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We consider ranking problems where the actions are evaluated on a set of ordinal criteria.
The evaluation of each alternative with respect to each criterion may be imperfect and is
provided by one or several experts. We model each imperfect evaluation as a basic belief
assignment (BBA). In order to rank the BBAs characterizing the performances of the actions
according to each criterion, a new concept called RBBD and based on the comparison of
these BBAs to ideal or nadir BBAs is proposed. This is performed using belief distances that
measure the dissimilarity of each BBA to the ideal or nadir BBAs. A model inspired by Xu
et al.’s method is also proposed and illustrated by a pedagogical example.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Evidence theory [18], also called Dempster–Shafer theory or belief functions theory, is a convenient framework for mod-
eling imperfect data and for combining information. This formalism has been widely used in many fields such as the clas-
sification [10], the data mining [25], the multicriteria decision analysis [2,4,5,23,29], etc. Within the latter field, authors
generally distinguish three main problems: the choice, the sorting and the ranking [17].

The ranking problem refers to the ordering of a set of actions evaluated on several criteria in a partial or a total preorder.
Within this context, evidence theory has been used for modeling three ranking procedures: Utkin’s approach [23,24], the DS/
AHP method [1–3] and the evidential reasoning algorithm [29–31]. The first approach allows to deal with comparisons of
groups of actions and then to deduce a ranking based on the computation of the belief and plausibility functions of each
alternative or of the possible rankings. The second method is an extension of the AHP (Analytic Hierarchy Process) approach
which considers verbal judgements given by the decision maker on groups of actions compared to the actions set on each
criterion. The third method is a procedure that considers imperfect evaluations of the actions on a set of ordinal criteria mod-
eled by belief structures. However, the main drawback of this method is that the belief structures expressing the perfor-
mances of the actions are defined using the same set of assessment grades on all the criteria. This can be not possible in
some situations. Indeed, the decision maker can prefer to consider a set of assessment grades for each criterion rather than
the same set for all the criteria.

In what follows, we will propose another ranking model based on evidence theory in a context different to those consid-
ered in Utkin’s approach, the DS/AHP method and the evidential reasoning algorithm. We consider ranking problems where
. All rights reserved.
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the actions are evaluated by ordinal criteria and where the evaluations are estimated by several experts. We assume that the
assessment grades set used to evaluate the actions is not the same for all the criteria as in the evidential reasoning approach,
i.e., each criterion has its own set of evaluation grades. Moreover, we assume that the experts agree on these sets and that the
evaluations of the actions are imperfect. One of the main sources of this imperfection is the subjectiveness of the human
behavior. For instance, in a problem of personnel recruiting, an expert may hesitate between two or more successive assess-
ments grades when evaluating a candidate. He may be sure that this candidate has ‘‘good’’ or ‘‘very good’’ communication
skills without being able to refine his judgment.

Information provided by several experts about the evaluation of an action on a given criterion has to be combined in order
to reach a collective evaluation of this action that synthesizes the experts’ opinions. Evidence theory offers several tools that
allow combining the information issued from several experts such as Dempster’s rule [7,18] and the normalized cautious
rule [8]. These rules can be solutions for the aggregation of the experts’ opinions in our problem. However, we will show
that these combination operators do not usually respect the unanimity property which is a natural condition of an aggrega-
tion operator.

In this work, we will propose a model inspired by Xu et al.’s [26] that addresses ranking problems in the context described
above. The imperfect evaluations will be modeled by evidential functions called BBAs (Basic Belief Assignment). Moreover,
we will propose a new concept called RBBD (Ranking BBAs based on Belief Distances) that permits to obtain partial and total
rankings of the evaluations on each criterion. We will show that this approach is coherent with the first belief dominance
[4,6] which is a procedure allowing pairwise comparisons between the BBAs. We will also show that using the first belief
dominance to rank alternatives can lead to poor results since an important number of incomparable BBAs can be induced.
We will prove that this number is usually superior or equal to the one obtained by the RBBD concept which constitutes
understandably an interesting advantage for the RBBD with regard to the first belief dominance. Finally, we will suggest
in our model inspired by Xu et al.’s another manner for aggregating the different experts’ opinions in order to avoid the
drawback of Dempster’s and the normalized cautious rules mentioned previously.

This paper is organized as follows: in Section 2 we introduce the key concepts of evidence theory, then the notion of RBBD
is presented in Section 3 and a model inspired by Xu et al.’s method is proposed in Section 4. The model is illustrated by a
pedagogical example in Section 5.

2. Evidence theory: some concepts

Evidence theory has been initially introduced Arthur Dempster in 1967 [7] and has been later developed by Glenn Shafer
in 1976 as a general framework for modeling uncertainty [18]. This theory has been proposed as a generalization of the sub-
jective probability theory and as a model that allows representing the total ignorance case. It has been also the starting point
of many models such as the transferable belief model [20]. In this section, we will recall the basic concepts of this theory that
are necessary to understand the rest of the paper.

2.1. Knowledge model

Basically, the imperfection in data within evidence theory is modeled by a BBA. This function is defined on a finite set of
mutually exclusive and exhaustive hypotheses called the frame of discernment. Let H be this set and 2H be the set of all
subsets of H. A BBA [20] is a function m defined from 2H to [0,1] such as

P
A # HmðAÞ ¼ 1.

The quantity m(A), called the belief mass of subset A, represents the partial belief that A is true. When m(A) – 0, A is called
focal set. Moreover, a BBA m is said to be:

� Normal if £ is not a focal set, i.e., m(£) = 0. The initial works [7,18] on evidence theory requires that m(£) = 0, but this
condition is not imposed in the transferable belief model [20]. In this paper, we will only consider normal BBAs;
� Bayesian if all its focal sets are singletons;
� Dogmatic if H is not a focal set, i.e., m(H) = 0;
� Vacuous if H is the only focal set, i.e., if m(H) = 1 and m(A) = 0 for all A – H. This type of BBA is used to represent the total

ignorance case;
� Simple if m(H) = w and m(A) = 1 � w for some A – H and 0 6w 6 1. When w > 1, m is not a BBA since it is no longer a

function from 2H to [0,1]. Such a function can be referred as an inverse simple BBA. Both simple and inverse simple BBAs
are known as generalized simple BBAs and denoted as denoted Aw. w is interpreted as the weight of evidence [21] (these
notions will be used later in the definition of the normalized cautious rule of combination).

A BBA can equivalently be represented by its associated belief (or credibility) and plausibility functions [18] defined
respectively by the following formulas:
BelðAÞ ¼
X
B # A

mðBÞ ð1Þ

PlðAÞ ¼
X

A\B–£

mðBÞ ð2Þ
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The quantity Bel(A) measures the total belief that support completely A whereas the plausibility Pl(A) quantifies the total
belief that can potentially be placed in A, i.e., the belief that support completely and partially A. Of course, Bel(A) 6 Pl(A)
for all A # H. Moreover, these two functions are connected by the equation PlðAÞ ¼ 1� BelðAÞ where A denotes the comple-
ment of A.

Finally, there is a third function that can be deduced from the BBA called the commonality function. Formally, this func-
tion is defined as follows:
QðAÞ ¼
X
A # B

mðBÞ ð3Þ
where Q(A) is measure of the belief mass that can move freely to any element of A. This function has no real intuitive sense,
but it is used in evidence theory to optimize computations and to prove and express theorems and properties. In particular,
the notion of weight of evidence introduced above can be expressed using the commonality function using the following
equation:
wðAÞ ¼
Y
A # B

QðBÞð�1ÞjBj�jAjþ1

ð4Þ
2.2. Combination

The combination is an operation that constitutes a crucial component of evidence theory. Given several BBAs induced by
several sources, it is usually required to aggregate them in order to yield a global BBA synthesizing the knowledge of the
different sources. Within this context, several combinations rules have been proposed in evidence theory to aggregate inde-
pendent and dependant sources. Among others, we can mention Dempster’s rule [7,18], Dubois and Prade’s rule [11], Yager’s
rule [27], the cautious rule (normalized and unnormalized) [8], etc. In this section, we will only describe Dempster’s and the
normalized cautious rules.

Dempster’s rule, also known as the normalized conjunctive rule [19], has been the first combination operator proposed in
evidence theory. This rule allows the combination of BBAs provided by independent sources, i.e., distinct BBAs. Let m1 and m2

be two distinct BBAs to combine, Dempster’s rule is defined for all A # H as follows:
mðAÞ ¼ ð1� kÞ�1 �
X

B\C¼A

m1ðBÞ �m2ðCÞ ð5Þ
where k ¼
P

B\C¼£
m1ðBÞ �m2ðCÞ, i.e., the belief mass that the combination assigns to the empty set. The coefficient k reflects

the conflict between the sources whereas the quotient (1 � k)�1 is a normalization term guarantying that no belief is asso-
ciated to empty set and that the total belief is equal to one.

Dempster’s rule has several interesting mathematical properties. It can be proved to be both commutative and associa-
tive. Therefore, the combination result of several BBAs is independent of the order in which they are considered. This rule has
been used in several applications for instance in the expert systems [1]. However, the main drawback of this operator is that
it cannot be applied to combine BBAs given by dependant sources, i.e., nondistinct BBAs. To perform the combination in such
situations, Denoeux has proposed the normalized cautious rule [8]. This operator, which combines nondogmatic BBAs, is
based on the notion of weight of evidence described previously. In practice, the combination of two nondogmatic BBAs
m1 and m2 using the normalized cautious rule is determined as follows:

� Compute the commonality functions Q1 and Q2 using Eq. (3).
� Compute the weights of evidence w1 and w2 that are obtained from the commonalities using Eq. (4).
� Determine the generalized simple BBAs Aminðw1ðAÞ;w2ðAÞÞ for all A �H such that min(w1(A),w2(A)) – 1.
� Combine the induced generalized simple BBAs using Dempster’s rule.

The normalized cautious rule is also commutative and associative and it has been also used to combine expert opinions.
The interested reader can refer to [12] that gives an application of this rule to climate sensitivity assessment.
3. RBBD concept

In this section, we will propose a new concept called RBBD in the context of multicriteria decision problems which allows
ranking evaluations expressed by BBAs. The underlying idea of this approach has been inspired from a multicriteria ranking
method called TOPSIS [13] which is based on the comparison of the actions to two referential solutions called ideal and nadir
actions using Euclidean distances. In our approach, the BBAs are compared to ideal or nadir BBAs using distances called belief
distances. Therefore, after presenting formally the problem, we will introduce the notion of belief distances. Then, we will
define the ideal and nadir BBAs and we will describe how a partial or a total preorder of the BBAs can be obtained. Finally,
we will discuss the properties of our technique.
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3.1. Problem formulation

Before describing formally the problem, let us note that a part of the theoretical material presented in this paper has been
already used in [4] including the notation described below. Other concepts will be defined after when introducing the belief
distances and our model inspired by Xu et al.’s method.

We consider a ranking problem which can be represented by three elements: the actions, the ordinal criteria and the
assessment grades sets related to the criteria. At first, we will consider situations where only one expert evaluates the alter-
natives. In what follows, let:

� A = {a1,a2, . . . ,an} be the set of actions;

� G = {g1,g2, . . . ,gq} be the set of ordinal criteria;

� Xh ¼ fxh
1; x

h
2; . . . ; xh

rh
g be the assessment grades set of criterion gh.

The n alternatives are evaluated, on each criterion gh, using the rh assessment grades xh
j (with j = 1,2, . . . ,rh) which are re-

quired to be mutually exclusive and exhaustive. These grades constitute the frame of discernment in evidence theory and are
defined such as xh

1 � xh
2 � � � � � xh

rh
, i.e., xh

1 is less preferred than xh
2 and so on.

The evaluation of each action ai with respect to each criterion gh is given by a normal BBA mh
i defined on the set Xh. Since

xh
1 � xh

2 � � � � � xh
rh

, the focal sets of any BBA defined on Xh should be either singletons or disjunctions of successive elements
of Xh. In what follows, we will denote S(Xh) the set of singletons and all the subsets constituted of successive elements of Xh.
Therefore, mh

i is defined formally as a function from S(Xh) to [0,1] such as mh
i ð£Þ ¼ 0 and

P
C # Xh mh

i ðCÞ ¼ 1. Of course, when
the expert is unable to express the assessment of an action ai on a given criterion gh, this is modeled using a vacuous BBA. In
such case, the total belief mass is assigned to the frame Xh.

Finally, it is interesting to define the sets Ah
k and Bh

l before describing the RBBD concept. For all h 2 {1,2, . . . ,q} and for all
k 2 {0,1, . . . ,rh}, let:
Ah
k ¼

£ if k ¼ 0
fxh

1; . . . ; xh
kg otherwise

�
ð6Þ
and let S
!
ðXhÞ denote the set fAh

1;A
h
2; . . . ;Ah

rh
g. Similarly, for all h 2 {1,2, . . . ,q} and for all l 2 {0,1, . . . ,rh} such as l = rh � k, let:
Bh
l ¼

£ if l ¼ 0
fxh

rh�lþ1; . . . ; xh
rh
g otherwise

(
ð7Þ
and let S
 
ðXhÞ denote the set fBh

1;B
h
2; . . . ;Bh

rh
g � k and l represent respectively the number of elements of the sets Ah

k and Bh
l .

Obviously, j S
!
ðXhÞj ¼ j S

 
ðXhÞj ¼ rh; Ah

k ¼ Bh
rh�k ¼ Bh

l for all k 2 {0,1, . . . ,rh} and Bh
l ¼ Ah

rh�l ¼ Ah
k for all l 2 {0,1, . . . ,rh}.

3.2. Belief distances

The term ‘‘distance’’ is not a new concept in evidence theory. Indeed, several distances that quantify the dissimilarity
between BBAs have been defined. For instance, one can cite Tessem’s distance [22], Jousselme et al.’s distance [15], Ristic
and Smets’ distance [16], etc. However, these distances do not seem to be well suited to measure the divergence between
BBAs defined on a frame with ordered elements. For instance, let us consider three BBAs mh

1; mh
2 and mh

3 that represent

respectively the evaluations of three actions a1, a2 and a3 on a given criterion gh. Let Xh ¼ fxh
1; x

h
2; x

h
3g be the set of assess-

ment grades of gh defined such as xh
1 � xh

2 � xh
3 and let us suppose that mh

1ðfxh
1gÞ ¼ 1; mh

2ðfxh
2gÞ ¼ 1 and mh

3ðfxh
3gÞ ¼ 1.

Using one of the distances cited previously leads to the following result: the distance between mh
1 and mh

2 ðdðmh
1;m

h
2ÞÞ

is equal to the distance between mh
1 and mh

3 ðdðmh
1;m

h
3ÞÞ. This result is understandably incoherent because dðmh

1;m
h
2Þ

should be inferior to dðmh
1;m

h
3Þ since xh

1 is closer to xh
2 than to xh

3 in terms of preference. To avoid this type of counter-
intuitive results, we will propose distance measures called ‘‘belief distances’’ that take into account the preference infor-
mation on the elements of the frame. Before presenting these distances, let us define the notions of ascending and
descending belief functions [4,6] which have been already used to define the first belief dominance approach (see for-
mula 18).

Definition 1. The ascending belief function, denoted Belhi

!

and induced by mh
i , is a function Belhi

!

: S
!
ðXhÞ ! ½0;1� defined such

as Belhi

!
ðAh

kÞ ¼
P

C # Ah
k
mh

i ðCÞ for all Ah
k 2 S

!
ðXhÞ.

Definition 2. The descending belief function, denoted Belh
i

 

and induced by mh
i , is a function Belh

i

 

: S
 
ðXhÞ ! ½0;1� defined such

as Belh
i

 

ðBh
l Þ ¼

P
C # Bh

l
mh

i ðCÞ for all Bh
l 2 S

 
ðXhÞ.
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These two functions allow taking into account implicitly the fact that xh
1 � xh

2 � � � � � xh
rh

. Indeed, the former represents the

beliefs of the nested sets Ah
1;A

h
2; . . . ;Ah

rh
, i.e., the sets fxh

1g; fxh
1; x

h
2g; . . . ; fxh

1; . . . ; xh
rh
g whereas the latter represents the beliefs of

the nested sets Bh
1;B

h
2; . . . ; Bh

rh
, i.e., the sets fxh

rh
g; fxh

rh�1; x
h
rh
g; . . . ; fxh

1; . . . ; xh
rh
g. Of course, since xh

1 and xh
rh

are respectively the

worst and the best assessment grades of Xh, the more the values of Belhi

!

for all Ah
k 2 S

!
ðXhÞ decrease and those of Belhi

 

for

all Bh
l 2 S

 
ðXhÞ increase, the better is the BBA.

Basically, the intuition behind the proposed belief distances is that two BBAs will be as close as their ascending belief
functions and their descending belief functions are alike. Therefore, in order to quantify the dissimilarity between two BBAs,
we should define a distance measure between their ascending belief functions and another one between their descending
belief functions. We will call these distances respectively ascending and descending belief distances.

Definition 3. Let Belhi

!
and Belhi0

!
be two ascending belief functions related respectively to two BBAs mh

i and mh
i0
, the ascending

belief distance is defined as follows:
d Belh
i

!

;Belh
i0

!
 !

¼
Xrh

k¼1

Belh
i

!

ðAh
kÞ � Belh

i0

!

ðAh
kÞ

�����
����� ð8Þ
Definition 4. Let Belhi

 

and Belh
i0

 

be two descending belief functions related respectively to two BBAs mh
i and mh

i0 , the descend-
ing belief distance is defined as follows:
d Belh
i

 

;Belh
i0

 
 !

¼
Xrh

l¼1

Belh
i

 

ðBh
l Þ � Belh

i0

 

ðBh
l Þ

�����
����� ð9Þ
Of course, the ascending belief distance is a metric, i.e., it satisfies the following axioms:

� The non-negativity: d Belh
i

!

;Belh
i0

!
 !

P 0.

� The symmetry: d Belh
i

!

;Belh
i0

!
 !

¼ d Belh
i0

!

;Belh
i

!
 !

.

� The non-degeneracy: d Belh
i

!

;Belh
i0

!
 !

¼ 0() Belh
i

!

¼ Belh
i0

!

.

� The triangle inequality: d Belhi

!

;Belhi0
!

 !
6 d Belh

i

!

;Belh
i00

!
 !

þ d Belhi00
!

;Belh
i0

!
 !

.

Similarly, the descending belief distance verifies the above axioms and therefore it is a metric. The proofs are trivial and
obvious. Thus, we will not give them in this paper.

3.3. Ideal and nadir BBAs

As mentioned above, the fundamental idea of the RBBD concept is that the BBAs representing the evaluations of the ac-
tions on each criterion are compared to ideal or nadir BBAs. In what follows, we will define these two particular BBAs.

The ideal BBA is the best BBA among all the BBAs that can be defined on the set S(Xh) whereas the nadir BBA is the worst
one among these BBAs. They represent respectively the best and the worst evaluations that can be reached on a criterion gh.
Since xh

1 and xh
rh

are respectively the worst and the best assessment grades related to gh, therefore the ideal and nadir BBAs
can be defined respectively as follows:

Definition 5. The ideal BBA on a criterion gh is a function mh
ideal from S(Xh) to [0,1] such as mh

idealðfxh
rh
gÞ ¼ 1.
Definition 6. The nadir BBA on a criterion gh is a function mh
nadir from S(Xh) to [0,1] such as mh

nadirðfxh
1gÞ ¼ 1.

The comparison of the BBAs to the ideal and nadir BBAs is based on the notion of belief distances defined above. The dis-
similarity of a given BBA mh

i to the ideal BBA mh
ideal is measured through the two ascending and descending belief distances

d Belh
i

!

;Belh
ideal

!
 !

and d Belh
i

 

;Belh
ideal

 
 !

. Since mh
ideal is a particular type of BBA, these belief distances can respectively be ex-

pressed as follows:
d Belh
i

!

;Belh
ideal

!
 !

¼
Xrh

k¼1

Belh
i

!

ðAh
kÞ

 !
� 1 ð10Þ

d Belh
i

 

;Belh
ideal

 
 !

¼ rh �
Xrh

l¼1

Belh
i

 

ðBh
l Þ ð11Þ
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In the same way, the comparison of mh
i to the nadir BBA mh

nadir is performed using the two ascending and descending belief

distances d Belhi

!

;Belhnadir

!
 !

and d Belhi

 

;Belhnadir

 
 !

. Since mh
nadir is a particular case of BBA, these belief distances can respectively

be written as:
d Belh
i

!

;Belh
nadir

!
 !

¼ rh �
Xrh

k¼1

Belh
i

!

ðAh
kÞ ð12Þ

d Belh
i

 

;Belh
nadir

 
 !

¼
Xrh

l¼1

Belh
i

 

ðBh
l Þ

 !
� 1 ð13Þ
The proofs of formulas 10, 11, 12 and 13 are given in Appendix A (see proofs 1, 2, 3 and 4, resp.).

3.4. Partial and total preorders of the BBAs

Based on the belief distances between the BBAs and the ideal BBA on each criterion gh, it is possible to obtain two rankings
of the BBAs representing the evaluations of the actions on gh. The first one is associated to the ascending belief distances

d Belh
i

!

;Belh
ideal

!
 !

whereas the second one is related to the descending belief distances d Belhi

 

;Belhideal

 
 !

. Of course, the lower

the values of these belief distances, the better mh
i . Similarly, the comparison of the BBAs to the nadir BBA allows obtaining

two rankings related respectively to the ascending and descending belief distances d Belh
i

!

;Belh
nadir

!
 !

and d Belhi

 

;Belhnadir

 
 !

: the

higher their values, the better mh
i .

From formulas 10 to 13, it is easy to see that the ascending belief distances to the ideal and nadir BBAs are linearly linked
(idem for the descending belief distances to the ideal and nadir BBAs). Since the belief distances to the ideal BBA are to min-

imize and those to the nadir BBA are to be maximize, one can deduce that the rankings related to d Belh
i

!

;Belhideal

!
 !

and

d Belh
i

!

;Belh
nadir

!
 !

are the same (idem for the rankings related to d Belhi

 

;Belhideal

 
 !

and d Belhi

 

;Belh
nadir

 
 !

Þ. Therefore, the compar-

ison to the ideal and nadir BBAs can be reduced to a comparison to one of them.
When comparing the BBAs to the ideal BBA, it is possible to deduce a partial preorder of these BBAs called the RBBD I

ranking. This preorder is obtained as the intersection of the two rankings related to d Belh
i

!

;Belh
ideal

!
 !

and d Belh
i

 

;Belh
ideal

 
 !

.

Three preference situations can be distinguished in this context between the BBAs on gh: the preference (Ph) (P�1
h for the in-

verse), the indifference (Ih) and the incomparability (Jh). The latter appears between two BBAs when it is impossible to ex-
press indifference or preference between them. Formally, these relations can be expressed as follows:
mh
i Phmh

i0 ()

d Belh
i

!

;Belh
ideal

!
 !

6 d Belh
i0

!

;Belh
ideal

!
 !

and d Belh
i

 

;Belh
ideal

 
 !

< d Belh
i0

 

;Belh
ideal

 
 !

d Belh
i

!

;Belh
ideal

!
 !

< d Belh
i0

!

;Belh
ideal

!
 !

and d Belh
i

 

;Belh
ideal

 
 !

6 d Belh
i0

 

;Belh
ideal

 
 !

8>>>>>><
>>>>>>:

mh
i Ihmh

i0 () d Belh
i

!

;Belh
ideal

!
 !

¼ d Belh
i0

!

;Belh
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and d Belh
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;Belh
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!

;Belh
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!
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> d Belh
i0

!

;Belh
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!
 !

and d Belh
i

 

;Belh
ideal

 
 !

< d Belh
i0

 

;Belh
ideal

 
 !

8>>>>>><
>>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ
Using the belief distances to the nadir BBA, the RBBD I ranking can be obtained as the intersection of the two rankings related

to d Belhi

!

;Belh
nadir

!
 !

and d Belhi

 

;Belhnadir

 
 !

. In this case, the relations Ph, Ih and Jh can be deduced as follows:



M.A. Boujelben et al. / International Journal of Approximate Reasoning 52 (2011) 1171–1194 1177
mh
i Phmh

i0 ()

d Belh
i

!

;Belh
nadir

!
 !

P d Belh
i0

!

;Belh
nadir

!
 !

and d Belh
i

 

;Belh
nadir

 
 !

> d Belh
i0

 

;Belh
nadir

 
 !

d Belh
i

!

;Belh
nadir

!
 !

> d Belh
i0

!

;Belh
nadir

!
 !

and d Belh
i

 

;Belh
nadir

 
 !

P d Belh
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;Belh
nadir

 
 !

8>>>>><
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;Belh
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!
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;Belh
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 !
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i0

 

;Belh
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i Jhmh

i0 ()

d Belh
i

!

;Belh
nadir

!
 !

> d Belh
i0

!

;Belh
nadir

!
 !

and d Belh
i

 

;Belh
nadir

 
 !

< d Belh
i0

 

;Belh
nadir

 
 !

d Belh
i

!

;Belh
nadir

!
 !

< d Belh
i0

!

;Belh
nadir

!
 !

and d Belh
i

 

;Belh
nadir

 
 !

> d Belh
i0

 

;Belh
nadir
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8>>>>><
>>>>>:

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð15Þ
In addition to the partial preorder, it is possible to obtain a total preorder of the BBAs on each criterion gh, i.e., a complete
ranking without incomparabilities. This preorder, called the RBBD II ranking, can be deduced based on the belief distances to
the ideal BBA or to the nadir BBA. When the BBAs are compared to the ideal BBA, the total preorder is established based on a
global score ah

i computed for each BBA mh
i as follows:
ah
i ¼ d Belh

i

!

;Belh
ideal

!
 !

þ d Belh
i

 

; Belh
ideal

 
 !

ð16Þ
Of course, the lower ah
i , the better mh

i . Using the belief distances to the nadir BBA, the RBBD II ranking is deduced using a
global score bh

i defined for each BBA mh
i as follows:
bh
i ¼ d Belh

i

!

;Belh
nadir

!
 !

þ d Belh
i

 

; Belh
nadir

 
 !

ð17Þ
Obviously, the higher bh
i , the better mh

i . Moreover, it is easy to deduce from formulas 10 to 13 that ah
i ¼ �bh

i � 2þ 2:rh.
Therefore, ah

i and bh
i are linearly linked.

3.5. Properties

The RBBD concept verifies two important properties: the dominance and the stability of the preferences. The first prop-
erty is a natural condition that our procedure should satisfy. Within evidence theory, the dominance or the non-dominance
of a BBA to another is determined using the first belief dominance concept (FBD) (let us note that similar approaches to this
concept called credal orderings have been proposed by Thierry Denoeux [9]). This approach, which is a generalization of the
first stochastic dominance, is defined as follows:
mh
i FBDmh

i0 ()
Belh

i

!

ðAh
kÞ 6 Belh

i0

!

ðAh
kÞ for all Ah

k 2 S
!
ðXhÞ

Belh
i

 

ðBh
l ÞP Belh

i0

 

ðBh
l Þ for all Bh

l 2 S
!
ðXhÞ

8><
>: ð18Þ
The first belief dominance allows performing pairwise comparisons between the BBAs. Two situations can be identified
when using this concept:

� FBD when mh
i dominates mh

i0 , i.e., if mh
i FBDmh

i0 .
� FBD when mh

i does not dominate mh
i0 , i.e., mh

i FBDmh
i0 .

Of course, when mh
i FBDmh

i0 and mh
i0FBDmh

i ; mh
i and mh

i0 are incomparable according to this concept. Moreover, let us note
that this approach has been used recently in a multicriteria choice model inspired by ELECTRE I to compare evaluations ex-
pressed by BBAs [4].

Proposition 1. If mh
i FBDmh

i0 , then mh
i Phmh

i0 or mh
i Ihmh

i0 .

This proposition means that if a BBA mh
i dominates a BBA mh

i0 according to the first belief dominance, the rank of mh
i may

not be worse than the rank of mh
i0 using the RBBD concept. In other words, mh

i should be preferred or indifferent to mh
i0 . The

proof is detailed in Appendix A (proof 5).
The second characteristic of the RBBD concept is the stability of the preferences. This property means that the ranks of

two BBAs mh
i and mh

i0 may not be reversed when a third BBA is removed or added to the initial set of BBAs. Our approach
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does not suffer, therefore, from the rank reversal phenomenon. This property is natural since all the BBAs are compared to a
referential BBA (ideal or nadir), i.e., the rank of a BBA does not depend of the remaining BBAs that need to be ranked.

Before ending this section, it is worth mentioning that it is possible to use the first belief dominance concept to obtain a rank-
ing of the BBAs. For that purpose, we apply at first this approach in order to compare all the pairs of the BBAs. These comparisons
are then represented by a graph that synthesises all the relations (FBD or FBDÞ holding between the BBAs. Finally, based on this
graph, the ranking of the BBAs is deduced. However, the main drawback of using the first belief dominance to rank the BBAs is
the number of incomparabilities between the BBAs that can be important is some situations (this problem is well known in the
multicriteria analysis). This number is always superior or equal to the one obtained by the RBBD concept (RBBD I ranking). This
result is a direct consequence of Proposition 1. The proof is given in Appendix A (proof 6). The following example illustrates a
case where the first belief dominance and the RBBD concepts are used to rank a set of BBAs.

Example 1. Let us consider a multicriteria problem where five actions are evaluated on a set of ordinal criteria and where
the evaluations are expressed by BBAs. In this example, we will only consider the evaluations on criterion g1 given in Table 1.
Let x1

1; x1
2 and x1

3 be the assessment grades of g1 defined such as x1
1 � x1

2 � x1
3.

The first belief dominance is applied to rank these BBAs. Therefore, we compute at first the ascending and descending
belief functions of each BBA and we determine the observed belief dominances according to this concept for each pair of
alternatives. The results are illustrated in Table 2. Then, we build the graph synthesizing all the relations between the BBAs
representing the evaluations and we deduce the ranking of these BBAs. Fig. 1 gives this preorder. As can be noticed, the eval-
Table 1
BBAs characterizing the actions performances on criterion g1.

a1 a2 a3 a4 a5

BBAs m1
1ðfx1

1gÞ ¼ 0:4

m1
1ðfx1

2gÞ ¼ 0:3

m1
1ðfx1

3gÞ ¼ 0:2

m1
1ðfx1

1; x
1
2; x

1
3gÞ ¼ 0:1

m1
2ðfx1

1gÞ ¼ 0:2

m1
2ðfx1

1; x
1
2; x

1
3gÞ ¼ 0:8

m1
3ðfx1

1gÞ ¼ 0:2

m1
3ðfx1

2gÞ ¼ 0:2

m1
3ðfx1

3gÞ ¼ 0:5

m1
3ðfx1

1; x
1
2; x

1
3gÞ ¼ 0:1

m1
4ðfx1

1gÞ ¼ 0:1

m1
4ðfx1

2gÞ ¼ 0:2

m1
4ðfx1

3gÞ ¼ 0:3

m1
4ðfx1

1; x
1
2; x

1
3gÞ ¼ 0:4

m1
5ðfx1

1gÞ ¼ 0:2

m1
5ðfx1

1; x
1
2gÞ ¼ 0:2

m1
5ðfx1

1; x
1
2; x

1
3gÞ ¼ 0:6

Table 2
Observed belief dominances between the evaluations.

a1 a2 a3 a4 a5

a1 – FBD FBD FBD FBD
a2 FBD – FBD FBD FBD
a3 FBD FBD – FBD FBD
a4 FBD FBD FBD – FBD
a5 FBD FBD FBD FBD –

a1

a2

a3

a4

a5

Fig. 1. Ranking of the evaluations obtained by the first belief dominance.

Table 3
Ascending and descending belief distances and global scores with regard to the ideal BBA.

a1 a2 a3 a4 a5

d Bel1i

!
;Bel1ideal

! !
1.1 0.4 0.6 0.4 0.6

d Bel1i

 
;Bel1ideal

  !
1.3 2 0.8 1.2 2

a1
i

2.4 2.4 1.4 1.6 2.6



a4 a2 a5

a1

a3

Fig. 2. RBBD I ranking of the evaluations.

a4

a2

a3 a5

a1

Fig. 3. RBBD II ranking of the evaluations.

Table 4
Ascending and descending belief distances and global scores with regard to the nadir BBA.

a1 a2 a3 a4 a5

d Bel1i

!
;Bel1nadir

! !
0.9 1.6 1.4 1.6 1.4

d Bel1i

 
;Bel1nadir

  !
0.7 0 1.2 0.8 0

b1
i

1.6 1.6 2.6 2.4 1.4
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uations of a2, a3 and a4 dominate the one of a5 on criterion g1 and the evaluation of a1 is incomparable to those of a2, a3 and
a4. Thus, the best evaluations on g1 are those of a1, a2, a3 and a4. Moreover, we can easily identify 7 incomparable pairs of
evaluations which are those of a1 and a2, a1 and a3, a1 and a4, a1 and a5, a2 and a3, a2 and a4 and finally a3 and a4.

The RBBD concept has been also used to rank the BBAs given in Table 1. For that purpose, we determine at first the ideal
BBA. Since x1

3 is the best assessment grade related to criterion g1, the ideal BBA is therefore: m1
idealðfx1

3gÞ ¼ 1. Then, we com-
pute the ascending and descending belief distances of each BBA with regard to the ideal BBA. Table 3 gives the values of these
distances. Finally, we determine the two rankings associated to the ascending and descending belief distances. The intersec-
tion of these two rankings is the RBBD I ranking. Fig. 2 illustrates this partial preorder. As can be remarked, the evaluation of
a4 is preferred to those of a1, a2 and a5 on criterion g1 and the evaluation of a3 is incomparable to the one of a4. Thus, the best
evaluations on g1 are those of a3 and a4. Furthermore, the number of incomparable pairs of evaluations is 4. These pairs are
the following: a1 and a2, a1 and a5, a2 and a3 and finally a3 and a4. It is clear therefore that the number of incomparable eval-
uations obtained by the RBBD concept is inferior to the one obtained by the first belief dominance approach.

Let us suppose now that a total preorder of the evaluations should be determined. Thus, we can use the RBBD II ranking.
For that purpose, we compute the global scores of the BBAs which are given in Table 3 (last line). Then, we determine the
total preorder as shown in Fig. 3. As can be seen, the evaluations of actions a1 and a2 are indifferent. The best and the worst
evaluations are respectively those of a3 and a5.

Finally, let us note that it is possible to determine the RBBD I and II rankings based on the comparisons of the BBAs to the
nadir BBA. Of course, since x1

1 is the worst assessment grade on g1, the nadir BBA is nothing else than m1
nadirðfx1

1gÞ ¼ 1. Table 4
gives the ascending and descending belief distances of the BBAs with regard the nadir BBA as well as the global scores.
4. The model

In this section, we will propose a model inspired by a multicriteria procedure called Xu et al.’s method [26] to rank alter-
natives in uncertain, imprecise and multi-experts contexts. At first, we will describe briefly Xu et al.’s procedure. Then, we
will present the steps of our model.
4.1. Xu et al.’s method

Xu et al.’s method is a ranking approach which uses partial or total preorders of the evaluations of the actions on each
criterion. These single-criterion preorders reflect situations of preference ðPhÞ ðP�1

h for the inverse), indifference (Ih) and
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incomparability (Jh) between the actions on each criterion gh. In what follows, let Rhðai; ai0 Þ be the preference relation holding
between two actions ai and ai0 on gh.

Basically, the underlying idea of this method is that an action ai performs better if more relations aiPhai0 and fewer rela-
tions aiP

�1
h ai0 hold for i0 – i. In order to determine the performance of ai, Xu et al. have incorporated in their approach the

notion of distance between the preference relations. Briefly, this concept allows quantifying the degree of divergence be-
tween each pair of preference relations. The numerical values of this distance have been determined on the basis of several
conditions suggested in [14]. For instance, Ph and P�1

h are considered as the most discordant relations and Jh is viewed as equi-
distant from Ih, Ph and P�1

h . Table 5 gives the distance values between each pair of preference relations. Let us note that Xu
et al.’s method considers only the distances with regard to Ph and P�1

h , i.e., the distances between Ph and each Rhðai; ai0 Þ de-
noted DðPh;Rhðai; ai0 ÞÞ and the distances between P�1

h and each Rhðai; ai0 Þ denoted DðP�1
h ;Rhðai; ai0 ÞÞ. Of course, the less

DðPh;Rhðai; ai0 ÞÞ and the more DðP�1
h ;Rhðai; ai0 ÞÞ, the better ai.

The distances DðPh;Rhðai; ai0 ÞÞ and DðP�1
h ;Rhðai; ai0 ÞÞ allow respectively building two total preorders O1 and O2 which are

then combined to determine the global ranking of the actions denoted O. The total preorder O1 is built iteratively as follows.
In the first step, a distance that describes the dominating character of ai on each criterion gh is computed. This distance, de-
noted dPh ðaiÞ, is determined as the sum of all DðPh;Rhðai; ai0 ÞÞ for all i0 – i:
Table 5
Numeri

Ih

Ph

Jh

P�1
h

dPh ðaiÞ ¼
X
i0–i

DðPh;Rhðai; ai0 ÞÞ ð19Þ
Then, the distance that represents the dominating character of ai on all the criteria is deduced as follows:
dO1 ðaiÞ ¼
Xq

h¼1

wh:d
Ph ðaiÞ ð20Þ
where wh denotes the weight of criterion gh. Of course, the less this distance, the better ai. Based on the values of dO1 ðaiÞ, we
determine the best action(s), i.e. the action(s) that has (have) the minimum of these values. In the second step, the above
distances are recomputed but only for the actions that are not yet ranked. These distances are determined without taking
into account the action(s) ranked in the first step. Then, the best alternative(s) is (are) determined as previously. This pro-
cedure continues as describe above until all the actions are ranked. Let us note that two actions are indifferent in O1if their
related distances are equal and represent the minimal values of the distances computed on a given iteration.

In the same way, the total preorder O2 is built iteratively, but instead of considering the dominating character of ai, we
consider its dominated intensity. For that purpose, we determine the distance dP�1

h ðaiÞ that describes this character on each
criterion gh. Formally:
dP�1
h ðaiÞ ¼

X
i0–i

DðP�1
h ;Rhðai; ai0 ÞÞ ð21Þ
Then, we compute the distance that represents the dominated character of ai on all the criteria using the following formula:
dO2 ðaiÞ ¼
Xq

h¼1

wh:d
P�1

h ðaiÞ ð22Þ
Of course, the best alternative(s) is (are) the one (those) that has (have) the maximum of the values of dO2 ðaiÞ. Moreover, two
actions are indifferent in O2 if their related distances are equal and represent the maximal values of the distances on a given
iteration.

Finally, the global preorder O is determined as the intersection of O1 and O2. In this context, three preference situations
can be deduced between the actions: the preference (P) (P�1 for the inverse), the indifference (I) and the incomparability (J).
The intersection is carried using the following principles:

� aiPai0 in O if aiPai0 in both O1 and O2, or if aiPai0 in one preorder and aiIai0 in the other;
� aiIai0 in O if aiIai0 in both O1 and O2;
� aiJai0 in O if aiPai0 in one preorder and aiP

�1ai0 in the other.
cal values of the distances between the preference relations.

Ih Ph Jh P�1
h

D(Ih, Ih) = 0 D(Ih,Ph) = 1 D(Ih, Jh) = 4/3 DðIh; P
�1
h Þ ¼ 1

D(Ph, Ih) = 1 D(Ph,Ph) = 0 D(Ph, Jh) = 4/3 DðPh; P
�1
h Þ ¼ 5=3

D(Jh, Ih) = 4/3 D(Jh,Ph) = 4/3 D(Jh, Jh) = 0 DðJh ; P
�1
h Þ ¼ 4=3

DðP�1
h ; IhÞ ¼ 1 DðP�1

h ; PhÞ ¼ 5=3 DðP�1
h ; JhÞ ¼ 4=3 DðP�1

h ; P�1
h Þ ¼ 0
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4.2. Steps of the model

In what follows, we will describe our model inspired by Xu et al.’s method. At first, we assume that the experts are non-
equivalent in their importance within the group. We further assume that several experts express their assessments for a set
of actions with respect to a set of criteria. This information is provided on the form of BBAs. Additionally, we assume that
each expert gives his own values to the criteria weights. In what follows, let:

� wf be the importance of expert Ef within the group (with f = 1,2, . . . ,s).
� whjf be the weight of criterion gh given by expert Ef.
� mh

ijf be the BBA that represents the evaluation of action ai according to criterion gh and given by expert Ef.

The steps of the proposed model are the following. At first, the RBBD concept is applied by each expert to rank his indi-
vidual BBAs on each criterion. Based on the obtained single-criterion preorders of the evaluations, each expert determines
his individual global ranking of the actions as in Xu et al.’s method. The same procedure used in this method to obtain
the individual global rankings is then applied to aggregate them in order to obtain the collective global ranking of the actions.

4.2.1. Ranking the individual BBAs
In the first step of the model, the individual BBAs given by each expert and characterizing the actions performances on

each criterion are ranked using the RBBD concept. Two single-criterion preorders of the evaluations can be deduced: the
RBBD I and II rankings. As mentioned before, the former gives a partial preorder of the evaluations on each criterion accord-
ing to each expert and allows taking into account situations of incomparability. The latter gives a total preorder of the eval-
uations on each criterion according to each expert, i.e., a ranking from the best to the worst or vice versa.

4.2.2. Determining the individual global rankings
Once the single-criterion preorders of the evaluations are determined by each expert, we aggregate them in order to

determine the individual global ranking of the actions. The aggregation is performed as in Xu et al.’s method. For that pur-
pose, each expert determines at first the two individual total preorders Of

1 and Of
2. Let Rf

hðai; ai0 Þ 2 fPh; P
�1
h ; Ih; Jhg be the pref-

erence relation between ai and ai0 observed on the single-criterion preorder of gh given by expert Ef. The preorder Of
1 is built

iteratively using the distance that quantifies the individual dominating character of ai on all the criteria defined as follows:
dOf
1 ðaiÞ ¼

Xq

h¼1

whjf :d
Ph
f ðaiÞ ð23Þ
where dPh
f ðaiÞ ¼

P
i0–iDðPh;R

f
hðai; ai0 ÞÞ is a distance that describes the individual dominating character of ai on criterion gh. In

the same way, the preorder Of
2 is established iteratively on the basis of the distance representing the individual dominated

character of ai on all the criteria and given by the following formula:
dOf
2 ðaiÞ ¼

Xq

h¼1

whjf :d
P�1

h
f ðaiÞ ð24Þ
where d
P�1

h
f ðaiÞ ¼

P
i0–iDðP

�1
h ;Rf

hðai; ai0 ÞÞ is a distance that describes the individual dominated character of ai on gh. Then, the
two total preorders Of

1 and Of
2 are combined in order to obtain the individual global ranking of the actions Of.

Finally, it is worth mentioning that, at this step, each expert has the possibility to choose between the two single-criterion
preorders of the evaluations (i.e., the RBBD I or II rankings) before applying the aggregation procedure of Xu et al.’s method.
The choice between them can be also imposed by the decision maker. Of course, using the RBBD II rankings can lead to a loss
of useful information about incomparabilities. That is why it is preferable to use the RBBD I rankings, i.e., the single-criterion
partial preorders of the evaluations.

4.2.3. Determining the collective global ranking
In this step, the individual global rankings are aggregated in order to obtain the collective global ranking of the actions.

For that purpose, we propose to use the same procedure used in Xu et al.’s method in the aggregation of the single-criterion
preorders. We should, therefore, determine at first the two collective total preorders O1 and O2. In what follows, let
Rf ðai; ai0 Þ 2 fP; P�1; I; Jg be the preference relation between ai and ai0 observed on the individual global ranking Of.

The collective total preorder O1 is built iteratively using a distance that quantifies the collective dominating character of ai

according to all experts. More formally:
dO1 ðaiÞ ¼
Xs

f¼1

wf :d
P
f ðaiÞ ð25Þ
where dP
f ðaiÞ ¼

P
i0–iDðP;R

f ðai; ai0 ÞÞ is a distance that quantifies the individual dominating character of ai according to expert
Ef. The distance dO1 ðaiÞ is computed at each iteration for the actions not yet ranked and without considering the actions that
are ranked in the previous steps. Similarly, the collective total preorder O2 is built iteratively, but instead of considering the
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collective dominating character of ai according to all experts, we consider its collective dominated intensity measured by the
following distance:
Table 6
Counte

The

The

The
dO2 ðaiÞ ¼
Xs

f¼1

wf :d
P�1

f ðaiÞ ð26Þ
where dP�1

f ðaiÞ ¼
P

i0–iDðP
�1;Rf ðai; ai0 ÞÞ is a distance that quantifies the individual dominated character of ai according to ex-

pert Ef. Finally, the collective global preorder O is determined as the intersection of O1 and O2 using the principles given at the
end of Section 4.1.

Before ending this section, let us note that another manner for the aggregation of the different opinions of the experts is
the use of a combination rule offered by evidence theory to aggregate the individual BBAs given by the experts. Let mh

i be the
BBA resulting from the combination of mh

ij1;m
h
ij2; . . . and mh

ijs. Obviously, mh
i represents the collective evaluation of action ai

according to criterion gh.
The combination rule used for the aggregation of the individual BBAs should be commutative and associative. Therefore:

� If the BBAs are distinct, we suggest Dempster’s rule of combination to take into account independencies between experts;
� If the BBAs are nondistinct, we suggest the normalized cautious rule of combination to take into account dependencies

between experts.

Once the collective BBAs are determined, the RBBD concept is used to rank these BBAs. Two collective single-criterion
preorders of the evaluations can be deduced: the RBBD I and II rankings. These preorders (RBBD I or II) are then aggregated
as in Xu et al.’s method in order to obtain the collective global ranking of the actions. However, both combination rules that
we have suggested do not respect in some situations the unanimity property which is a natural condition of an aggregation
operator. Formally, this property means that for all h 2 {1,2, . . . ,q}:

� If mh
ijf Phmh

i0 jf for all f 2 {1,2, . . . ,s}, then mh
i Phmh

i0 .

� If mh
ijf P�1

h mh
i0 jf for all f 2 {1,2, . . . ,s}, then mh

i P�1
h mh

i0 .

� If mh
ijf Ihmh

i0 jf for all f 2 {1,2, . . . ,s}, then mh
i Ihmh

i0 .

� If mh
ijf Jhmh

i0 jf for all f 2 {1,2, . . . ,s}, then mh
i Jhmh

i0 .

That is why we have adopted the procedure used in Xu et al.’s method for the aggregation.
Two counter-examples to the unanimity property are introduced below (see Examples 2 and 3). In the first one, we have

used Dempster’s rule to combine distinct BBAs. In the second one, we have used the normalized cautious rule to aggregate
nondistinct BBAs.

Example 2. Let us consider a multicriteria problem where two actions are evaluated by two experts and where the
evaluations are expressed by BBAs. In this example, we will consider only the evaluations on criterion g1. We will assume
that the assessment grades related to g1 are x1

1; x1
2; x1

3 and x1
4 defined such as x1

1 � x1
2 � x1

3 � x1
4. Furthermore, we will suppose

that each expert gives the evaluations without interacting with the other. Therefore, the experts are independent and their
induced BBAs are distinct.
Dempster’s rule of combination is used in this example to aggregate the BBAs induced by the experts for each action on
criterion g1. The objective is to yield a combined BBA that represents a collective evaluation of each action on criterion g1.
Then, the RBBD concept is applied to rank the BBAs given by each expert and to rank the combined BBAs. Table 6 gives these
BBAs and their RBBD I and II rankings. These preorders have been obtained on the basis of the ascending and descending
r-example to the unanimity property: case of distinct BBAs.

a1 a2 RBBD I ranking RBBD II ranking

BBAs given by expert 1 m1
1j1ðfx1

2; x
1
3gÞ ¼ 0:5

m1
1j1ðfx1

4gÞ ¼ 0:5

m1
2j1ðfx1

2gÞ ¼ 0:33

m1
2j1ðfx1

3gÞ ¼ 0:67

m1
1j1P1m1

2j1 m1
1j1P1m1

2j1

BBAs given by expert 2 m1
1j2ðfx1

2; x
1
3gÞ ¼ 1 m1

2j2ðfx1
1; x

1
2gÞ ¼ 0:5

m1
2j2ðfx1

2; x
1
3gÞ ¼ 0:5

m1
1j2P1m1

2j2 m1
1j2P1m1

2j2

combined BBAs given by the two experts m1
1ðfx1

2; x
1
3gÞ ¼ 1 m1

2ðfx1
2gÞ ¼ 0:5

m1
2ðfx1

3gÞ ¼ 0:5

m1
1J1m1

2 m1
1I1m1

2
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belief distances with regard to the ideal BBA. Table 7 illustrates the values of these distances used to deduce the RBBD I rank-
ing and the global scores used to obtain the RBBD II ranking. For instance, the ranking of the combined BBAs is determined as
follows:

� d Bel11
!

;Bel1ideal

!� �
< d Bel12

!

;Bel1
ideal

!� �
and d Bel1

1

 

;Bel1
ideal

 � �
> d Bel1

2

 

; Bel1ideal

 � �
, thus m1

1 and m1
2 are incomparable according to

the RBBD I ranking;
� a1

1 ¼ a1
2, thus m1

1 and m1
2 are indifferent according to the RBBD II ranking.

As can be noticed, the experts agree that the evaluation of a1 is preferred to the one of a2 on criterion g1 according to the
RBBD I and II rankings. However, when we apply the RBBD concept to rank the combined BBAs, we obtain: the evaluations of
a1 and a2 are incomparable on g1 according to the RBBD I ranking whereas they are indifferent on g1 according to the RBBD II
ranking. Therefore, Dempster’s rule does not respect the unanimity property.

Example 3. Let us consider a multicriteria problem where two actions are evaluated by two experts and where the
evaluations are expressed by BBAs. In this example, we will consider only the evaluations on criterion g1. We will assume
that the assessment grades related to g1 are x1

1 and x1
2 defined such as x1

1 � x1
2. Moreover, we will assume that the experts

interact between them when they give the evaluations. Thus, the experts are dependent and their induced BBAs are
nondistinct.

The normalized cautious rule of combination is used in this example to aggregate the BBAs induced by the experts for
each action on criterion g1. The objective is to yield a combined BBA that represents a collective evaluation of each action
on criterion g1. Then, the RBBD concept is applied to rank the BBAs given by each expert and to rank the combined BBAs.
Table 8 gives these BBAs and their RBBD I and II rankings. Table 9 illustrates the details about the way we have obtained
Table 7
Ascending and descending belief distances and global scores (case of distinct BBAs).

a1 a2

The BBAs given by expert 1
d Bel1ij1

!
;Bel1idealj1

! !
0.5 1.33

d Bel1ij1

 
;Bel1idealj1

  !
1 1.33

a1
ij1 1.5 2.66

The BBAs given by expert 2
d Bel1ij2

!
;Bel1idealj2

! !
1 1.5

d Bel1ij2

 
;Bel1idealj2

  !
2 2.5

a1
ij2 3 4

The combined BBAs given by the two experts
d Bel1i

!
;Bel1ideal

! !
1 1.5

d Bel1i

 
;Bel1ideal

  !
2 1.5

a1
i

3 3

Table 8
Counter-example to the unanimity property: case of nondistinct BBAs.

a1 a2 RBBD I ranking RBBD II ranking

The BBAs given by expert 1 m1
1j1ðfx1

1gÞ ¼ 0:4

m1
1j1ðfx1

1; x
1
2gÞ ¼ 0:6

m1
2j1ðfx1

1gÞ ¼ 0:6

m1
2j1ðfx1

2gÞ ¼ 0:2

m1
2j1ðfx1

1; x
1
2gÞ ¼ 0:2

m1
1j1J1m1

2j1 m1
1j1I1m1

2j1

The BBAs given by expert 2 m1
1j2ðfx1

1gÞ ¼ 0:5

m1
1j2ðfx1

2gÞ ¼ 0:2

m1
1j2ðfx1

1; x
1
2gÞ ¼ 0:3

m1
2j2ðfx1

1gÞ ¼ 0:3

m1
2j2ðfx1

1; x
1
2gÞ ¼ 0:7

m1
1j2J1m1

2j2 m1
1j1I1m1

2j1

The combined BBAs given by
the two experts

m1
1ðfx1

1gÞ ¼ 0:5

m1
1ðfx1

2gÞ ¼ 0:2

m1
1ðfx1

1; x
1
2gÞ ¼ 0:3

m1
2ðfx1

1gÞ ¼ 0:6

m1
2ðfx1

2gÞ ¼ 0:2

m1
2ðfx1

1; x
1
2gÞ ¼ 0:2

m1
1P1m1

2 m1
1P1m1

2



Table 9
Combined BBAs deduced by using the normalized cautious rule.

a1 a2

Q1
1j1 Q1

1j2 w1
1j1 w1

1j2 w1
1 Q1

2j1 Q1
2j2 w1

2j1 w1
2j2 w1

2

fx1
1g 1 0.8 0.6 0.375 0.375 0.8 1 0.25 0.7 0.25

fx1
2g 0.6 0.5 1 0.6 0.6 0.4 0.7 0.5 1 0.5

fx1
1; x

1
2g 0.6 0.3 – – – 0.2 0.7 – – –

The combined BBA m1
1 is obtained by combining two simple BBAs

fx1
1g

0:375 and fx1
2g

0:6 using the Dempster’s rule. This leads to the
following BBA:

m1
1ðfx1

1gÞ ¼ 0:5

m1
1ðfx1

2gÞ ¼ 0:2

m1
1ðfx1

1; x
1
2gÞ ¼ 0:3

The combined BBA m1
2 is obtained by combining two simple BBAs

fx1
1g

0:25 and fx1
2g

0:5 using the Dempster’s rule. This leads to the
following BBA:

m1
2ðfx1

1gÞ ¼ 0:6

m1
2ðfx1

2gÞ ¼ 0:2

m1
2ðfx1

1; x
1
2gÞ ¼ 0:2

Table 10
Ascending and descending belief distances and global scores (case of nondistinct BBAs).

a1 a2

The BBAs given by expert 1
d Bel1ij1

!
;Bel1idealj1

! !
0.4 0.6

d Bel1ij1

 
;Bel1idealj1

  !
1 0.8

a1
ij1 1.4 1.4

The BBAs given by expert 2
d Bel1ij2

!
;Bel1idealj2

! !
0.5 0.3

d Bel1ij2

 
;Bel1idealj2

  !
0.8 1

a1
ij2 1.3 1.3

The combined BBAs given by the two experts
d Bel1i

!
;Bel1ideal

! !
0.5 0.6

d Bel1i

 
;Bel1ideal

  !
0.8 0.8

a1
i

1.3 1.4
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the combined BBAs, i.e., the commonality functions, the weights of evidence and the simple BBAs. Moreover, Table 10 gives
the values of the ascending and descending belief distances with regard to the ideal BBA used to deduce the RBBD I ranking
and the global scores used to obtain the RBBD II ranking. For instance, the ranking of the combined BBAs is determined as

follows: d Bel1
1

!

;Bel1
ideal

!� �
< d Bel1

2

!

;Bel1
ideal

!� �
and d Bel1

1

 

;Bel1
ideal

 � �
¼ d Bel1

2

 

;Bel1
ideal

 � �
, thus m1

1 is preferred to m1
2 according to the

RBBD I ranking. This result is of course verified according to the RBBD II ranking since a1
1 < a1

2.
As can be noticed, the experts agree that the evaluations of a1 and a2 are incomparable on g1 according to the RBBD I rank-

ing whereas they are indifferent on g1 according to the RBBD II ranking. However, when we apply the RBBD concept to rank
the combined BBAs, we obtain: the evaluation of a1 is preferred to the one of a2 on criterion g1 according to the RBBD I and II
rankings. Thus, the normalized cautious rule does not respect the unanimity property. Finally, let us note that the mean oper-
ator [28] which is also commonly used to aggregate nondistinct sources does not verify this property.
5. Illustrative example

In order to illustrate the model, let us consider the following example. A multinational group wants to construct a new
hotel in a city where the group is not yet established. Five sites are considered which are evaluated on the basis of three
ordinal criteria:

� The investment costs (including the land purchasing and the construction costs) (to be minimized).
� The annual operating costs (to be minimized).
� The facility of access to the hotel from the airport (to be maximized).



Table 11
Criteria and assessment grades.

Criterion Assessment grades

g1 ‘‘Investment costs’’ x1
1 ‘‘Very high’’

x1
2 ‘‘High’’

x1
3 ‘‘Average’’

x1
4 ‘‘Low’’

x1
5 ‘‘Very low’’

g2 ‘‘Annual operating costs’’ x2
1 ‘‘Very high’’

x2
2 ‘‘High’’

x2
3 ‘‘Average’’

x2
4 ‘‘Low’’

x2
5 ‘‘Very low’’

g3 ‘‘Facility of access to the hotel from the airport’’ x3
1 ‘‘Difficult’’

x3
2 ‘‘Rather easy’’

x3
3 ‘‘Very easy’’

Table 12
Values of the criteria weights given by the experts.

g1 g2 g3

Expert 1 1/3 1/3 1/3
Expert 2 0.2 0.3 0.5
Expert 3 0.25 0.5 0.25
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Table 11 presents the assessment grades associated to each criterion.
A decision for selecting a site has to be made based on the opinion of a committee composed of three experts referred to

as experts 1, 2 and 3. The coefficients of their relative importance within the group are respectively 0.3, 0.4 and 0.3. We will
assume that the experts use Xu et al.’s method for the decision and that each of them proposes his own values of the criteria
weights. Table 12 gives these values. Moreover, we will suppose that each expert can express individually the assessments
for all the sites with respect to all the criteria and that the evaluations are modeled by BBAs. Tables 13–15 present the BBAs
characterizing the evaluations of the sites given respectively by experts 1, 2 and 3. For instance, the evaluations of site a1 are
established by the experts as follows:

� On criterion g1, experts 1 and 3 hesitate between the third and the fourth assessment grades. They are sure that the
investment costs in this site are average or low without being able to refine their judgment whereas expert 2 is sure that
these costs are average.
� On criterion g2, experts 1 and 3 hesitate between the first, the second and the third assessment grades whereas expert 2

hesitates between the third, the fourth and the fifth ones. The formers are sure that the annual operating costs are very
high, high or average whereas the latter is sure that these costs are average, low or very low. The three experts are unable
to refine their judgments.
� On criterion g3, experts 1 and 3 are certain that the access to the hotel is difficult whereas expert 2 is unable to express his

assessment on the site (total ignorance case). That is why the total mass is assigned to the set of assessment grades
X3 ¼ fx3

1; x
3
2; x

3
3g.

The RBBD concept is applied by each expert to rank, on each criterion, the evaluations of the sites. Two types of single-
criterion preorders can be obtained: the RBBD I and II rankings. In what follows, we will consider the case where the experts
use the RBBD I rankings (RBBD II rankings, resp.) when they apply Xu et al.’s method. Our objective is to compare the results
that will be deduced from these two types of rankings.

Based on the RBBD I (RBBD II, resp.) ranking of the evaluations obtained by each expert, the individual global rankings of
the sites are deduced as in Xu et al.’s method. For that purpose, each expert builds at first the two individual total preorders
Of

1 and Of
2 (with f = 1,2, . . . ,s) which are then combined in order to obtain the individual global ranking of the sites Of. Figs. 4–6

(8–10, resp.) illustrate the RBBD I (RBBD II, resp.) ranking of the evaluations and the individual total and global preorders of
the sites given respectively by experts 1, 2 and 3. Appendixes B, C and D give the belief distances and the global scores with
regard to the ideal and nadir BBAs which are used respectively by experts 1, 2 and 3 to determine the RBBD I and II rankings
of the sites evaluations (let us recall that the comparison to the ideal BBA leads to the same ranking obtained when compar-
ing with regard to the nadir BBA). For instance, let us focus ourselves on the results given by Fig. 4. It is easy to deduce from
the first three lines of this figure that:



Table 13
BBAs characterizing the evaluations of the sites given by expert 1.

g1 g2 g3

a1 m1
1j1ðfx1

3gÞ ¼ 0:8

m1
1j1ðfx1

3; x
1
4gÞ ¼ 0:2

m2
1j1ðfx2

1gÞ ¼ 0:1

m2
1j1ðfx2

1; x
2
2; x

2
3gÞ ¼ 0:9

m3
1j1ðfx3

1gÞ ¼ 1

a2 m1
2j1ðfx1

1gÞ ¼ 0:6

m1
2j1ðfx1

1; x
1
2gÞ ¼ 0:4

m2
2j1ðfx2

4gÞ ¼ 0:6

m2
2j1ðfx2

4; x
2
5gÞ ¼ 0:4

m3
2j1ðfx3

2gÞ ¼ 1

a3 m1
3j1ðfx1

2gÞ ¼ 1 m2
3j1ðfx2

2gÞ ¼ 0:6

m2
3j1ðfx2

3gÞ ¼ 0:4

m3
3j1ðfx3

2gÞ ¼ 0:7

m3
3j1ðfx3

2; x
3
3gÞ ¼ 0:3

a4 m1
4j1ðfx1

1; x
1
2; x

1
3; x

1
4gÞ ¼ 1 m2

4j1ðfx2
1; x

2
2gÞ ¼ 0:7

m2
4j1ðfx2

2; x
2
3gÞ ¼ 0:3

m3
4j1ðfx3

2gÞ ¼ 0:8

m3
4j1ðfx3

3gÞ ¼ 0:2

a5 m1
5j1ðfx1

2gÞ ¼ 1 m2
5j1ðfx2

3gÞ ¼ 0:6

m2
5j1ðfx2

3; x
2
4gÞ ¼ 0:4

m3
5j1ðfx3

1gÞ ¼ 0:9

m3
5j1ðfx3

1; x
3
2gÞ ¼ 0:1

Table 14
BBAs characterizing the evaluations of the sites given by expert 2.

g1 g2 g3

a1 m1
1j2ðfx1

3gÞ ¼ 1 m2
1j2ðfx2

3; x
2
4gÞ ¼ 0:8

m2
1j2ðfx2

5gÞ ¼ 0:2

m3
1j2ðfx3

1; x
3
2; x

3
3gÞ ¼ 1

a2 m1
2j2ðfx1

1; x
1
2gÞ ¼ 1 m2

2j2ðfx2
1; x

2
2; x

2
3; x

2
4; x

2
5gÞ ¼ 1 m3

2j2ðfx3
2gÞ ¼ 1

a3 m1
3j2ðfx1

2gÞ ¼ 0:6

m1
3j2ðfx1

3gÞ ¼ 0:4

m2
3j2ðfx2

3gÞ ¼ 1 m3
3j2ðfx3

2gÞ ¼ 0:7

m3
3j2ðfx3

2; x
3
3gÞ ¼ 0:3

a4 m1
4j2ðfx1

1gÞ ¼ 1 m2
4j2ðfx2

3gÞ ¼ 0:9

m2
4j2ðfx2

3; x
2
4gÞ ¼ 0:1

m3
4j2ðfx3

2gÞ ¼ 0:8

m3
4j2ðfx3

2; x
3
3gÞ ¼ 0:2

a5 m1
5j2ðfx1

2gÞ ¼ 1 m2
5j2ðfx2

3; x
2
4gÞ ¼ 1 m3

5j2ðfx3
1gÞ ¼ 0:5

m3
5j2ðfx3

2gÞ ¼ 0:5
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� The best evaluations on criterion g1 according to expert 1 are those of a1 and a4 since the evaluation of a1 is preferred to
those of a2, a3 and a5 and the evaluations of a1 and a4 are incomparable according to the RBBD I ranking. The worst eval-
uation is the one of a2 (see the first line).
� The best evaluation on criterion g2 according to expert 1 is the one of a2 since it is preferred to those of a1, a3, a4 and a5.

The worst evaluations are those of a1 and a4 which are incomparable according to the RBBD I ranking (see the second
line).
� The best evaluations on criterion g3 according to expert 1 are those of a3 anda4 since they are incomparable according to the

RBBD I ranking and they are preferred to those of a1, a2 and a5. The worst evaluation is the one of a1 (see the third line).

The fourth and fifth lines of Fig. 4 give the individual total preorders deduced from the use of Xu et al.’s method in order to
aggregate the RBBD I rankings of the sites evaluations (see the first three lines). As can be noticed, the best sites according to
the first individual total preorder are a2 and a3 which are indifferent. The best ones according to the second total preorder are
a3 and a4 which are also indifferent. In both preorders, the worst site is a1. These preorders are combined in order to obtain
the individual global ranking of the sites (see the sixth line). It is clear that the best and worst sites are respectively a3 and a1.

Finally, the individual global preorders of the sites O1, O2 and O3 are aggregated in order to obtain a collective global pre-
order that synthesizes the opinions of experts 1, 2 and 3. This is performed using the same procedure of Xu et al.’s method
applied above to obtain the individual global rankings. Therefore, two collective total preorders O1 and O2 are at first deter-
mined which are then combined to determine the collective global preorder O. Fig. 7 (11, resp.) gives the collective total and
global preorders of the sites obtained in the case where the experts use the RBBD I (RBBD II, resp.) ranking of the evaluations
in order to obtain the individual global rankings. For instance, the first and second lines of Fig. 7 (11, resp.) give the collective



Table 15
BBAs characterizing the evaluations of the sites given by expert 3.

g1 g2 g3

a1 m1
1j3ðfx1

3gÞ ¼ 0:94

m1
1j3ðfx1

3; x
1
4gÞ ¼ 0:06

m2
1j3ðfx2

1gÞ ¼ 0:04

m2
1j3ðfx2

3gÞ ¼ 0:6

m2
1j3ðfx2

1; x
2
2; x

2
3gÞ ¼ 0:36

m3
1j3ðfx3

1gÞ ¼ 1

a2 m1
2j3ðfx1

1gÞ ¼ 0:6

m1
2j3ðfx1

1; x
1
2gÞ ¼ 0:4

m2
2j3ðfx2

4gÞ ¼ 0:6

m2
2j3ðfx2

4; x
2
5gÞ ¼ 0:4

m3
2j3ðfx3

2gÞ ¼ 1

a3 m1
3j3ðfx1

2gÞ ¼ 1 m2
3j3ðfx2

2gÞ ¼ 0:33

m2
3j3ðfx2

3gÞ ¼ 0:67

m3
3j3ðfx3

2gÞ ¼ 0:84

m3
3j3ðfx3

2; x
3
3gÞ ¼ 0:16

a4 m1
4j3ðfx1

1gÞ ¼ 0:67

m1
4j3ðfx1

1; x
1
2; x

1
3; x

1
4gÞ ¼ 0:33

m2
4j3ðfx2

1; x
2
2gÞ ¼ 0:44

m2
4j3ðfx2

2; x
2
3gÞ ¼ 0:19

m2
4j3ðfx2

3gÞ ¼ 0:37

m3
4j3ðfx3

2gÞ ¼ 0:9

m3
4j3ðfx3

3gÞ ¼ 0:1

a5 m1
5j3ðfx1

2gÞ ¼ 1 m2
5j3ðfx2

3gÞ ¼ 0:6

m2
5j3ðfx2

3; x
2
4gÞ ¼ 0:4

m3
5j3ðfx3

1gÞ ¼ 0:9

m3
5j3ðfx3

2gÞ ¼ 0:05

m3
5j3ðfx3

1; x
3
2gÞ ¼ 0:05

RBBD I ranking of the sites evaluations on 
criterion 1g  given by expert 1 

RBBD I ranking of the sites evaluations on 
criterion 2g  given by expert 1 

RBBD I ranking of the sites evaluations on 
criterion 3g  given by expert 1 

Individual total preorder of the sites 1
1O  given by 

expert 1  

Individual total preorder of the sites 1
2O  given by 

expert 1 

Individual global preorder of the sites 1O  given by 
expert 1 a3

a5a2

a1

a4

a2

a3

a4

a1a5

a5

a2

a3

a1a4

a2

a3

a4

a1a5

a5a2

a4a3

a1

a1

a4

a3

a5

a2

Fig. 4. Illustration of the different steps of Xu and Martel’s method based on the RBBD I rankings of the sites evaluations given by expert 1.
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total preorders of the sites which are obtained as in Xu et al.’s method by aggregating the individual global preorders of the
sites given in the sixth lines of Figs. 4–6(8–10, resp.). These preorders are combined in order to obtain the collective global
preorder of the sites which is given in the third line of Fig. 7 (11, resp.).

Based on the achieved results given in Figs. 7 and 11, it is easy to see that the best site is a3 according to the collective
global preorders of the sites obtained when the experts use the RBBD I or II rankings of the evaluations. The worst sites
according to the collective global preorder of Fig. 7 are a4 and a5 and according to the one of Fig. 11 are a1 and a5. Moreover,



RBBD I ranking of the sites 
evaluations on criterion 1g  given by 

expert 2 

RBBD I ranking of the sites 
evaluations on criterion 2g  given by 

expert 2 

RBBD I ranking of the sites 
evaluations on criterion 3g  given by 

expert 2 

Individual total preorder of the sites 
2

1O  given by expert 2  

Individual total preorder of the sites 
2
2O  given by expert 2 

Individual global preorder of the sites 
2O  given by expert 2 

a4

a1

a3

a5a2

a1 a3 a4 a2 a5

a3 a1 a4 a2 a5

a3 a4 a2 a5

a1

a1 a5 a4 a3

a2

a1 a3 a5 a2 a4

Fig. 5. Illustration of the different steps of Xu and Martel’s method based on the RBBD I rankings of the sites evaluations given by expert 2.

RBBD I ranking of the sites 
evaluations on criterion 1g  given by 

expert 3 

RBBD I ranking of the sites 
evaluations on criterion 2g  given by 

expert 3 

RBBD I ranking of the sites 
evaluations on criterion 3g  given by 

expert 3 

Individual total preorder of the sites 
3
1O  given by expert 3  

Individual total preorder of the sites 
3
2O  given by expert 3 

Individual global preorder of the sites 
3O  given by expert 3 a2 a4a1

a3

a5

a5

a2

a3

a4a1

a2 a5 a3 a1 a4

a2

a3

a4

a1a5

a5a2 a4

a1

a3

a1 a2a4

a3

a5

Fig. 6. Illustration of the different steps of Xu and Martel’s method based on the RBBD I rankings of the sites evaluations given by expert 3.

Collective total preorder of the sites 

1O

Collective total preorder of the sites 

2O

Collective global preorder of the sites 
O a2a3

a4a1

a5

a3 a2 a5 a1 a4

a3 a2 a1 a4 a5

Fig. 7. Collective preorders of the sites in the case where the experts use RBBD I rankings of the evaluations.
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RBBD II ranking of the sites 
evaluations on criterion 1g  given by 

expert 1 

RBBD II ranking of the sites 
evaluations on criterion 2g  given by 

expert 1 
RBBD II ranking of the sites 

evaluations on criterion 3g  given by 
expert 1 

Individual total preorder of the sites 
1
1O  given by expert 1  

Individual total preorder of the sites 
1
2O  given by expert 1 

Individual global preorder of the sites 
1O  given by expert 1 

a4 a3 a2 a5 a1

a4 a3 a2 a5 a1

a4 a3 a2 a5 a1

a4 a3 a2 a5 a1

a2 a5 a3 a1 a4

a4a1 a2

a3

a5

Fig. 8. Illustration of the different steps of Xu and Martel’s method based on the RBBD II rankings of the sites evaluations given by expert 1.

RBBD II ranking of the sites 
evaluations on criterion 1g  given by 

expert 2 

RBBD II ranking of the sites 
evaluations on criterion 2g  given by 

expert 2 

RBBD II ranking of the sites 
evaluations on criterion 3g  given by 

expert 2 

Individual total preorder of the sites 
2

1O  given by expert 2  

Individual total preorder of the sites 
2
2O  given by expert 2 

Individual global preorder of the sites 
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Fig. 9. Illustration of the different steps of Xu and Martel’s method based on the RBBD II rankings of the sites evaluations given by expert 2.
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it is easy to observe some differences between these two collective rankings on the preference relations between sites a1 and
a4, sites a2 and a4 and sites a4 and a5. Indeed:

� a1 (a2, resp.) is preferred to a4 according to the collective global preorder deduced from the aggregation of the individual global
preorders that use RBBD I rankings whereas they are incomparable according to the one based on the RBBD II rankings.
� a4 and a5 are incomparable according to the collective global preorder deduced from the aggregation of the individual

global preorders that use RBBD I rankings whereas a4 is preferred to a5 according to the one based on the RBBD II
rankings.

6. Conclusion

In this paper, we have addressed ranking problem in uncertain, imprecise and multi-experts contexts. Evidence theory
offers convenient tools to tackle such kind of problems. At first, the concept of BBA allows experts to express freely their
assessments and even to represent the total ignorance. In order to rank the BBAs that represent the evaluations of the actions
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Fig. 10. Illustration of the different steps of Xu and Martel’s method based on the RBBD II rankings of the sites evaluations given by expert 3.
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Fig. 11. Collective preorders of the sites in the case where the experts use RBBD II rankings of the evaluations.
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on each criterion, the concept of RBBD has been introduced. This approach is based on the comparison of the BBAs to ideal or
nadir BBAs using belief distances. Two rankings can be deduced called RBBD I and II which give respectively partial and total
preorders of the BBAs. In addition, a model inspired by Xu et al.’s method has been proposed and illustrated on a pedagogical
example.

We have shown that the RBBD concept is coherent with the first belief dominance approach. Moreover, we have proven
that the number of incomparable pairs of BBAs in the RBBD I ranking is usually inferior or equal to the one in the ranking
deduced by using the first belief dominance to rank the BBAs. At this point, let us note that the RBBD I ranking can be viewed
as a mid-way between the RBBD II ranking and the preorder given by the first belief dominance. Indeed, whereas the former
can lead to excessive rich results (a ranking without incomparabilities), the latter can lead on the contrary to poor results
since an important number of incomparable pairs of BBAs can be induced.

Finally, we have illustrated the benefits of using evidence theory in ranking problems. Of course, there are still
many directions for future research. Among others, we can mention the development of combination rules that
respect the unanimity principle. Moreover, it is of course interesting to compare the results given by the RBBD I and
II rankings. The RBBD II provides an ‘‘agreeable’’ ranking of the BBAs, but some useful information about incomparabil-
ities gets lost.
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Based on the definitions given in formula 14, it follows that if mh
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cept. Let us note that the proof of this proposition can be performed based on the belief distances to the nadir BBA and the
definitions given in formula 15.
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Based on the definitions given in formula 14, it follows that if mh
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to the RBBD concept. Therefore, the number of incomparabilities obtained by the first belief dominance approach is superior
or equal to the one obtained by the RBBD concept (RBBD II).

Appendix B. Belief distances used by expert 1 to determine the RBBD I and II rankings of the evaluations

Tables 16–18



Table 16
Belief distances used by expert 1 on criterion g1.

a1 a2 a3 a4 a5

d Bel1ij1

!
;Bel1idealj1

! !
1.8 3.6 3 1 3

d Bel1ij1

 
;Bel1idealj1

  !
2 4 3 4 3

a1
ij1 3.8 7.6 6 5 6

d Bel1ij1

!
;Bel1nadirj1

! !
2.2 0.4 1 3 1

d Bel1ij1

 
;Bel1nadirj1

  !
2 0 1 0 1

b1
ij1 4.4 0.4 2 3 2

Table 18
Belief distances used by expert 1 on criterion g3.

a1 a2 a3 a4 a5

d Bel3ij1

!
;Bel3idealj1

! !
2 1 0.7 0.8 1.9

d Bel3ij1

 
;Bel3idealj1

  !
2 1 1 0.8 2

a3
ij1 4 2 1.7 1.6 3.9

d Bel3ij1

!
;Bel3nadirj1

! !
0 1 1.3 1.2 0.1

d Bel3ij1

 
;Bel3nadirj1

  !
0 1 1 1.2 0

b3
ij1 0 2 2.3 2.4 0.1

Table 17
Belief distances used by expert 1 on criterion g2.

a1 a2 a3 a4 a5

d Bel2ij1

!
;Bel2idealj1

! !
2.2 0.6 2.6 2.7 1.6

d Bel2ij1

 
;Bel2idealj1

  !
4 1 2.6 3.7 2

a2
ij1 6.2 1.6 5.2 6.4 3.6

d Bel2ij1

!
;Bel2nadirj1

! !
1.8 3.4 1.4 1.3 2.4

d Bel2ij1

 
;Bel2nadirj1

  !
0 3 1.4 0.3 2

b2
ij1 1.8 6.4 2.8 1.6 4.4
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Appendix C. Belief distances used by expert 2 to determine the RBBD I and II rankings of the evaluations

Tables 19–21
Table 19
Belief distances used by expert 2 on criterion g1.

a1 a2 a3 a4 a5

d Bel1ij2

!
;Bel1idealj2

! !
2 3 2.6 4 3

d Bel1ij2

 
;Bel1idealj2

  !
2 4 2.6 4 3

a1
ij2 4 7 5.2 8 6

d Bel1ij2

!
;Bel1nadirj2

! !
2 1 1.4 0 1

d Bel1ij2

 
;Bel1nadirj2

  !
2 0 1.4 0 1

b1
ij2 4 1 2.8 0 2



Table 20
Belief distances used by expert 2 on criterion g2.

a1 a2 a3 a4 a5

d Bel2ij2

!
;Bel2idealj2

! !
0.8 0 2 1.9 1

d Bel2ij2

 
;Bel2idealj2

  !
1.6 4 2 2 2

a2
ij2 2.4 4 4 3.9 3

d Bel2ij2

!
;Bel2nadirj2

! !
3.2 4 2 2.1 3

d Bel2ij2

 
;Bel2nadirj2

  !
2.4 0 2 2 2

b2
ij2 5.6 4 4 4.1 5

Table 21
Belief distances used by expert 2 on criterion g3.

a1 a2 a3 a4 a5

d Bel3ij2

!
;Bel3idealj2

! !
0 1 0.7 0.8 1.5

d Bel3ij2

 
;Bel3idealj2

  !
2 1 1 1 1.5

a3
ij2 2 2 1.7 1.8 3

d Bel3ij2

!
;Bel3nadirj2

! !
2 1 1.3 1.2 0.5

d Bel3ij2

 
;Bel3nadirj2

  !
0 1 1 1 0.5

b3
ij2 2 2 2.3 2.2 1
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Appendix D. Belief distances used by expert 3 to determine the RBBD I and II rankings of the evaluations

Tables 22–24
Table 22
Belief distances used by expert 3 on criterion g1.

a1 a2 a3 a4 a5

d Bel1ij3

!
;Bel1idealj3

! !
1.94 3.6 3 3.01 3

d Bel1ij3

 
;Bel1idealj3

  !
2 4 3 4 3

a1
ij3 3.94 7.6 6 7.01 6

d Bel1ij3

!
;Bel1nadirj3

! !
2.06 0.4 1 0.99 1

d Bel1ij3

 
;Bel1nadirj3

  !
2 0 1 0 1

b1
ij3 4.06 0.4 2 0.99 2

Table 23
Belief distances used by expert 3 on criterion g2.

a1 a2 a3 a4 a5

d Bel2ij3

!
;Bel2idealj3

! !
2.08 0.6 2.33 2.44 1.6

d Bel2ij3

 
;Bel2idealj3

  !
2.8 1 2.33 3.07 2

a2
ij3 4.88 1.6 4.66 5.51 3.6

d Bel2ij3

!
;Bel2nadirj3

! !
1.92 3.4 1.67 1.56 2.4

d Bel2ij3

 
;Bel2nadirj3

  !
1.2 3 1.67 0.93 2

b2
ij3 3.12 6.4 3.34 2.49 4.4



Table 24
Belief distances used by expert 3 on criterion g3.

a1 a2 a3 a4 a5

d Bel3ij3

!
;Bel3idealj3

! !
2 1 0.84 0.9 1.9

d Bel3ij3

 
;Bel3idealj3

  !
2 1 1 0.9 1.95

a3
ij3 4 2 1.84 1.8 3.85

d Bel3ij3

!
;Bel3nadirj3

! !
0 1 1.16 1.1 0.1

d Bel3ij3

 
;Bel3nadirj3

  !
0 1 1 1.1 0.05

b3
ij3 0 2 2.16 2.2 0.15
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