Brownian Motion and Harmonic Functions on the Class Surface of the Thrice Punctured Sphere

H. P. McKean*
Courant Institute of Mathematical Science, 251 Mercer Street.
New York, New York 10012

AND
D. Sullivan

Institut des Hautes Études Scientifiques, Bures-sur-yvette, France

1. Introduction

Let M be the sphere punctured at $0,1, \infty$ and equipped with the metric of constant curvature -1 it receives from its universal covering by the Poincare disc M_{2}, so that it appears as the 3 -horned sphere of Fig. 1. M_{2} is obtained from M by fixing a base point x_{0} and covering the general point $x_{1} \in M$ by the deformation classes of paths starting at x_{0} and ending at x_{1}. The covering group G_{2} is free of non-abelian rank 2: it is generated by the 3 cycles indicated in Fig. 1, subject to the single relation $g_{\infty} g_{1} g_{0}=1$. The coarser classification of paths according to their winding numbers about the 3 cusps of M gives rise to an intermediate covering: the so-called classsurface M_{1}. The covering group G_{1} of M_{1} over M is simply G_{2} made commutative by quotienting out the commutator subgroup K of G_{2}; the latter is the covering group of M_{2} over $M_{1} . G_{1}$ is naturally identified with the 2dimensional lattice \mathbb{Z}^{2}. Lyons and McKean [1] proved that the Brownian motion on M_{1} is transient by direct estimation of the winding numbers of the Brownian motion on M, correcting and amplifying McKean [2]. The purpose of the present paper is to give a less quantitative but more geometrical and simpler proof of this fact, together with the proof of a new fact: that M_{1} does not carry any non-constant positive harmonic functions.

[^0]

Figure 1

This means, so to say, that the Brownian motion on M_{1} has only one mode of running off to ∞. The proof requires only the clear geometrical picture of M_{1} expounded in Section 2 together with elementary probabilistic reasoning. Section 3 deals with the harmonic functions. The transience is confirmed in Section 4.

Amplification 1. $\quad M$ has finite volume and M_{1} is $a \mathbb{Z}^{2}$ cover, so it is natural to conjecture that, in general, \mathbb{Z}^{2} covers of finite-volume Riemann surfaces have only constant positive harmonic functions.

This is false: indeed, the transience of the Brownian motion on M_{1} means that the latter has a finite Green's function h. Removal of the fiber of $M_{1} \rightarrow M$ associated with a fixed pole of h and of its projection on M leaves a 4 -times punctured sphere below and a \mathbb{Z}^{2} cover above on which h is a bona fide non-constant harmonic function.

Amplification 2. M_{1} may be viewed as the curve $\left\{e^{x}=e^{y}+1\right\}^{2}$.
Demailly [3] ${ }^{2}$ has proved that any holomorphic function on M_{1} of polynomial growth in x and y extends holomorphically to C^{2} with the same growth. In this connection, note that the Green's function h on M_{1} has a many-valued harmonic conjugate k on M_{1} punctured at the pole so that $f=\exp [-2 \pi(h+\sqrt{-1} k)]$ is a many-valued bounded holomorphic function on M_{1}, h being positive and of the form $-(1 / 2 \pi) \log r$ near the pole. The ambiguity of f is due solely to the homology of M_{1}. The latter is described by \mathbb{Z}^{∞}, as can be seen in Fig. 4, the moral being that a big abelian cover can produce bounded holomorphic functions where none existed before.

One of the results in Lyons and Sullivan [4], however, asserts that an abelian cover of a recurrent surface has no bounded harmonic functions.

[^1]

Figure 2

Figure 3

Figure 4

Figure 5

2. Geometry of M_{1}

A clear picture of M_{1} may be obtained as follows. M is dissected into 4 pieces, as in Fig. 2, by means of 3 broken geodesics, each with 120° corners front and back: 3 of the pieces are identical non-compact cusps; the residual compact ribbon is bordered by the 3 broken geodesics. Think of the ribbon as very narrow and unfold it on the class surface M_{1} : The 3 bordering curves unfold into 3 families of non-intersecting lines with 120° corners. They form a hexagonal pattern, as in Fig. 3, spanned, as in fig. 4, by a twisted covering ribbon dividing in two in the vicinity of each corner. The class surface is now completed by gluing along each broken line a brokenbordered half-plane, as in Fig. 5, representing the unfolding of the adjacent cusp; such a half-plane is called a fin. The covering group $G_{1}=\mathbb{Z}^{2}$ acts by rigid motions on the whole preserving the hexagonal tesselation.

3. Harmonic Functions

Let $h(x)$ be a positive harmonic function on M_{1} : it is to be proved that it is constant. Let g be any element of the covering group \mathbb{Z}^{2} and x any point of the covering ribbon. Then $g x$ is also a point of the covering ribbon at distance ${ }^{3} d(g x, x) \leqslant c_{1}$ from x, so that $h(g x) \leqslant c_{2} h(x)$ with a universal constant c_{2} provided by Harnack's inequality, independently of h and x. Now g can move points in the fins a long way: for example, g_{∞} represents rotation about the cusp of ∞, and if you begin far out in another cusp you have to travel for miles. Nevertheless, the estimate $h(g x) \leqslant c_{2} h(x)$ holds with the same constant in the fins as well.
Grant this for the moment and let h be a minimal harmonic function. This means that any harmonic function dominated by a multiple of h is a multiple of h, so that $h(g x)=c_{3}(h) \cdot h(x)$. Let g signify 1 rotation about a cusp, e.g., $g=g_{\infty}$, and let x lie in one of the associated fins. The latter is a half-plane, bordered as in Fig. 5, and is preserved by g. The latter acts by horizontal

[^2]translation, and it follows from the Poisson representation of positive harmonic functions in a half-plane that
$$
\sum_{n \neq 0} n^{-2} h\left(g^{n} x\right)=h(x) \sum_{n \neq 0} n^{-2} c_{3}^{n}(h)<\infty .
$$

But this forces $c_{3}(h)=1$, so $h(g x)=h(x)$, and as the same is true for any other cusp, h is seen to be not a bone fide function on the class surface but merely a function on the base space M with possible singularities at the 3 punctures 0,1 , and ∞. The proof is finished by the remark that the only such harmonic functions are constant, as is well-known and easily proved by means of Green's formula and the a priori estimate $h(x) \leqslant c_{4}(h)|\log r|$ in the vicinity of a singularity.

It remains to propagate the estimate $h(g x) \leqslant c_{2} h(x)$ from the covering ribbon to the fins. Now in any fin, $h(x)$ can be expressed by an integral along the border with respect to harmonic measure plus a pole at ∞,

$$
h(x)=\int p(x, d y) h(y)+c_{s}(h) x_{2}
$$

in which $c_{5}(h) \geqslant 0$ and x_{2} is the harmonic function vanishing on the border which behaves as $[1+O(1)] \times$ (height) at $\sqrt{-1} \infty$, as you will see by straightening out the border with a Riemann map. The desired propagation of $h(g x) \leqslant c_{2} h(x)$ from border to fin is now self-evident provided $c_{5}(h)=0$, the mean-value property $h=\int p h$ applying equally to $h(x)$ and to $h(g x)$.

The final step is now to prove $c_{5}(h)=0$. The universal cover M_{2} is identified with the Poincaré disc. Think of h as a function on M_{2}, invariant under the action of the covering group K of M_{2} over M_{1}, and express it as a Poisson integral up there, supposing $c_{5}(h)>0$. Then $h \geqslant c_{5}(h) x_{2}$ implies that the representing mass distribution on the circle $S^{1}=\partial M_{2}$ has atoms on the orbit of K representing the fiber of S^{1} over the point $\sqrt{-1} \infty$ in the fin, and as these atoms transform as they must for the invariance of h under K, so the Poisson integral produces from them alone a K-invariant harmonic function on M_{2}, alias a minimal harmonic function h_{1} on M_{1}, having the same growth $c_{5}(h) x_{2}$ at $\sqrt{-1} \infty$ in the fin. This is not possible: The generator g of the cusp group $\mathbb{Z}^{1} \subset G_{1}=\mathbb{Z}^{2}$ acts by horizontal translation in the fin and preserves the fiber of $S^{1}=\partial M^{2}$ covering $\sqrt{-1} \infty, h_{1}(g x)$ being minimal and having the same compartment as $h(x)$ at $\sqrt{-1} \infty$. The mass of $h_{1}(g x)$ is now located on that same fiber, and as this mass must transform in the previous manner to ensure the invariance of $h_{1}(g x)$ under K, so $h_{1}(g x)$ can only be a multiple $c_{6}\left(h_{1}\right)$ of h_{1}. But $c_{6}\left(h_{1}\right)=1$ in view of $h_{1}(g x) \sim h_{1}(x)$ at $\sqrt{-1} \infty$, and now the end is near: $h_{1}(g x)=h_{1}(x)$, so that h_{1} drops down from M_{1} to the Z-covering surface of the thrice-punctured sphere, the plane with an
arithmetical array of singularities, and as the plane Brownian motion $x(t): t \geqslant 0$ does not perceive single points, the existence of the limit of the positive martingale $h_{1} \circ x(t)$ together with the recurrence of the plane Brownian motion forces the constancy of h_{1}. This contradicts $c_{5}(h)>0$, completing the proof that M_{1} admits no positive harmonic functions except the constants.

4. Transience of Brownian Motion on M_{1}

The covering ribbon of Fig. 4 is bisected by a hexagonal skeleton. The Brownian motion of M_{1} is now started on the skeleton and one notes the next hitting place on the skeleton after reaching the border of the ribbon. The outward step (from skeleton to border) is like the passage of a plane Brownian motion $x_{1}+\sqrt{-1} x_{2}$ from $x_{2}=0$ to $x_{2}= \pm 1$ and is small, while the inward step (from the border back) is like the passage from $x_{2}=+1$ to $x_{2}=0$ and is large: in the first case, the distribution of the horizontal displacement satisfies $E\left[e^{\delta x_{1}}\right]<\infty$ if $|\delta|<\pi / 2$; in the second, it is distributed by the Cauchy law $\left[\pi\left(1+x_{1}^{2}\right)\right]^{-1} d x_{1}$. The geometry of M_{1}, as depicted in Fig. 4, now suggests that the chain of hitting places on the skeleton, so produced, is transient: from most points of the skeleton, the short step out lands you on the border of one of the 2 adjacent fins and the long step back lands you far away; only near the corners are 3 fins close enough to be reached by a short step, so this more complicated situation will be less frequently met and will not change things much. The situation may be caricatured by a walk on \mathbb{Z}^{2} with independent Cauchy-distributed steps taken horizontally or vertically according to the outcomes of a standard coin tossing game. The probability of landing in the box $\left(-1 \leqslant x_{1}<1\right) \times$ $\left(-1 \leqslant x_{2}<1\right)$ after n steps is

$$
\begin{aligned}
& 2^{-n} \sum_{k=0}\binom{n}{k} \int_{-1}^{1} \frac{k}{\pi}\left(k^{2}+x_{1}^{2}\right)^{-1} d x_{1} \int_{-1}^{1} \frac{n-k}{\pi}\left[(n-k)^{2}+x_{2}^{2}\right]^{-1} d x_{2} \\
& \quad \leqslant \frac{2^{-n+1}}{n \pi}+\frac{2^{-n}}{\pi^{2}} \sum_{k=1}^{n-1}\binom{n}{k} \frac{1}{k(n-k)} \leqslant c_{7} n^{-2}
\end{aligned}
$$

so the caricature is transient, and one may hope that the actual hitting chain is, too.

The proof is postponed in favor of the remark that the transience of the full Brownian motion on M_{1} follows from that of the chain of hits: in fact, if the former were recurrent, then it would return infinitely often to a small disc D_{1} of M_{1} via the boundary of a slightly larger disk D_{2}. A loop is a segment of the Brownian path starting at ∂D_{1} and ending at the next passage to ∂D_{1}
via ∂D_{2}. Put D_{2} on a fin for clarity. Then, on any loop, there is a positive probability of executing a complete (outward and inward) step of the hitting chain and landing on a prescribed piece of the skeleton, and as the chain of loops is metrically transitive, ${ }^{4}$ this must happen with a positive frequency, violating the transience of the chain of hits.

The final step is now to prove the transience of the chain, but first a modification with a view of technical simplicity: instead of the skeleton, use the unfoldings of circles about the 3 cusps of M providing a fattish smoothly bordered ribbon A; also take a wider ribbon B of the same kind, invariant under the action of $G_{1}=\mathbb{Z}^{2}$, and consider the new chain of hits on ∂A via ∂B. Plainly the previous reasoning applies; so it suffices to prove the transience of this modified chain. \mathbb{Z}^{2} acts on A with compact fundamental region F : a smooth hexagonal ribbon with identifications. The chain is now viewed as a chain of hits $y_{n}: n \geqslant 0$ of ∂F together with labels $g_{n}: n \geqslant 0$ from \mathbb{Z}^{2} indicating the parts of the tesselation $G_{1} \partial F$ to which the hits are to be ascribed.

Let $p_{a b}(g)$ be the probability of the step from one point $\left(x_{0}, g_{0}\right)=(a, 0)$ of $\partial F \times G_{1}$ to another $\left(x_{1}, g_{1}\right)=(b, g)$, conditional upon $x_{1}=b$. Then

$$
P\left\{g_{n}=g \mid g_{0}=0, x_{0}, x_{1}, \ldots, x_{n}\right\}=\Sigma \prod_{i=1}^{n} p_{x_{i-1} x_{i}}\left(g_{i}\right),
$$

the sum being extended over $g_{1} \cdots g_{n}=g$, and so

$$
P\left(g_{n}=0\right)=E \iint_{i=1}^{n} \hat{p}_{x_{i-1} x_{i}}(k) d^{2} k,
$$

in which

$$
\hat{p}_{a b}(k)=\sum_{\not Z 2} p_{a b}(g) \exp (2 \pi \sqrt{-1} g \cdot k)
$$

and the integral extends over the 2 -dimensional torus $\left(-\frac{1}{2} \leqslant k_{1}<\frac{1}{2}\right) \times$ $\left(-\frac{1}{2} \leqslant k_{2}<\frac{1}{2}\right) .{ }^{5}$ The problem is to prove that $\sum_{n=0}^{\infty} P\left(g_{n}=0\right)<\infty$, as would be seen from the estimate

$$
\left|\hat{p}_{a b}(k)\right| \leqslant 1-c_{8}|k|
$$

with $0<c_{8}<1$ and $0<c_{9}<2$; indeed, the estimate implies

$$
\sum P\left(g_{n}=0\right) \leqslant \sum \int\left[1-c_{8}|k|\right]^{n} d^{2} k=c_{9} \int \frac{d^{2} k}{|k|}<\infty
$$

[^3]Let us confirm the estimate. Let $G(x, y)$ be the Green's function of $M_{1}-A$ grounded along ∂A. The harmonic density of $y \in \partial A$ as viewed from $x \in \partial B$ is the flux $(\pm 1) \partial G / \partial n$ at y, so that

$$
P\left[x_{1} \in d b, g_{1}=g \mid x_{0}=a, g_{0}=0\right]=\int_{\partial B} H(a, d x)(\pm 1)(\partial G / \partial n)(x, y) \cdot d b
$$

in which H is the harmonic measure of ∂B viewed from outside and $d b$ is the element of length on ∂A. Plainly, $a \rightarrow P\left[x_{1} \in d b, g_{1}=g \mid x_{0}=a, g_{0}=0\right]$, as a function of a, is the restriction to ∂F of a function harmonic in the neighborhood, so that it is independent of a up to a factor c_{10} depending solely upon the geometry of M. Likewise the dependence upon $b: G(x, y)$ is harmonic in y near the (smooth) border ∂A on which it vanishes, and as B and A are preserved by the action of $G_{1}=\mathbb{Z}^{2}$, so $\partial G / \partial n$ is independent of $b \in \partial F$ up to a similar factor c_{11}. This is the key to the proof. Now it is plain from the Cauchy-like nature of the hitting chain that $p_{a b}(g)$ may be underestimated, independently of a and b, by a small multiple $\left|c_{12}\right|$ of the Cauchy-like distribution

$$
\begin{aligned}
p_{-}\left[g=\left(n_{1}, n_{2}\right)\right] & =\frac{1}{2} c_{13}^{-1}\left(1+n_{1}^{2}\right)^{-1} & & \left(n_{1} \in \mathbb{Z}, n_{2}=0\right) \\
& =\frac{1}{2} c_{13}^{-1}\left(1+n_{2}^{2}\right)^{-1} & & \left(n_{1}=0, n_{2} \in \mathbb{Z}\right)
\end{aligned}
$$

with normalizer $c_{13}=\Sigma\left(1+n^{2}\right)^{-1}$, so that

$$
\left|\hat{p}_{a b}(\theta)\right| \leqslant 1-c_{13}+c_{13} \cdot \frac{1}{2} c_{13}^{-1}\left|\sum \frac{e^{2 \pi \sqrt{-1} n_{1} k_{1}}}{1+n_{1}^{2}}+\sum \frac{e^{2 \pi \sqrt{-1} n_{2} k_{2}}}{1+n_{2}^{2}}\right| .
$$

The required estimate follows from the Poisson summation formula: if $0 \leqslant k \leqslant \frac{1}{2}$, then

$$
c_{13}^{-1} \sum \frac{e^{2 \pi \sqrt{-1} n k}}{1+n^{2}}=\left(1+e^{-2 \pi}\right)^{-1}\left(e^{-2 \pi k}+e^{-2 \pi} e^{2 \pi k}\right) \leqslant 1-c_{14} k
$$

with, e.g., $c_{14}=2 \pi\left(1-e^{-2 \pi}\right)\left(1+2^{-2 \pi}\right)^{-1}$.

Acknowledgments

The authors wish to thank J. Aaronson, H. Furstenberg, Yves Guivarche, J.-P. Kahane, Y. Katznelson, T. J. Lyons, and M. C. Rees for their helpful interest.

References

1. T. J. Lyons and H. P. McKean, Winding of the plane Brownian motion, Adv. in Math. 51 (1984), 212-225.
2. H. P. McKean, "Stochastic Integrals," Academic Press, New York, 1969.
3. J.-P. Demailly, Functions holomorphes à croissance polynomiale sur la surface d'equation $e^{x}+e^{y}=1$, Bull. Sci. Math. 103 (1979), 179-191.
4. T. J. Lyons and D. Sullivan, Harmonic functions on open Riemannian manifolds, to appear.
5. K. Ito and H. P. McKean, "Diffusion Processes and Their Sample Paths," SpringerVerlag, Berlin, 1965.
6. Y. Guivarche, Lecture IHES (1979).
7. G. Polya, Uber eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz, Math. Ann. 84 (1921), 149-160.

[^0]: * H.McK. desires to thank the Mathematical Institute of Oxford University and IHES for hospitality, and also the National Science Foundation for partial support under Grant NSF/MCS 76/07039. The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.

[^1]: ${ }^{1} x=\log z, y=\log (z-1)$ for $z \in M$.
 ${ }^{2}$ Reference by the kindness of P . Malliavin.

[^2]: ${ }^{3}$ The hyperbolic distance is pulled up from $M . c_{1}, c_{2}$, ctc., stand for constants depending only upon the geometry of M; constants depending upon h are written $c(h)$.

[^3]: ${ }^{4}$ See, for instance, Ito and McKean $|5|$.
 ${ }^{5}$ The trick is adopted from Guivarche [6]; it goes back to Polya [7] in connection with the 2-dimensional symmetric random walk.

