example 6.4.
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As mentioned before, this step sets up the data for performing the algorithm in
row c: Tðcþ 1Þ defines a path from wðRpcþ1Þ to wðRðcþ 1ÞÞ: On the level of rc-
graph this path is given by the rc-graphs S0ðPðcþ 1ÞÞ;y;Smcþ1

ðPðcþ 1ÞÞ: So, we

can think of the construction of Rðc; 0Þ as of the backtracking the algorithm from
Rðcþ 1Þ to S0ðPðcþ 1ÞÞ and then adding the crossings of R that lie in row c:

3.6. Insertions. 4Assume wordðYpcÞ ¼ k1ykmc : If ki is the letter c; then step ðc; iÞ is
called an insertion step.

During an insertion step, we say that an insertion into a place ðc; jÞ is allowed, if
strands c; d pass this place in Rðc; i � 1Þ as shown in Fig. 4 and cprod:

There exists a place in row c of Rðc; i � 1Þ where an insertion is allowed: Find

the rightmost such place ðc; j0Þ and let strands c and d pass through it. Define Rðc; iÞ
by adding a crossing to Rðc; i � 1Þ into place ðc; j0Þ: Define Tðc; iÞ by adding ðcdÞ to
box i of Tðc; i � 1Þ: Then Rðc; iÞ is an rc-graph and ð3:4Þ and ð3:5Þ are satisfied:

3.7. Rectifications. If ki4c; then step ðc; iÞ is called a rectification. The first part of
rectification is to define a graph R0 and a tableau of transpositions T 0: The rc-graph
SiþðPðcþ 1ÞÞ has one more crossing than Siþ�1ðPðcþ 1ÞÞ; add this crossing to

Rðc; i � 1Þ to produce R0: (Then, since (3.7) holds for Rðc; i � 1Þ; R0 coincides with
SiþðPðcþ 1ÞÞ below row c and row c of R0 is the same as row c of Rðc; i � 1Þ:) To

produce T 0; add to box i of Tðc; i � 1Þ the entry ðabÞ of box iþ of Tðcþ 1Þ:
If EðwðRpcÞ;T 0Þ is row and column strict and ðwðRpcÞ;R0;T 0Þ is an r-Bruhat

package, set Rðc; iÞ ¼ R0 and Tðc; iÞ ¼ T 0 and move on to the next step.5 Otherwise,
there is a crossing in R0 in row c which fits the description in Fig: 5:

If R0 has a crossing which looks like the first crossing of Fig. 5, remove this
crossing to produce R00 and remove ðabÞ from box i of T 0 to produce T 00: Otherwise
remove the crossing of strands b and f shown in Fig. 5 to produce R00; remove ðabÞ
from box i in T 0 and replace the entry of box i � 1 of T 0 by ðabÞ to produce T 00:

We say that insertions into places in R00 shown in Fig. 6 are allowed.

Fig. 4. A place where an insertion is allowed.

Fig. 5. One of these crossing in row c needs to be removed.

4See steps (2,3) from Example 6.2, (3,1) from Example 6.3 and (2,2) from Example 6.4.
5See steps (1,1) from Example 6.2 and (2,1) from Example 6.3.
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Remember that R00 is constructed out of R0 by removing a crossing from some
place ðc; j0Þ: There exists a place in row c of R(c, i-1) to the left of (c, j0) where an
insertion is allowed. Find the rightmost such place to the left of ðc; j0Þ: Insert a
crossing there to produce Rðc; iÞ: If this is the place of the first type from Fig. 6, then
insert ðcdÞ into box i of T 00 to define Tðc; iÞ: In the second case, replace the entry of
box i � 1 of T 00 by ðedÞ and place ðegÞ into box i of T 00 to define Tðc; i � 1Þ: Then
Rðc; iÞ is an rc-graph and ð3:4Þ and ð3:5Þ are satisfied:6

3.8. End of the algorithm. Set R’Y ¼ Rð1;m1Þ and TðR;Y Þ ¼ Tð1;m1Þ:

3.9. Concluding remarks. As mentioned before, the algorithm can be simplified in all
the cases except for the case when the shape of v is a hook. For case (2.6) (see [8]) our
algorithm produces the same result as inserting letters of wordðY Þ one by one into R

using the algorithm of Bergeron and Billey [1] which, in the case when w is an r-
shuffle, is the Schensted algorithm.

For the case when the shape of v is a row a simplified algorithm is given in [9]. In
the case when the shape of v is a column the only simplification of our insertion
algorithm, which we know of, is omitting the second picture from Fig. 6.

4. Proof of Theorem 2.2

To prove Theorem 2.2, it is enough to prove all the statements underlined in
Section 3. Let us repeat these statements.

(1) Rðr; 0Þ and Tðr; 0Þ satisfy conditions (3.4) and (3.5).
(2) For r4cX1; Rðc; 0Þ is an rc-graph and Rðc; 0Þ; Tðc; 0Þ satisfy (3.4) and (3.5).
(3) During every insertion step, there exists a place in row c of Rðc; i � 1Þ where an

insertion is allowed. After every insertion step, Rðc; iÞ is an rc-graph and (3.4),
(3.5) are satisfied.

(4) During every rectification, if R0 is not an rc-graph or EðwðRpcÞ;T 0Þ is not row
and column strict, there is a crossing in R0 shown in Fig. 5.

(5) During every rectification, there exists a place in row c of Rðc; i � 1Þ to the left
of place ðc; j0Þ where an insertion is allowed. After every rectification, Rðc; iÞ is
an rc-graph and (3.4), (3.5) are satisfied.

Fig. 6. Places, where insertions are allowed during rectification.

6 In steps (1,3) and (1,4) from Example 6.2 first cases of Figs. 5 and 6 occur. In step (1,2) from Example

6.3 the second case of Fig. 5 and the first case of Fig. 6 occur. In step (1,2) from Example 6.4 the first case

of Fig. 5 and the second case of Fig. 6 occur.
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Remark 4.1. Before going into the proofs, let us make a remark about the entries
of the tableaux EðwðRpcÞ;TðcÞÞ and EðwðRpcÞ;Tðc; iÞÞ: The ith entry ei of
EðwðRpcÞ;TðcÞÞ and EðwðRpcÞ;Tðc; iÞÞ is equal to wðRðc; iÞÞðbiÞ: Graphically, it is
just the column of Rðc; iÞ where strand bi ends. This will be helpful in understanding
a lot of statements about EðwðRpcÞ;TðcÞÞ:

4.1. Proof of (1). Since Tðr; 0Þ is an empty tableau, condition (3.4) is vacuous, while
(3.5) follows directly from Rðr; 0Þ ¼ Rpr:

4.2. Proof of (2). Since S0ðPðcþ 1ÞÞ has no crossings above row cþ 1 and Rc has
only crossings in row c; we know from (3.8)

wðRðc; 0ÞÞ ¼wðS0ðPðcþ 1ÞÞÞwðRcÞ ¼ wðRpcþ1ÞwðRcÞ

¼wðRpcþ1,RcÞ ¼ wðRpcÞ:

On the other hand,

jRðc; 0Þj ¼ jS0ðPðcþ 1ÞÞj þ jRcj ¼ jRpcþ1j þ jRcj ¼ jRpcj:

Hence lðwðRðc; 0ÞÞÞ ¼ jRðc; 0Þj and using (2.3) we conclude Rðc; iÞ is an rc-graph.
Since Tðr; 0Þ is an empty tableau, condition (3.4) is vacuous, while (3.5) follows

immediately from wðRðc; 0ÞÞ ¼ wðRpcÞ:

4.3. Proof of (3). For an rc-graph R define the sequence of strands ck by c0 ¼ c and

ak ¼ wðRpcÞðckÞ; ckþ1 ¼ wðRpcþ1Þ�1ðak þ 1Þ: ð4:1Þ

Another way of defining this sequence is to look at all strands of R which have
horizontal parts in row c; in other words, which do not cross row c vertically. These
strands do not cross each other in row c and, hence, can be ordered from left to right
with the first strand being c: This is the sequence of strands ck: For example, if R is
the third graph of Fig. 2 and c ¼ 1; then c0 ¼ 1; c1 ¼ 4; c2 ¼ 2 and so on.

Throughout the proofs we will use different parts of this sequence for different rc-
graphs. Whenever we refer to a part of this sequence, we specify a strand c %k where

this part starts and a strand c
%
k where it ends (if the later is omitted, it means the part

we consider runs to infinity).
We start the proof of (3) with showing that there are places in Rðc; i � 1Þ; where

insertions are allowed. For Rðc; i � 1Þ; consider the whole sequence of strands ck

(namely %k ¼ 0).
It is clear that for large k; ck4r: Since c0 ¼ cpr; there exists k0 with ck0prock0þ1:

By construction, we know that strands ck0 and ck0þ1 pass next to each other in
row c in some place ðc; jÞ: Then an insertion into place ðc; jÞ is allowed, as
c ¼ ck0prock0þ1 ¼ d as required in Fig. 4.
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4.3.1. Rðc; iÞ is an rc-graph and (3.5) holds. Rðc; iÞ is an rc-graph by the second part
of Lemma 3.1. Moreover, lðwðRðc; iÞÞ ¼ lðwðRðc; i � 1ÞÞÞ þ 1 and

wðRðc; iÞÞ ¼ wðRðc; i � 1ÞÞtcd ; wðTðc; iÞÞ ¼ wðTðc; i � 1ÞÞtcd ; ð4:2Þ

which immediately implies that (3.5) holds.

4.3.2. After every insertion step, (3.4) holds. If i ¼ 1; so that the insertion step
corresponds to the first letter k1 ¼ c; condition (3.4) is vacuous. Otherwise, we will
show that there exists j such that an insertion into ðc; jÞ is allowed and

cþ j � 1 ¼ wðRðc; i � 1ÞÞtc0d 0 ðd 0Þ4wðRðc; i � 1ÞÞðf Þ; ð4:3Þ

where c0; d 0 are the strands passing place ðc; jÞ and ðef Þ is the entry of box i � 1 of
Tðc; i � 1Þ: This will be enough to prove (3.4). Indeed if Rðc; iÞ is defined by adding a
crossing of strand c; d in place ðc; j0Þ; then j0Xj: Therefore, by Remark 4.1, (4.3)
holds for c0; d 0 substituted by c; d: Hence EðwðRpcÞ;Tðc; iÞÞ is row and column strict.

To show that j satisfying (4.3) exists, consider the part of the sequence ck for
Rðc; i � 1Þ which starts at c %k defined as follows. If strand e in Rðc; i � 1Þ intersects

vertically another strand e0 in row c then set c %k ¼ e0; otherwise set c %k ¼ e (notice that

e0oepr). Since c %kpr and ck4r for large k; there exists k0
X %k with ck0prock0þ1: Let

c0 ¼ ck0 and d 0 ¼ ck0þ1: Then strands c0 and d 0 pass next to each other in row c at a
place ðc; jÞ and an insertion into ðc; jÞ is allowed. Moreover, since strand c %k is either

strand e or it intersects strand e horizontally in row c; the following calculation
proves (4.3)

wðRðc� 1; iÞtc0d 0 Þðd 0Þ ¼wðRðc; i � 1ÞÞðc0ÞXwðRðc; i � 1ÞÞðeÞ

4wðRðc; i � 1ÞÞðf Þ:

4.4. Proof of (4). Recall that R0 is constructed out of Rðc; i � 1Þ by adding a crossing
of strands a; b to guarantee R0 coincides with SiþðPðcþ 1ÞÞ below row c:

Let us show that R0 is not an rc-graph if and only if strands a and b intersect in row
c as shown in Fig. 5. Indeed, if a; b intersect in row c; they intersect twice in R0; so R0

is not an rc-graph. Conversely, if they do not intersect in row c of R0; then they do
not intersect in Rðc; i � 1Þ: (If they intersect below row c in Rðc; i � 1Þ then
SiþðPðcþ 1ÞÞ is not an rc-graph.) Hence by the second part of Lemma 3.1, R0 is an

rc-graph.
Since wðR0Þ ¼ wðRðc; i � 1ÞÞtab; we can immediately conclude that if R0 is an rc-

graph, then ðwðRpcÞ;R0;T 0Þ is an r-Bruhat package.
To finish the proof of (4), it remains to prove that if EðwðRpcÞ;T 0Þ is not column

or row strict then the second crossing from Fig. 5 must occur. We will do it
separately for cases (2.6) and (2.7).

4.4.1. Case (2.6). We start with some preliminary lemmas, which we also use in the
proof of (5). These lemmas (especially Lemmas 4.4) also explains why the algorithm
can be simplified in this case.
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Lemma 4.2. If uASN is an r-semi-shuffle, u0 ¼ utab with aprob and lðu0Þ ¼ lðuÞ þ 1;
then u0 is an r-semi-shuffle.

Proof. We must show that if rob0ob00 then utabðb0Þoutabðb00Þ: If b0ab and b00ab;
then utabðb0Þ ¼ uðb0Þouðb00Þ ¼ utabðb00Þ; since u is an r-semi-shuffle.

If b0 ¼ b; then utabðb0Þ ¼ uðaÞouðbÞouðb00Þ ¼ utabðb00Þ; since lðutabÞ ¼ lðuÞ þ 1 and
u is an r-semi-shuffle.

If b00 ¼ b; then utabðb0Þ ¼ uðb0ÞouðaÞ ¼ utabðb00Þ; where uðb0ÞouðaÞ; since other-
wise aob0ob and uðaÞouðb0ÞouðbÞ which contradicts (3.1). &

Assume T is a tableau of transpositions (possibly partially filled). If ðakbkÞ are the
entries of T ; let BðTÞ be the tableau of the same shape with the entries bk:

Lemma 4.3. Let w be an r-semi-shuffle and T be an r-Bruhat path of w: Then Eðw;TÞ
is row and column strict if and only if BðTÞ is row strict.

Proof. Assume uASN is an r-semi-shuffle and lðutabÞ ¼ lðuÞ þ 1 for aprob: Let
b04r then it is easy to see by Lemma 4.2 that

uðb0ÞoutabðbÞ if and only if b0ob: ð4:4Þ

Clearly, (4.4) implies that rows of Eðw;TÞ strictly increase from left to right if and
only if the same holds for BðTÞ:

Let us show that if BðTÞ is row strict, then Eðw;TÞ is column strict. Denote by ek

the entry of box k of Eðw;TÞ: Let box i0 be directly above box i in shðTÞ: Consider
boxes i through i0 in the diagram shðTÞ as shown in Fig. 7.

To show Eðw;TÞ is column strict it is enough to show ei0oei for any i not in the

top row. If BðTÞ is row-strict, then biabĩ for ioĩoi0: If bi0obi; then

ei ¼ wwiðTÞðbiÞ ¼ wwi0 ðTÞðbiÞ4wwi0 ðTÞðbi0 Þ ¼ ei0 ;

since by Lemma 4.2 wwi0 ðTÞ is an r-semi-shuffle. If bi0 ¼ bi; then

ei ¼ wwiðTÞðbiÞ ¼ wwi0�1ðTÞðbiÞ ¼ wwi0 ðTÞðai0 Þ4wwi0 ðTÞðbi0 Þ ¼ ei0 ;

since lðwwi0�1ðTÞÞ þ 1 ¼ lðwwi0 ðTÞÞ:
Conversely, assume Eðw;TÞ is row and column strict. To show BðTÞ is row strict,

it is enough to show bi0pbi for any i such that box i is not in the top row. Assume for

Fig. 7. Boxes i through i0 of T :
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a moment biabĩ for any jpĩpi0: Then

wwi0 ðTÞðbiÞ ¼ wwiðTÞðbiÞ ¼ ei4ei0 ¼ wwi0 ðTÞðbi0 Þ;
since Eðw;TÞ is row and column strict. Thus, since wwi0 ðTÞ is an r-semi-shuffle, we
conclude bi0obi:

Otherwise, if bi ¼ bĩ for some jpĩpi0; then we use induction on i to show that

ĩ ¼ i0: If i is the first box in its row, then bi0 ¼ bi; as i0 ¼ j: Otherwise, assume the box

underneath box ĩ contain %b: By induction %bXbĩ: On the other hand, we know that
%bobi if ĩ�ai: Hence, if bi ¼ bĩ; then box i must be underneath box ĩ: &

Lemma 4.4. In case (2.6) the second pictures of Figs. 5 and 6 never happen. Moreover,
if p is the entry of box i of BðTðcÞÞ and q is the entry of box iþ of BðTðcÞÞ then ppq:

Proof. Adopt the notations of the rectification step, namely, let R0 be the graph that
is produced out of Rðc; i � 1Þ by adding the crossing of strands a and b: If strands a

and b do not intersect in Rðc; i � 1Þ; then it was shown already that R0 is an rc-graph.
By Lemma 4.2, wðRðc; i � 1ÞÞ as well as wðR0Þ are r-semi-shuffles. Hence, strand b4r

cannot intersect another strand f4r in R0: Therefore, the second picture of Fig. 5 is
impossible.

If the rectification step does not stop at R0; the crossing of strands a and b is
removed from place ðc; j0Þ of R0 to produce R00: If strands g and d pass a place in row
c of R00 to the left of ðc; j0Þ which looks like the second picture of Fig. 6, then
rogod; since wðR00Þ is an r-semi-shuffle, and g; dab: Moreover,

wðRðc; i � 1ÞÞðeÞ4wðRðc; i � 1ÞÞðdÞ; ð4:5Þ
since wðRðc; i � 1ÞÞðeÞ4wðRðc; i � 1ÞÞðgÞ and strands d and e cannot intersect twice
in Rðc; i � 1Þ:

Then by wðRðc; i � 2ÞÞteg ¼ wðRðc; i � 1ÞÞ and (4.5)

wðRðc; i � 2ÞÞðgÞ ¼ wðRðc; i � 1ÞÞðeÞ4wðRðc; i � 1ÞÞðdÞ ¼ wðRðc; i � 2ÞÞðdÞ
which is impossible, since wðRðc; i � 2ÞÞ is an r-semi-shuffle and rogod:

Hence, in case (2.6) during rectification only the first picture of Fig. 6 happens. If
the algorithm inserts a crossing into a place where strands c and d pass to the left of
the place ðc; j0Þ then dob (otherwise strands d and b intersect in R00; which is
impossible, since wðR00Þ is an r-semi-shuffle). This proves the last part of the lemma,
as p ¼ dob ¼ q: (Notice that q is equal to p if R0 is an rc-graph.) &

In light of Lemma 4.4, to give the proof of (4) in case (2.6) we will prove that if R0

is an rc-graph, then EðwðRpcÞ;T 0Þ is row and column strict, or, by Lemma 4.3, it is
enough to show BðT 0Þ is row strict.

Let bk be the entries of BðT 0Þ; so that bi ¼ b: Since boxes 1 through i � 1 of BðT 0Þ
and BðTðc; i � 1ÞÞ coincide, BðT 0Þ can fail to be row strict if box i � 1 is in the same
row as box i and bi�1Xbi ¼ b; or, if there is box i underneath box i such that
b ¼ bi4bi: Let us show both cases are impossible. This will finish the proof of (4) in
case (2.6).
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If ð%e %fÞ is the entry of box iþ � 1 of Tðcþ 1Þ; then by Lemma 4.4 bi�1p %f: At the

same time if box i � 1 is in the same row as box i; then %fobi ¼ b; since BðTðcþ 1ÞÞ is
row strict. So, bi�1ob whenever box i � 1 is in the same row as box i:

It remains to show that if box i is the box underneath box i in BðT 0Þ , then bpbi:
We will prove it by induction on i: We first prove the induction step when step
ðcþ 1; iÞ is an insertion.

Denote temporarily R̃ ¼ Rðc; i � 1Þ: We will prove there exists a place in R̃ in row
cþ 1 shown in Fig. 4 with dXb: Then we will be guaranteed biXb:

Look at how strand b passes row cþ 1 in R̃: If it passes it vertically, then it

intersects certain strand a0 with a0pr (since wðR̃Þ is an r-semi-shuffle). Consider the

sequence ck for R̃; set c %k ¼ a0: By the same argument as in the proof of (3) we can

find a place ðc; jÞ; shown in Fig. 4, to the right of the place where strand b passes row
cþ 1: Hence, for such a place d4b:

If strand b does not pass row c vertically, look at the whole sequence ck for R̃:
Strand b is an element of this sequence. Let b ¼ ck̃: Let us show that

ck̃�1pr or ck̃�1 ¼ b � 1: ð4:6Þ

Indeed, if ck̃�14r; then if there exist b0 with ck̃�1ob0ob; then strand b0 must intersect

either strand ck̃ or strand b; which is impossible, since wðR̃Þ is an r-semi-shuffle.

Hence (4.6) holds.
If ck̃�1pr; then strands c ¼ ck̃ and d ¼ b pass next to each other in row cþ 1 at a

place ðc; jÞ; so an insertion into ðc; jÞ is allowed. It implies biXb:

It remains to consider the case when ck̃�1 ¼ b � 1: Let %bk denote the entries of

BðTðcþ 1ÞÞ: We will prove that

ia1 and ck̃�1 ¼ %bi�1 ¼ b � 1: ð4:7Þ

If (4.7) holds, then, since step ðc; iÞ is an insertion step, i is not the first box in row c
and box i � 1 is in the same row as box i: Hence by the induction assumption

b � 1 ¼ %bi�1pbi�1obi:

Therefore, since b4 %bi�1 ¼ b � 1; we conclude b ¼ bipbi:

It remains to show that if ck̃�1 ¼ b � 1 then (4.7) holds. Since wðR̃Þ is an r-semi-

shuffle and strands b and b � 1 pass next to each other in row c of R̃;

wðR̃pcþ1ÞðbÞ � 1 ¼ wðR̃pcþ1Þðb � 1Þ:

Rðc; i � 1Þpcþ1 is constructed out of R̃pcþ1 by adding some crossings. It is not

difficult to see that if (4.7) fails, none of these crossings involve strands b or b � 1: So

wðRðc; i � 1Þpcþ1ÞðbÞ � 1 ¼ wðRðc; i � 1Þpcþ1Þðb � 1Þ:

But it is impossible by (3.1), since aob � 1ob and

wðRðc; i � 1Þpcþ1ÞðaÞowðRðc; i � 1Þpcþ1Þðb � 1ÞowðRðc; i � 1Þpcþ1ÞðbÞ

while lðwðRðc; i � 1Þpcþ1ÞtabÞ ¼ lðwðRðc; i � 1Þpcþ1ÞÞ þ 1:
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This finishes the proof in the case step ðcþ 1; iÞ is an insertion. If this step is a

rectification, let ð%c; %bÞ be the entry of box ðiÞþ of Tðcþ 1Þ: Then bp %b; since

BðTðcþ 1ÞÞ is row strict. If during this step no crossing is removed from R0; then

bi ¼ %b and there is nothing to prove. Otherwise, consider the intermediate rc-graph
R0 of the rectification step ðc; iÞ: We have to show that there exists a place in R0 in

row c of the type shown in the first picture of Fig. 6 with bpdp %b: This can be done
by an argument almost identical to the case when step ðc; iÞ is an insertion. The only
difference is that all the considered parts of the sequence ck must be finite, ending
at c

%
k ¼ %c:

4.4.2. Case (2.7). As before, let ðabÞ and ðef Þ be the entries of boxes i and i � 1 of T 0:
Assume ðc; i � 1Þ is a rectification (the argument below can be easily modified to

provide a proof in the case when step ðc; i � 1Þ is an insertion step). Assume ð%e; %f Þ is
the entry of box iþ � 1 of Tðcþ 1Þ:

Start with the case when box i is not in the first column of shðT 0Þ: Let us show that
if R0 is an rc-graph, then EðwðRpcÞ;T 0Þ is row and column strict. It is obvious if

ðef Það%e %f Þ; since in this case the entry of box i � 1 of EðwðRpcÞ;T 0Þ is smaller then
the value of box iþ � 1 of EðwðRpcÞ;Tðcþ 1ÞÞ:

If ðef Þ ¼ ð%e %f Þ and EðwðRpcÞ;T 0Þ is not row and column strict, then strands b and
f intersect in row c in R0 such that cAf1b: But then f intersects a horizontally in
Rðc; i � 1Þ; which is impossible since aof :

In the case when box i is in the first column and R0 is an rc-graph we will show that
one of the following holds:

wðRðc; i � 1ÞÞðf Þ4wðRðc; i � 1ÞÞðaÞ; ð4:8Þ

a ¼ e and cAa1f in Rðc; i � 1Þ: ð4:9Þ

If (4.8) holds, then EðwðRpcÞ;T 0Þ is row and column strict. If (4.9) holds, then
cAb1f in R0 as shown in the second picture of Fig. 5. So, it remain to prove (4.8) or
(4.9) hold in the case when box i is in the first column and R0 is an rc-graph.

Since EðwðRpcþ1Þ;Tðcþ 1ÞÞ is a row and column strict tableau, we know

wðSiþ�1ðPðcþ 1ÞÞÞð %fÞ4wðSiþðPðcþ 1ÞÞÞðbÞ ¼ wðSiþ�1ðPðcþ 1ÞÞÞðaÞ: ð4:10Þ

Moreover, removing crossings from row c of Rðc; i � 1Þ produces Siþ�1ðPðcþ 1ÞÞ:
In the case ðef Þ ¼ ð%e %f Þ inequality (4.10) implies (4.8) unless cAa1f in Rðc; i � 1Þ:

But it is not difficult to see that if ðef Þ ¼ ð%e %f Þ; strands a and f cannot intersect.

Otherwise, if ðef Það%e %f Þ; we will show during the proof of (5) that a crossing of

strands %e; %f has been removed during step ðc; i � 1Þ from place ðc; j̃ Þ and then

another crossing has been inserted to the left of ðc; j̃ Þ: Assume %R0 is the intermediate
rc-graph in step ðc; i � 1Þ constructed by removing a crossing from Rðc; i � 2Þ:
Consider the sequence ck for %R0: Let c %k ¼ a if a does not intersect row c vertically,

otherwise there exists a unique a0 with cAa01a; set c %k ¼ a0: Then set %f ¼ c
%
k ( %f passes

row c horizontally). There exists a strand ck0 in the considered part of the sequence

(that is %kpk0o
%
k) and a place ðc; jÞ where an insertion is allowed with strands ck0 and
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ck0þ1 passing through ðc; jÞ: Choose such a place with the largest possible j; let it be
ðc; j1Þ: Then Rðc; i � 1Þ and Tðc; i � 1Þ are defined in such a way that e ¼ ck0 and

f ¼ ck0þ1: If %k ¼ k0 and c %k ¼ a; (4.9) holds, otherwise (4.8) must be satisfied.

4.5. Proof of (5). Assume that a crossing at place ðc; j0Þ in R0 has been removed to
produce R00: It is not difficult to see that R00 is an rc-graph, ðwðRpcÞ;R00;T 00Þ is an r-
Bruhat package and EðwðRpcÞ;T 0Þ is row and column strict. We need to show that
there exists a place where an insertion is allowed to the left of ðc; j0Þ and, after Rðc; iÞ
and Tðc; iÞ are defined, (3.4) and (3.5) are satisfied.

4.5.1. Case (2.6). As in the proof of (3), we can use sequence ck for R00 to show that a
place where an insertion is allowed to the left of the place ðc; j0Þ exists. Moreover, by
Lemma 4.4, the rightmost place ðc; j1Þ where an insertion is allowed looks like the
first picture in Fig. 6.

After we insert a crossing into place ðc; j1Þ of R00 to define Rðc; iÞ and ðcdÞ into box
i of T 00 to define Tðc; i � 1Þ; it is easy to see Rðc; iÞ is an rc-graph and (3.5) is satisfied.
By Lemma 4.3, to show that (3.4) holds it is enough to show BðTðc; iÞÞ is row strict.
Notice that BðTðc; iÞÞ differs from BðTðc; i � 1ÞÞ only in box i: So we just have to
check that the entry of box i is still greater than the entry of the box to the left of box
i and not greater than the entry of the box below box i: This can be done by an
argument which is almost identical to the argument used in Section 4.4.1.

4.5.2. Case (2.7). Recall that ðabÞ is the entry of box i of T 0; ðegÞ is the entry
of box i � 1 of T 00: Consider the part of the sequence ck for R00 which starts at

c %k ¼ c and ends at c
%
k ¼ b: Then there exists k0 between %k and

%
k � 1 such that

strands ck0 and ck0þ1 pass next to each other in a place where an insertion is
allowed. Let the rightmost place to the left of ðc; j0Þ where an insertion is allowed
be ðc; j1Þ:

Consider the case when box i is in the first column of T 00: Then, using the sequence
ck; it is easy to see that place ðc; j1Þ looks like the first pictures from Fig. 6. (We used
this in Section 4.4.2.) Therefore, as in the insertion step, Rðc; iÞ is an rc-graph and
(3.5) holds. Moreover (3.4) holds, since strand g passes row c to the right of
place ðc; j1Þ:

Otherwise, if box i is in the first row, but not the first element of this row,
then strand g is either an element of the sequence ck or intersects one of the
strands ck in row c: So place ðc; j1Þ could look like the first picture of Fig. 6 and
strand g passes to the left of this place. Or, it could look like the second picture of
Fig. 6.

If it is the first picture, then, as before, R00 is an rc-graph, (3.5) holds, while (3.4)
holds, since strand g passes row c to the left of place ðc; j1Þ:

If it is the second picture, it is easy to see that R00 is an rc-graph and that (3.4) holds
while to prove (3.5), we must show

lðwðRðc; iÞÞÞ ¼ lðwðRðc; iÞÞtegtedÞ þ 2 ¼ lðwðRðc; iÞÞtegÞ þ 1: ð4:11Þ
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To prove the first equality of (4.11), notice tegted ¼ tgd teg; hence

lðwðRðc; iÞÞtegtedÞ ¼ lðwðRðc; iÞÞtgd tegÞ ¼ lðwðR00ÞtegÞ

¼ lðwðR00ÞÞ � 1 ¼ lðwðRðc; iÞÞÞ � 2:

For the second equality, notice that eog and wðRðc; iÞÞðeÞ4wðRðc; iÞÞðgÞ; thus

lðwðRðc; iÞÞtegÞolðwðRðc; iÞÞÞ:

At the same time, eod and wðRðc; iÞÞtegðeÞ4wðRðc; iÞÞtegðdÞ; hence

lðwðRðc; iÞtef tedÞolðwðRðc; iÞÞtegÞ:

This proves the second part of (4.11).

5. Inverse insertion algorithm

Let U be an rc-graph and T be a tableau of transposition of vðl; rÞ such that T

is an r-Bruhat path of w ¼ wðUÞwðTÞ�1; Eðw;TÞ is row and column strict, and
w; vðl; rÞ satisfy (2.6) or (2.7). The inverse insertion algorithm presented in this
section defines rc-graphs U-T and Y ðR;TÞ:

5.1. Sequence of inverse steps. The inverse insertion algorithm performs the same
steps as the insertion algorithm but in the opposite order. Each step will be either an
inverse row-to-row step, an inverse insertion step or an inverse rectification.

Each step ðc; iÞ with 1pipmc constructs an rc-graph Rðc; i � 1Þ with no crossings
above row c and a tableau of transposition Tðc; i � 1Þ filled up to i � 1: Each step
ðc; 0Þ defines an integer mcþ1; an rc-graph Rðcþ 1;mcþ1Þ with no crossings above
row cþ 1 and a tableau of transpositions Tðcþ 1;mcþ1Þ: Conditions (3.4), (3.5)
always hold.

5.2. Start of the algorithm. Set m1 ¼ jT j; Rð1;m1Þ ¼ U and Tð1;m1Þ ¼ T :

5.3. Inverse insertion step. Consider step ðc; iÞ with i40: We need to construct
Rðc; i � 1Þ and Tðc; i � 1Þ: Let ðcdÞ be the entry of box i of Tðc; iÞ: By Lemma 3.1,
strand c and d intersect in Rðc; iÞ at some place ðc0; j0Þ: If c ¼ c0 define T 00 by
removing the entry of box i from Tðc; iÞ: Define R00 by removing the crossing of
strands c and d in Rðc; iÞ from place ðc; j0Þ: We say that an insertion into place ðc; jÞ
is allowed if strands a; b pass this place as shown in Fig. 8. If there are no places ðc; jÞ
where an insertion is allowed with j4j0; this step is an inverse insertion. It sets
Rðc; i � 1Þ ¼ R00 and Tðc; i � 1Þ ¼ T 00:

5.4. Inverse rectification. All steps ðc; iÞ with i40 which are not inverse insertions are
inverse rectifications.
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Adopt the notation from the previous section. If c0ac; define Tðc; i � 1Þ
by emptying box i of Tðc; iÞ and define Rðc; i � 1Þ by removing the crossing
of strands c and d: Then move on to the next step, except for the case when ðef Þ is
the entry of i � 1 of Tðc; iÞ; c ¼ e; and cAf1d: In this case define R00 by removing
the crossing of b and f and define T 00 by emptying box i of Tðc; iÞ and placing
ðedÞ ¼ ðcdÞ in box i � 1: If c0 ¼ c; define R0 and T 0 as it was done in the previous
section.

Once R00 and T 00 are constructed we say that insertion into places in row c shown
in Fig. 9 are allowed. Find the leftmost place where an insertion is allowed to the
right of place ðc; j0Þ: Insert a crossing into this place to define R0: If this place looks
like the first picture of Fig. 9, add ðabÞ to box i of T 00 to construct T 0; otherwise insert
ðedÞ and ðegÞ into boxes i � 1 and i of T 00 to produce T 0:

Once R0 and T 0 are constructed let ðabÞ be the entry of box i of T 0: Then it can be
shown that strands a and b intersect below row c: Remove this crossing to produce
Rðc; i � 1Þ and construct Tðc; i � 1Þ by emptying box i of T 0:

5.5. Inverse row-to-row steps. Steps ðc; 0Þ are inverse row-to-row steps. They define
mc to be the number of inverse rectifications ðc; i1Þ;y; ðc; imcþ1Þ for row c: Also each

step ðc; 0Þ sets Rðcþ 1;mcþ1Þ ¼ Rðc;mcÞpcþ1:

The shape of Tðcþ 1;mcþ1Þ is the subdiagram of shðTðc;mcÞÞ consisting of boxes
ði1;y; imcþ1

Þ: By construction this will be a Young diagram. The entry ðakbkÞ of box
k of Tðcþ 1;mcþ1Þ is determined by

wðRðc; ik�1Þpcþ1Þ ¼ wðRðc; ikÞpcþ1Þtakbk
:

5.6. End of the inverse algorithm. Set U-T ¼ Rðr; 0Þ: We will define YðU ;TÞ
by presenting its word. Set wordrþ1 to be empty. Define wordc of length mc by
adding letters c to wordcþ1 as follows. If ðc; i1Þ;y; ðc; imcþ1Þ are the re-

ctification steps for row c: Then set letter ik of wordc to be the same as letter k of
wordcþ1; set all the other letters of wordc to be equal to c: Finally, set
wordðYðU ;TÞÞ ¼ word1:

Fig. 8. A place where an insertion is allowed.

Fig. 9. Places, where insertions are allowed during the inverse rectification.
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6. Examples

6.1. Example of rc-graphs SjðPÞ. Assume R and T are given in Fig. 10. Define

w ¼ wðRÞwðTÞ�1 ¼ ð2; 1; 4; 3; 5; 6;yÞ: Then P ¼ ðw;R;TÞ is an r-Bruhat package.
Then the sequence fSjðPÞg is given in Fig. 11. In each graph SjðPÞ the circled

crossing needs to be removed to construct Sj�1ðPÞ: Since wordðTÞ ¼
ð14Þð23Þð25Þð15Þ; S3 is constructed out of S4 by removing the crossing of strands
1 and 5; S2 out of S3 by removing the crossing of strands 2 and 5; and so on.

6.2. Example of the insertion algorithm in the case (2.6). From now on we draw only
crossings of rc-graphs without drawing strands, as it was done in Fig. 1. It makes it
easier to see how rc-graphs change during the algorithm. At the same time, as usual,
we assume each rc-graph extends infinitely down and to the right and the omitted
parts of rc-graphs have no crossings.

Assume R and Y are given in Fig. 12, so that r ¼ 3; wðRÞ ¼ ð1; 4; 3; 2; 5; 6;yÞ is a
3-semi-shuffle and wðYÞ ¼ ð1; 4; 5; 2; 3; 6;yÞ ¼ vðð2; 2Þ; 3Þ is a 3-shuffle. We will
illustrate all the steps of the algorithm for R’Y :

Fig. 10. Rc-graph R and tableau of transpositions T :

Fig. 11. Rc-graphs S4ðPÞ through S0ðPÞ:
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Fig. 16. Step (1,3) and the final step (1,4).

Fig. 12. Rc-graph R and Y :

Fig. 13. Steps (3,0), (3,1) and (2,0).

Fig. 14. Steps (2,1), (2,2) and (2,3).

Fig. 15. Steps (1,0), (1,1) and (1,2).
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Figs. 13–16 show rc-graphs Rðc; iÞ and tableaux of transposition Tðc; iÞ: Steps
(3,0), (2,0) and (1,0) are row-to-row steps. Steps (3,1), (2,1), (2,3) and (1,2) are
insertion steps. Steps (2,2), (1,1), (1,3) and (1,4) are rectifications. We circle all
crossings of Rðc; iÞ with i40 which are removed or added by the current step. We
also show by an arrow how crossings move during rectifications.

Let us also recall that each row-to-row step ðc; 0Þ constructs the sequence of rc-
graphs SjðPðcþ 1ÞÞ and then defines Rðc; 0Þ ¼ S0ðPðcþ 1ÞÞ: We omit the details of

this construction and refer to Section 6.1 for an example. Also, keep in mind that

Fig. 17. Rc-graph R and Y :

Fig. 18. Steps (3,0), (3,1) and (2,0).

Fig. 19. Steps (2,1), (1,0) and (1,1).

Fig. 20. Step (1,2) and the final step (1,3).
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after each row-to-row step wðRðc; 0ÞÞ ¼ wðRpcÞ; but the rc-graphs Rðc; 0Þ and Rpc

could be different. For example, see step (1,0) in Fig. 15.

6.3. Example of the insertion algorithm in the case (2.7). Let us now present an
example in the case when the shape of Y is a hook. Let R and Y be shown in Fig. 17.
In particular, both wðRÞ ¼ ð1; 2; 4; 6; 3; 5; 7; 8;yÞ and wðY Þ ¼ ð1; 3; 5; 2; 4; 6; 7;yÞ
are shuffles, but wðRÞ has its descent at 4, while wðY Þ has its descent at 3; so case
(2.6) does not apply.

Figs. 18–20 contain the results of all the steps of the algorithm. Steps (3,0), (2,0)
and (1,0) are row-to-row steps, steps (3,1), (1,1) and (1,3) are insertion steps, while
(2,1) and (1,2) are rectifications. Notice that step (1,2) is the only step where the
second situation of Fig. 5 occurs.

6.4. Another example in case (2.7). The last example is for R and Y defined in
Fig. 21. In this case wðRÞ ¼ ð1; 2; 5; 4; 6; 3; 7; 8;yÞ and wðYÞ ¼ ð1; 4; 2; 3; 5; 6;yÞ ¼
vðð2; 0Þ; 2Þ; the shape of Y is a row, while wðRÞ is a permutation with two descents.

The steps of the algorithm are shown in Figs. 22 and 23. Steps (2,0) and (1,0) are
row-to-row steps, steps (2,1) and (2,2) are insertion steps, while steps (1,1) and (1,2)
are rectifications. Notice that step (1,2) is the only step where the second case of
Fig. 6 occurs.

Fig. 21. Rc-graph R and Y :

Fig. 22. Steps (2,0), (2,1) and (2,2).

Fig. 23. Steps (1,0), (1,1) and final step (1,2).
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