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Abstract

This is a second paper in a series devoted to the minimal unitary representation of Oðp; qÞ:
By explicit methods from conformal geometry of pseudo Riemannian manifolds, we find the

branching law corresponding to restricting the minimal unitary representation to natural

symmetric subgroups. In the case of purely discrete spectrum we obtain the full spectrum and

give an explicit Parseval–Plancherel formula, and in the general case we construct an infinite

discrete spectrum.
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Introduction

This is the second in a series of papers devoted to the analysis of the minimal
representation $p;q of Oðp; qÞ: We refer to [15] for a general introduction; also the
numbering of the sections is continued from that paper, and we shall refer back to
sections there. However, the present paper may be read independently from [15], and
its main object is to study the branching law for the minimal unitary representation
$p;q from analytic and geometric point of view. Namely, we shall find by explicit
means, coming from conformal geometry, the restriction of $p;q with respect to the
symmetric pair

ðG;G0Þ ¼ ðOðp; qÞ;Oðp0; q0Þ �Oðp00; q00ÞÞ:

If one of the factors in G0 is compact, then the spectrum is discrete (see Theorem 4.2
also for an opposite implication), and we find the explicit branching law; when both
factors are non-compact, there will still (generically) be an infinite discrete spectrum,
which we also construct (conjecturally almost all of it; see Section 9.8). We shall see
that the (algebraic) situation is similar to the theta-correspondence, where the
metaplectic representation is restricted to analogous subgroups.
Let us here state the main results in a little more precise form, referring to Sections

8 and 9 for further notation and details.

Theorem A (The branching law for Oðp; qÞkOðp; q0Þ �Oðq00Þ; see Theorem 7.1). If

q00
X1 and q0 þ q00 ¼ q; then the twisted pull-back fF�

1F
�
1 of the local conformal map F1

between spheres and hyperboloids gives an explicit irreducible decomposition of the

unitary representation $p;q when restricted to Oðp; q0Þ �Oðq00Þ:

gðF1Þ�ðF1Þ� :$p;qjOðp;q0Þ�Oðq00Þ !
B XN

l¼0

" pp;q0

þ;lþq00

2

1
2HlðRq00 Þ:

The representations appearing in the decompositions are in addition to usual

spherical harmonics HlðRqÞ for compact orthogonal groups OðqÞ; also the

representations pp;q
þ;l for non-compact orthogonal groups Oðp; qÞ: The latter ones
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may be thought of as discrete series representations on hyperboloids

X ðp; qÞ :¼ fx ¼ ðx0; x00ÞARpþq: jx0j2 
 jx00j2 ¼ 1g

for l40 or their analytic continuation for lp0; they may be also thought of as
cohomologically induced representations from characters of certain y-stable
parabolic subalgebras. The fact that they occur in this branching law gives a

different proof of the unitarizability of these modules pp;q
þ;l for l4
 1; once we know

$p;q is unitarizable (cf. Part I, Theorem 3.6.1). It might be interesting to remark that

the unitarizability for lo0 (especially, l ¼ 
1
2
in our setting) does not follow from a

general unitarizability theorem on Zuckerman–Vogan’s derived functor modules
[20], neither from a general theory of harmonic analysis on semisimple symmetric
spaces. For another viewpoint from the orbit method, we refer to [11].

Our intertwining operator gðF1Þ�ðF1Þ� in Theorem A is derived from a conformal
change of coordinate (see Section 6 for its explanation) and is explicitly written.
Therefore, it makes sense to ask also about the relation of unitary inner
products between the left- and the right-hand side in the branching formula. Here
is an answer (see Theorem 8.6): We normalize the inner product jj jjpp;q

þ;l
(see (8.4.2))

such that for l40;

jj f jj2pp;q

þ;l
¼ ljj f jj2L2ðX ðp;qÞÞ for any fAðpp;q

þ;lÞK :

Theorem B (The Parseval–Plancherel formula for Oðp; qÞkOðp; q0Þ �Oðq00Þ).
(1) If we develop FAKer *DM as F ¼

P
N

l F
ð1Þ
l F

ð2Þ
l according to the irreducible

decomposition in Theorem A, then we have

jjF jj2$p;q ¼
XN
l¼0

jjF ð1Þ
l jj2

pp;q0

þ;lþq00
2

1

jj F
ð2Þ
l jj2L2ðSq00
1Þ:

(2) In particular, if q00
X3; then all of pp;q0

þ;lþq00
2

1

are discrete series for the hyperboloid

Xðp; q0Þ and the above formula amounts to

jjF jj2$p;q ¼
XN
l¼0

l þ q00

2

 1

� �
jjF ð1Þ

l jj2L2ðXðp;q0ÞÞjj F
ð2Þ
l jj2L2ðSq00
1Þ:

The formula may be also regarded as an explicit unitarization of the minimal
representation $p;q on the ‘‘hyperbolic space model’’ by means of the right side (for
an abstract unitarization of $p;q; it suffices to choose a single pair ðq0; q00Þ). We note
that the formula was previously known in the case where ðq0; q00Þ ¼ ð0; qÞ (namely,
when each summand in the right side is finite-dimensional) by Kostant, Binegar–
Zierau by a different approach [1,17]. The formula is new and seems to be
particularly interesting even in the special case q00 ¼ 1; where the minimal
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representation $p;q splits into two irreducible summands when restricted to
Oðp; q 
 1Þ �Oð1Þ:
In Theorem 9.1, we consider a more general setting and prove:

Theorem C (Discrete spectrum in the restriction Oðp; qÞkOðp0; q0Þ �Oðp00; q00Þ). The

twisted pull-back of the locally conformal diffeomorphism also constructsX"

lAA0ðp0;q0Þ-A0ðq00;p00Þ
pp0;q0

þ;l 2pp00;q00


;l "
X"

lAA0ðq0;p0Þ-A0ðp00;q00Þ
pp0;q0


;l 2pp00;q00

þ;l

as a discrete spectrum in the branching law for the non-compact case.

Even in the special case ðp00; q00Þ ¼ ð0; 1Þ; our branching formula includes a new
and mysterious construction of the minimal representation on the hyperboloid as
below (see Corollary 7.2.1): Let W p;r be the set of K-finite vectors ðK ¼ OðpÞ �OðrÞÞ
of the kernel of the Yamabe operator

Ker *DXðp;rÞ ¼ ffACNðX ðp; rÞÞ: DX ðp;rÞf ¼ 1
4
ðp þ r 
 1Þðp þ r 
 3Þf g;

on which the isometry group Oðp; rÞ and the Lie algebra of the conformal group
Oðp; r þ 1Þ act. The following proposition is a consequence of Theorem 7.2.2 by an
elementary linear algebra.

Proposition D. Let m43 be odd. There is a long exact sequence

0-W 1;m
1!j1 W 2;m
2!j2 W 3;m
3!
j3 ? �!jm
2

W m
1;1 �!jm
1
0

such that Ker jp is isomorphic to ð$p;qÞK for any ðp; qÞ such that p þ q ¼ m þ 1:

We note that each representation space W p;q
1 is realized on a different space
Xðp; q 
 1Þ whose isometry group Oðp; q 
 1Þ varies according to p ð1pppmÞ: So,
one may expect that only the intersections of adjacent groups can act (infinitesimally)
on Ker jp: Nevertheless, a larger group Oðp; qÞ can act on a suitable completion of
Ker jp; giving rise to another construction of the minimal representation on the

hyperboloid X ðp; q 
 1Þ ¼ Oðp; q 
 1Þ=Oðp 
 1; q 
 1Þ! We note that Ker jp is

roughly half the kernel of the Yamabe operator on the hyperboloid (see Section
7.2 for details).
We briefly indicate the contents of the paper: In Section 4 we recall the relevant

facts about discretely decomposable restrictions from [9,10], and apply the criteria to
our present situation. In particular, we calculate the associated variety of $p;q as well
as its asymptotic K-support introduced by Kashiwara–Vergne. Theorem 4.2 and
Corollary 4.3 clarify the reason why we start with the subgroup G0 ¼ Oðp; q0Þ �
Oðq00Þ (i.e. p00 ¼ 0). Section 5 contains the identification of the representations pp;q

þ;l

and pp;q

;l of Oðp; qÞ in several ways, namely as: derived functor modules, Dolbeault
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cohomologies, eigenspaces on hyperboloids, and quotients or subrepresentations of
parabolically induced modules. In Section 6 we give the main construction of
embedding conformally a direct product of hyperboloids into a product of spheres;
this gives rise to a canonical intertwining operator between solutions to the so-called
Yamabe equation, studied in connection with conformal differential geometry, on
conformally related spaces. Applying this principle in Section 7 we obtain the
branching law in the case where one factor in G0 is compact, and in particular
when one factor is just Oð1Þ: In this case we have Corollary 7.2.1, stating
that $p;q restricted to Oðp; q 
 1Þ is the direct sum of two representations, realized in
even, respectively, odd functions on the hyperboloid for Oðp; q 
 1Þ: Note here the
analogy with the metaplectic representation. Also note here Theorem 7.2.2, which

gives a mysterious extention of $p;q by $pþ1;q
1—both inside the space of
solutions to the Yamabe equation on the hyperboloid X ðp; q 
 1Þ ¼ Oðp; q 

1Þ=Oðp 
 1; q 
 1Þ: We also point out that the representations pp;q

þ;l for l ¼ 0;
1
2
are

rather exceptional; they are unitary, but outside the usual ‘‘fair range’’ for derived
functor modules, see the remarks in Section 8.4. Section 8 contains a proof of
Theorem 3.9.1 of [15] on the spectra of the Knapp–Stein intertwining operators and
gives the explicit Parseval–Plancherel formulas for the branching laws. Finally, in
Section 9 we use certain Sobolev estimates to construct infinitely many discrete
spectra when both factors in G0 are non-compact. We also conjecture the form of the
full discrete spectrum (true in the case of a compact factor). It should be interesting
to calculate the full Parseval–Plancherel formula in the case of both discrete and
continuous spectrum.

4. Criterion for discrete decomposable branching laws

4.1. Our object of study is the discrete spectra of the branching law of the restriction
$p;q with respect to a symmetric pair ðG;G0Þ ¼ ðOðp; qÞ;Oðp0; q0Þ �Oðp00; q00ÞÞ: The
aim of this section is to give a necessary and sufficient condition on p0; q0; p00 and q00

for the branching law to be discretely decomposable.
We start with general notation. Let G be a linear reductive Lie group, and G0 its

subgroup which is reductive in G:We take a maximal compact subgroup K of G such
that K 0 :¼ K-G0 is also a maximal compact subgroup. Let g0 ¼ k0 þ p0 be a Cartan

decomposition, and g ¼ k þ p its complexification. Accordingly, we have a direct
decomposition g� ¼ k� þ p� of the dual spaces.

Let pAĜ: We say that the restriction pjG0 is G0-admissible if pjG0 splits into a direct

Hilbert sum of irreducible unitary representations of G0 with each multiplicity finite
(see [7]). As an algebraic analogue of this notion, we say the underlying ðg;KÞ-
module pK is discretely decomposable as a ðg0;K 0Þ-module, if pK is decomposed into
an algebraic direct sum of irreducible ðg0;K 0Þ-modules (see [10]). We note that if the
restriction pjK 0 is K 0-admissible, then the restriction pjG0 is also G0-admissible
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[7, Theorem 1.2] and the underlying ðg;KÞ-module pK is discretely decomposable
(see [10, Proposition 1.6]). Here are criteria for K 0-admissibility and discrete
decomposability:

Fact 4.1 (see Kobayashi [9, Theorem 2.9] for (1); [10, Corollary 3.4] for (2)).

(1) If ASKðpÞ-Ad�ðKÞðk0Þ> ¼ 0; then p is K 0-admissible and also G0-admissible.
(2) If pK is discretely decomposable as a ðg0;K 0Þ-module, then

prg-g0 ðVgðpKÞÞCN�
g0 :

Here, ASKðpÞ is the asymptotic cone of

SuppKðpÞ :¼ fhighest weight of tAcK0K0: ½pjK0
: t�a0g;

where K0 is the identity component of K; and ðk0Þ>Ck� is the annihilator of k0: Let
N�

p ðCp�Þ be the nilpotent cone for p: VgðpKÞ denotes the associated variety of pK ;

which is an Ad�ðKCÞ-invariant closed subset ofN�
p:We write the projection prp-p0 :

p�-p0� dual to the inclusion p0+p:

4.2. Let us consider our setting where p ¼ $p;q and ðG;G0Þ ¼ ðOðp; qÞ;Oðp0; q0Þ �
Oðp00; q00ÞÞ:

Theorem 4.2. Suppose p0 þ p00 ¼ p ðX2Þ; q0 þ q00 ¼ q ðX2Þ and p þ qA2N: Then the

following three conditions on p0; q0; p00; q00 are equivalent:

(i) $p;q is K 0-admissible;
(ii) $p;q

K is discretely decomposable as a ðg0;K 0Þ-module;

(iii) minðp0; q0; p00; q00Þ ¼ 0:

Implication (i) ) (ii) holds by a general theory as we explained [10, Proposition
1.6]; (ii) ) (iii) will be proved in Section 4.4, and (iii) ) (i) in Section 4.5, by an
explicit computation of the asymptotic cone ASKð$p;qÞ and the associated variety
Vgð$p;q

K Þ which are used in Fact 4.1.

Remark. Analogous results to the equivalence (i) 3 (ii) in Theorem 4.2 were first
proved in [10], Theorem 4.2 in the setting where ðG;G0Þ is any reductive symmetric
pair and the representation is any AqðlÞ module in the sense of Zuckerman–Vogan,
which may be regarded as ‘‘representations attached to elliptic orbits’’. We note that
our representations $p;q are supposed to be attached to nilpotent orbits. We refer
[13], Conjecture A to relevant topics.

4.3. The following corollary is a direct consequence of Theorem 4.2, which will
be an algebraic background for the proof of the explicit branching law
(Theorem 7.1).
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Corollary 4.3. Suppose that minðp0; q0; p00; q00Þ ¼ 0:
(1) The restriction of the unitary representation $p;qjG0 is also G0-admissible.

(2) The space of K 0-finite vectors $p;q
K 0 coincides with that of K-finite vectors $p;q

K :

Proof. See [7, Theorem 1.2] for (1) and [10, Proposition 1.6] for (2). &

A geometric counterpart of Corollary 4.3(2) is reflected as the removal of
singularities of matrix coefficients for the discrete spectra in the analysis that we
study in Section 6; namely, any analytic function defined on an open subset Mþ (see
Section 6 for notation) of M which is a K 0-finite vector of a discrete spectrum,
extends analytically on M if p00 ¼ 0: The reason for this is not only the decay of
matrix coefficients but a matching condition of the leading terms for t-7N: This is
not the case for minðp0; q0; p00; q00Þ40 (see Section 9).

4.4. Proof of (ii) ) (iii) in Theorem 4.2.

We identify p� with p via the Killing form, which is in turn identified with
Mðp; q;CÞ by

Mðp; q;CÞ!B p; X/
O X
tX O

 !
:

Then the nilpotent cone N�
p corresponds to the following variety:

fXAMðp; q;CÞ: both X tX and tXX are nilpotent matricesg: ð4:4:1Þ

We put

M0;0ðp; q;CÞ :¼ fXAMðp; q;CÞ: X tX ¼ O; tXX ¼ Og:

Then M0;0ðp; q;CÞ\fOg is the unique KCCOðp;CÞ � Oðq;CÞ-orbit of dimension
p þ q 
 3: The associated variety Vgð$p;q

K Þ of $p;q is of dimension p þ q 
 3;

which follows easily from the K-type formula of $p;q (see [15, Theorem 3.6.1]).
Thus, we have proved:

Lemma 4.4. The associated variety Vgð$p;q
K Þ equals M0;0ðp; q;CÞ:

The projection prp-p0 : p�-p0� is identified with the map

prp-p0 :Mðp; q;CÞ-Mðp0; q0;CÞ"Mðp00; q00;CÞ;
X1 X2

X3 X4

 !
/ðX1;X4Þ:

Suppose p0p00q0q00a0: If we take

X :¼ E1;1 
 Ep0þ1;q0þ1 þ
ffiffiffiffiffiffiffi

1

p
Ep0þ1;1 þ

ffiffiffiffiffiffiffi

1

p
E1;q0þ1AM0;0ðp; q;CÞ;
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then prp-p0 ðXÞ ¼ ðE1;1;
Ep0þ1;q0þ1Þ: But E1;1eN�
oðp0;q0Þ and 
Ep0þ1;q0þ1eN�

oðp00;q00Þ:

Thus, prg-g0 ðX ÞeN�
g0 : It follows from Fact 4.1(2) that $p;q

K is not discrete

decomposable as a ðg0;K 0Þ-module. Hence (ii)) (iii) in Theorem 4.2 is proved. &

4.5. Proof of (iii) ) (i) in Theorem 4.2.

We take an orthogonal complementary subspace k000 of k00 in k0CoðpÞ þ oðqÞ: Let tc
0

be a Cartan subalgebra of k0 such that t000 :¼ tc
0-k000 is a maximal abelian subspace in

k000: We choose a positive system Dþðk; tcÞ which is compatible with a positive system
of the restricted root system Sðk; t00Þ: Then we can find a basis ffi: 1pip½p

2
� þ ½q

2
�g onffiffiffiffiffiffiffi


1
p

t�0 such that a positive root system of k is given by

Wþðk; tcÞ ¼ fi7fj : 1piojp
p

2

h in o
, fi7fj:

p

2

h i
þ 1piojp

p

2

h i
þ q

2

h in o
, fl : 1plp

p

2

h in o
ðp: oddÞ

� �
, fl :

p

2

h i
þ 1plp

p

2

h i
þ q

2

h in o
ðq: oddÞ

� �
;

and such that

ffiffiffiffiffiffiffi

1

p
ðt000Þ

� ¼
Xminðp0;p00Þ

j¼1
Rfi þ

Xminðq0;q00Þ

j¼1
Rf½p

2
�þj

ð4:5:1Þ

if we regard ðt000Þ
� as a subspace of ðtc

0Þ
� by the Killing form.

Suppose p0q0p00q00 ¼ 0: Without loss of generality we may and do assume p00 ¼ 0;
namely, G0 ¼ Oðp; q0Þ �Oðq00Þ with q0 þ q00 ¼ q:
Let us first consider the case pa2: Then the irreducible OðpÞ-representation

HaðRpÞ remains irreducible when restricted to SOðpÞ: The corresponding highest
weight is given by af1: It follows from the K-type formula of $p;q (Theorem 3.6.1)
that

SuppKð$p;qÞ ¼ af1 þ bf½p
2
�þ1: a; bAN; a þ p

2
¼ b þ q

2

� �
:

Therefore, we have proved

ASKð$p;qÞ ¼ Rþð f1 þ f½p=2�þ1Þ: ð4:5:2Þ

Then ASKð$p;qÞ-
ffiffiffiffiffiffiffi

1

p
ðt000Þ

� ¼ f0g from (4.5.1) and (4.5.2), which implies

ASKð$p;qÞ-
ffiffiffiffiffiffiffi

1

p
Ad�ðKÞðk00Þ

> ¼ f0g
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because ðt000Þ
� meets any Ad�ðKÞ-orbit through ðk00Þ

>: Therefore, the restriction
$p;qjK 0 is K 0-admissible by Fact 4.1(1).

If p ¼ 2; then $p;q splits into two representations (see Remark 3.7.3), say $2;q
þ and

$2;q

 ; when restricted to the connected component SO0ð2; qÞ: Likewise, HaðRpÞ is a

direct sum of two one-dimensional representations when restricted to SOð2Þ if aX1:
Then we have

ASKð$2;q
7 Þ ¼ Rþð7f1 þ fpþ1Þ:

Applying Fact 4.1(1) to the identity components ðG0;G0
0Þ of groups ðG;G0Þ; we

conclude that the restriction $p;q
7 jK 0

0
is K 0

0-admissible. Hence the restriction $p;qjK 0 is

also K 0-admissible. Thus, (iii) ) (i) in Theorem 4.2 is proved.
Now the proof of Theorem 4.2 is completed. &

5. Minimal elliptic representations of Oðp; qÞ

5.1. In this section, we introduce a family of irreducible representations of G ¼
Oðp; qÞ; denoted by pp;q

þ;l pp;q

;l; for lAA0ðp; qÞ; in three different realizations. These

representations are supposed to be attached to minimal elliptic orbits, for l40 in the
sense of the Kirillov–Kostant orbit method. Here, we set

A0ðp; qÞ :¼

flAZþ pþq
2
: l4
 1g ðp41; qa0Þ;

flAZþ pþq
2
: lXp

2

 1g ðp41; q ¼ 0Þ;

| ðp ¼ 1; qa0Þ or ðp ¼ 0Þ;
f
1

2
; 1
2
g ðp ¼ 1; q ¼ 0Þ:

8>>>><>>>>: ð5:1:1Þ

It seems natural to include the parameter l ¼ 0;
1
2
in the definition of A0ðp; qÞ as

above, although l ¼ 
1
2
is outside the weakly fair range parameter in the sense of

Vogan [22]. Cohomologically induced representations for l ¼ 
1
2
and 
1 will be

discussed in details in a subsequent paper. In particular, the case l ¼ 
1 is of
importance in another geometric construction of the minimal representation via
Dolbeault cohomology groups (see Part I, Introduction, Theorem B(4)).

5.2. Let Rp;q be the Euclidean space Rpþq equipped with the flat pseudo-Riemannian
metric:

gRp;q ¼ dv20 þ?þ dv2p
1 
 dv2p 
?
 dv2pþq
1:

We define a hyperboloid by

X ðp; qÞ :¼ fðx; yÞARp;q: jxj2 
 jyj2 ¼ 1g:
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We note Xðp; 0ÞCSp
1 and Xð0; qÞ ¼ |: If p ¼ 1; then X ðp; qÞ has two connected
components. The group G acts transitively on Xðp; qÞ with isotropy subgroup
Oðp 
 1; qÞ at

xo :¼ tð1; 0;y; 0Þ: ð5:2:1Þ

Thus X ðp; qÞ is realized as a homogeneous manifold:

X ðp; qÞCOðp; qÞ=Oðp 
 1; qÞ:

We induce a pseudo-Riemannian metric gX ðp;qÞ on X ðp; qÞ from Rp;q (see [15, Section

3.2]), and write DXðp;qÞ for the Laplace–Beltrami operator on Xðp; qÞ: As in [15,

Example 2.2], the Yamabe operator is given by

*DXðp;qÞ ¼ DX ðp;qÞ 
 1
4
ðp þ q 
 1Þðp þ q 
 3Þ: ð5:2:2Þ

For lAC; we set

CN

l ðXðp; qÞÞ :¼ fACNðX ðp; qÞÞ: DXðp;qÞf ¼ 
l2 þ 1
4
ðp þ q 
 2Þ2

� �
f

n o
¼ fACNðXðp; qÞÞ: *DX ðp;qÞf ¼ 
l2 þ 1

4

� �
f

� �
: ð5:2:3Þ

Furthermore, for e ¼ 7; we write

CN

l;eðXðp; qÞÞ :¼ ffACN

l ðXðp; qÞÞ: f ð
zÞ ¼ ef ðzÞ; zAXðp; qÞg:

Then we have a direct sum decomposition

CN

l ðXðp; qÞÞ ¼ CN

l;þðXðp; qÞÞ þ CN

l;
ðXðp; qÞÞ ð5:2:4Þ

and each space is invariant under left translations of the isometry group G because G

commutes with DXðp;qÞ: With the notation in Section 3.5, we note if q ¼ 0; then

CN

l;sgnð
1ÞkðX ðp; 0ÞÞ is finite-dimensional and isomorphic to the space of spherical

harmonics:

HkðRpÞCCN

l ðXðp; 0ÞÞ ¼ CN

l;sgnð
1ÞkðXðp; 0ÞÞ k :¼ lþ p 
 2

2

� �
:

5.3. Let G ¼ Oðp; qÞ where p; qX1 and let y be the Cartan involution corresponding
to K ¼ OðpÞ �OðqÞ:We extend a Cartan subalgebra tc

0 of k0 (given in Section 4.5) to

that of g0; denoted by hc
0: If both p and q are odd, then dim hc

0 ¼ dim tc
0 þ 1;

otherwise hc
0 ¼ tc

0: The complexification of hc
0 is denoted by hc:

We can take a basis ffi: 1pip½pþq
2
�g of ðhcÞ� (see Section 4.5; by a little

abuse of notation if both p and q are odd) such that the root system of g is
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given by

Wðg; hcÞ ¼ 7ð fi7fjÞ: 1piojp
p þ q

2

h in o
, 7fl : 1plp

p þ q

2

h in o
ðp þ q: oddÞ

� �
:

Let fHigChc be the dual basis for ffigCðhcÞ�: Set t :¼ CH1 ðCtcChcÞ: Then the
centralizer L of t in G is isomorphic to SOð2Þ �Oðp 
 2; qÞ: Let q ¼ l þ u be a
y-stable parabolic subalgebra of g with nilpotent radical u given by

Wðu; hcÞ :¼ f17fj: 2pjp
p þ q

2

h in o
,ðff1g ðp þ q: oddÞÞ;

and with a Levi part l ¼ l0#C given by

l0 � LieðLÞCoð2Þ þ oðp 
 2; qÞ:

Any character of the Lie algebra l0 (or any complex character of l) is determined by
its restriction to hc

0: So, we shall write Cn for the character of the Lie algebra l0 whose

restriction to hc is nAðhcÞ�: With this notation, the character of L acting on 4dim u u

is written as C2rðuÞ where

rðuÞ :¼ p þ q

2

 1

� �
f1: ð5:3:1Þ

The homogeneous manifold G=L carries a G-invariant complex structure with

canonical bundle4topT�G=LCG �L C2rðuÞ: As an algebraic analogue of a Dolbeault

cohomology of a G-equivariant holomorphic vector bundle over a complex manifold

G=L; Zuckerman introduced the cohomological parabolic inductionRj
q � ðRg

qÞ
jð jANÞ;

which is a covariant functor from the category of metaplectic ðl; ðL-KÞBÞ-modules to
that of ðg;KÞ-modules. Here, L̃ is a metaplectic covering of L defined by the character

of L acting on 4dim u uCC2rðuÞ: In this paper, we follow the normalization in [21,

Definition 6.20] which is different from the one in [19] by a ‘r-shift’.
The character Clf1 of l0 lifts to a metaplectic ðl; ðL-KÞBÞ-module if and only if

lAZþ pþq
2
: In particular, we can define ðg;KÞ-modules Rj

qðClf1Þ for lAA0ðp; qÞ: The
ZðgÞ-infinitesimal character of Rj

qðClf1Þ is given by

l;
p þ q

2

 2;

p þ q

2

 3;y;

p þ q

2

 p þ q

2

h i� �
AðhcÞ�

in the Harish-Chandra parametrization if it is non-zero. In the sense of Vogan [22],
we have

Clf1 is in the good range 3 l4
p þ q

2

 2;

Clf1 is in the weakly fair range 3 lX0:
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We note that Rj
qðClf1Þ ¼ 0 if jap 
 2 and if lAA0ðp; qÞ: This follows from a general

result in [20] for lX0; and [6] for l ¼ 
1
2
:

5.4. For bAZ; we define an algebraic direct sum of K ¼ OðpÞ �OðqÞ-modules by

XðK :bÞ � XðOðpÞ �OðqÞ:bÞ :¼ "
m;nAN
m
nXb

m
n�b mod 2

HmðRpÞ2HnðRqÞ: ð5:4:1Þ

For lAA0ðp; qÞ; we put

b � bðl; p; qÞ :¼ l
 p

2
þ q

2
þ 1AZ; ð5:4:2Þ

e � eðl; p; qÞ :¼ ð
1Þb: ð5:4:3Þ

We define the line bundle Ln over G=L by the character nf1 of L (see Section 5.3).

Here is a summary for different realizations of the representation pp;q
þ;l:

Fact 5.4. Let p; qAN ðp41Þ:
(1) For any lAA0ðp; qÞ; each of the following 5 conditions defines uniquely a ðg;KÞ-

module, which are mutually isomorphic. We shall denote it by ðpp;q
þ;lÞK : The ðg;KÞ-

module ðpp;q
þ;lÞK is non-zero and irreducible.

(i) A subrepresentation of the degenerate principal representation IndG
Pmaxðe#ClÞ

(see Section 3.7) with K-type XðK :bÞ:
ðiÞ0 A quotient of IndG

Pmaxðe#C
lÞ with K-type XðK :bÞ:
(ii) A subrepresentation of CN

l ðXðp; qÞÞK with K-type XðK :bÞ:
(iii) The underlying ðg;KÞ-module of the Dolbeault cohomology group

H
p
2
%@

ðG=L;L
ðlþpþq
2

2
Þ
ÞK :

ðiiiÞ0 The Zuckerman–Vogan derived functor module Rp
2
q ðClf1Þ:

(2) In the realization of (ii), if fAðpp;q
þ;lÞK ; then there exists an analytic function

aACNðSp
1 � Sq
1Þ such that

f ðo cosh t; Z sinh tÞ ¼ aðo; ZÞe
ðlþrÞtð1þ te
2tOð1ÞÞ as t-N:

Here, we put r ¼ pþq
2
2

:

For details, we refer, for example, to [5] for (i) and ðiÞ0; to [18] for (ii) and also for a
relation with (i) (under some parity assumption on eigenspaces); to [7, Section 6] (see
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also [6]) for ðiiiÞ0 3 (ii); and to [23] for (iii) 3 ðiiiÞ0: The second statement follows
from a general theory of the boundary value problem with regular singularities;
or also follows from a classical asymptotic formula of hypergeometric functions
(see (8.3.1)) in our specific setting.

Remark. (1) By definition, (i) and ðiÞ0 make sense for p41 and q40; and others for
p41 and qX0:

(2) Each of realization (i), ðiÞ0; (ii), and (iii) also gives a globalization of pp;q
þ;l;

namely, a continuous representation of G on a topological vector space. Because all

of ðpp;q
þ;lÞK ðlAA0ðp; qÞÞ are unitarizable we may and do take the globalization pp;q

þ;l to

be the unitary representation of G:

(3) If l40 and lAA0ðp; qÞ; then the realization (ii) of pp;q
þ;l gives a discrete series

representation for X ðp; qÞ: Conversely,

fpp;q
þ;l: lAA0ðp; qÞ; l40g

exhausts the set of discrete series representations for Xðp; qÞ:

If ðp; qÞ ¼ ð1; 0Þ; then Oðp; qÞCOð1Þ and it is convenient to define representations
of Oð1Þ by

p1;0þ;l ¼
1 ðl ¼ 
1

2
Þ;

sgn ðl ¼ 1
2
Þ;

0 ðotherwiseÞ:

8><>:
As we defined pp;q

þ;l in Fact 5.4, we can also define an irreducible unitary

representation, denoted by pp;q

;l; for lAA0ðq; pÞ such that the underlying ðg;KÞ-

module has the following K-type:

"
m;nAN

m
np
lþq
2

p
2

1

m
n�
lþq
2

p
2

1 mod 2

HmðRpÞ2HnðRqÞ:

Similarly to pp;q
þ;l; the representations p

p;q

;l are realized in function spaces on another

hyperboloid Oðp; qÞ=Oðp; q 
 1Þ:
In order to understand the notation here, we remark:

(i) pp;q

;lA dOðp; qÞ corresponds to the representation pq;p

þ;lA dOðp; qÞ if we identify
Oðp; qÞ with Oðq; pÞ:

(ii) pp;0
þ;lCHkðRpÞ; where k ¼ l
 p
2

2
and pX1; kAN:
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5.5. The case l ¼ 71
2
is delicate, which happens when p þ qA2Nþ 1:

First, we assume p þ qA2Nþ 1: By using the equivalent realizations of pp;q
þ;l in

Fact 5.4 and by the classification of the composition series of the most degenerate

principal series representation IndG
Pmaxðe#ClÞ (see [5]), we have non-splitting short

exact sequences of ðg;KÞ-modules:

0-ðpp;q


;
1
2

ÞK-IndG
Pmaxðð
1Þ

p
qþ1
2 #C
1

2
Þ-ðpp;q

þ;
1
2

ÞK-0; ð5:5:1Þ

0-ðpp;q

þ;
12
ÞK-IndG

Pmaxðð
1Þ
p
q
1
2 #C
1

2
Þ-ðpp;q


;
1
2

ÞK-0: ð5:5:2Þ

Because pp;q
þ;l ðlAA0ðp; qÞÞ is self-dual, the dual ðg;KÞ-modules of (5.5.1) and (5.5.2)

give the following non-splitting short exact sequences of ðg;KÞ-modules:

0-ðpp;q

þ;
1
2

ÞK-IndG
Pmaxðð
1Þ

p
qþ1
2 #C1

2
Þ-ðpp;q


;
1
2

ÞK-0; ð5:5:3Þ

0-ðpp;q


;
1
2

ÞK-IndG
Pmaxðð
1Þ

p
q
1
2 #C1

2
Þ-ðpp;q

þ;
1
2

ÞK-0: ð5:5:4Þ

Next, we assume p þ qA2N: Then, $p;q is realized as a subrepresentation of some
degenerate principal series (see [15, Lemma 3.7.2]). More precisely, we have non-
splitting short exact sequences of ðg;KÞ-modules

0-$p;q
K -IndG

Pmaxðð
1Þ
p
q
2 #C
1Þ-ððpp;q


;1ÞK"ðpp;q
þ;1ÞKÞ-0; ð5:5:5Þ

0-ððpp;q

;1ÞK"ðpp;q

þ;1ÞKÞ-IndG
Pmaxðð
1Þ

p
q
2 #C1Þ-$p;q

K -0; ð5:5:6Þ

and an isomorphism of ðg;KÞ-modules:

IndG
Pmaxðð
1Þ

p
qþ2
2 #C0ÞCðpp;q


;0ÞK"ðpp;q
þ;0ÞK : ð5:5:7Þ

These results will be used in another realization of the unipotent representation $p;q;
namely, as a submodule of the Dolbeault cohomology group in a subsequent paper
(cf. Part I, Introduction, Theorem B(4)).

6. Conformal embedding of the hyperboloid

This section prepares the geometric setup which will be used in Sections 7 and 9 for
the branching problem of $p;qjG0 : Throughout this section, we shall use the following
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notation:

jxj2 :¼ jx0j2 þ jx00j2 ¼
Xp0

i¼1
ðx0

iÞ
2 þ

Xp00
j¼1

ðx00
j Þ
2; for x :¼ ðx0;x00ÞARp0þp00 ¼ Rp;

jyj2 :¼ jy0j2 þ jy00j2 ¼
Xq0

i¼1
ðy0

iÞ
2 þ

Xq00
j¼1

ðy00
j Þ
2; for y :¼ ðy0; y00ÞARq0þq00 ¼ Rq:

6.1. We define two open subsets of Rpþq by

R
p0þp00;q0þq00

þ :¼ fðx; yÞ ¼ ððx0; x00Þ; ðy0; y00ÞÞARp0þp00;q0þq00 : jx0j4jy0jg;

Rp0þp00;q0þq00


 :¼ fðx; yÞ ¼ ððx0; x00Þ; ðy0; y00ÞÞARp0þp00;q0þq00 : jx0jojy0jg:

Then the disjoint union R
p0þp00;q0þq00

þ ,Rp0þp00;q0þq00


 is open dense in Rpþq: Let us

consider the intersection of R
p0þp00;q0þq00

7 with the submanifolds M and X given in

Section 3.2:

MCXCRp;q:

Then, we define two open subsets of MCSp
1 � Sq
1 by

M7 :¼ M-R
p0þp00;q0þq00

7 : ð6:1:1Þ
Likewise, we define two open subsets of the cone X by

X7 :¼ X-R
p0þp00;q0þq00

7 : ð6:1:2Þ
We notice that if ðx; yÞ ¼ ððx0; x00Þ; ðy0; y00ÞÞAX then

jx0j4jy0j3jx00jojy00j

because jx0j2 þ jx00j2 ¼ jy0j2 þ jy00j2: The following statement is immediate from
definition:

Xþ ¼ | 3 Mþ ¼ | 3 p0q00 ¼ 0; ð6:1:3Þ

X
 ¼ | 3 M
 ¼ | 3 p00q0 ¼ 0: ð6:1:4Þ

6.2. We embed the direct product of hyperboloids

Xðp0; q0Þ � X ðq00; p00Þ ¼ fððx0; y0Þ; ðy00; x00ÞÞ: jx0j2 
 jy0j2 ¼ jy00j2 
 jx00j2 ¼ 1g
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into Xþ ðCRp;qÞ by the map

X ðp0; q0Þ � X ðq00; p00Þ+Xþ; ððx0; y0Þ; ðy00; x00ÞÞ/ðx0; x00; y0; y00Þ: ð6:2:1Þ

The image is transversal to rays (see [15, Section 3.3] for definition) and the induced
pseudo-Riemannian metric gXðp0;q0Þ�X ðq00;p00Þ on X ðp0; q0Þ � Xðq00; p00Þ has signature

ðp0 
 1; q0Þ þ ðp00; q00 
 1Þ ¼ ðp 
 1; q 
 1Þ: With the notation in Section 5.2, we have

gXðp0;q0Þ�X ðq00;p00Þ ¼ gX ðp0;q0Þ"ð
gXðq00;p00ÞÞ:

We note that if p00 ¼ q0 ¼ 0; then X ðp0; q0Þ � Xðq00; p00Þ is diffeomorphic to Sp
1 �
Sq
1; and gXðp0;0Þ�X ðq00;0Þ is nothing but the pseudo-Riemannian metric gSp
1�Sq
1 of

signature ðp 
 1; q 
 1Þ (see [15, Section 3.3]).
By the same computation as in (3.4.1), we have the relationship among the

Yamabe operators on hyperboloids (see also (5.2.2)) by

*DXðp0;q0Þ�X ðq00;p00Þ ¼ *DXðp0;q0Þ 
 *DX ðq00;p00Þ: ð6:2:2Þ

We denote by F1 the composition of (6.2.1) and the projection F : X-M (see [15,
(3.2.4)]), namely,

F1 :Xðp0; q0Þ � X ðq00; p00Þ+M; ððx0; y0Þ; ðy00; x00ÞÞ/ ðx0; x00Þ
jxj ;

ðy0; y00Þ
jyj

� �
: ð6:2:3Þ

Lemma 6.2. (1) The map F1 :Xðp0; q0Þ � X ðq00; p00Þ-M is a diffeomorphism onto Mþ:

The inverse map F
1
1 :Mþ-Xðp0; q0Þ � X ðq00; p00Þ is given by the formula:

ððu0; u00Þ; ðv0; v00ÞÞ/ ðu0; v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 
 jv0j2

q ;
ðv00; u00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv00j2 
 ju00j2

q
0B@

1CA: ð6:2:4Þ

(2) F1 is a conformal map with conformal factor jxj
1 ¼ jyj
1; where x ¼
ðx0; x00ÞARp0þp00 and y ¼ ðy0; y00ÞARq0þq00 : Namely, we have

F�
1ðgSp
1�Sq
1Þ ¼ 1

jxj2
gXðp0;q0Þ�X ðq00;p00Þ:

Proof. The first statement is straightforward in light of the formula

ju0j2 
 jv0j2 ¼ jv00j2 
 ju00j240

for ðu; vÞ ¼ ððu0; u00Þ; ðv0; v00ÞÞAMþCSp
1 � Sq
1:
The second statement is a special case of Lemma 3.3. &
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6.3. Now, the conformal diffeomorphism F1 :Xðp0; q0Þ � X ðq00; p00Þ!B Mþ establishes

a bijection of the kernels of the Yamabe operators owing to Proposition 2.6:

Lemma 6.3. fF�
1F
�
1 gives a bijection from Ker *DMþ onto Ker *DXðp0;q0Þ�Xðq00;p00Þ:

Here, the twisted pull-backs fF�
1F
�
1 and fðF
1

1 Þ�ðF
1
1 Þ� (see Definition 2.3), namely,

fF�
1F
�
1 :C

NðMþÞ-CNðXðp0; q0Þ � X ðq00; p00ÞÞ ð6:3:1ÞfðF
1
1 Þ�ðF
1
1 Þ� :CNðX ðp0; q0Þ � Xðq00; p00ÞÞ-CNðMþÞ ð6:3:2Þ

are given by the formulae

ðfF�
1F
�
1FÞðx0; y0; y00; x00Þ :¼ ð jx0j2 þ jx00j2Þ


pþq
4
4 F

ðx0; x00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx0j2 þ jx00j2

q ;
ðy0; y00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jy0j2 þ jy00j2

q
0B@

1CA;

ðfðF
1
1 Þ�ðF
1
1 Þ�f Þðu0; u00; v0; v00Þ :¼ ð ju0j2 
 jv0j2Þ


pþq
4
4 f

ðu0; v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 
 jv0j2

q ;
ðu00; v00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv00j2 
 ju00j2

q
0B@

1CA;

respectively. We remark that fðF
1
1 Þ�ðF
1
1 Þ� ¼ ðfF�

1F
�
1Þ


1:

6.4. Similarly to Section 6.2, we consider another embedding

X ðq0; p0Þ � Xðp00; q00Þ+X
; ððy0; x0Þ; ðx00; y00ÞÞ/ðx0; x00; y0; y00Þ: ð6:4:1Þ

The composition of (6.4.1) and the projection F : X-M is denoted by

F2 :X ðq0; p0Þ � X ðp00; q00Þ+M; ððy0; x0Þ; ðx00; y00ÞÞ/ ðx0; x00Þ
jxj ;

ðy0; y00Þ
jyj

� �
: ð6:4:2Þ

Obviously, results analogous to Lemmas 6.2 and 6.3 hold for F2: For example, here
is a lemma parallel to Lemma 6.2:

Lemma 6.4. The map F2 :X ðq0; p0Þ � Xðp00; q00Þ-M
 is a conformal diffeomorphism

onto M
: The inverse map F
1
2 :M
-Xðq0; p0Þ � Xðp00; q00Þ is given by

ððu0; u00Þ; ðv0; v00ÞÞ/ ðv0; u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv0j2 
 ju0j2

q ;
ðu00; v00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju00j2 
 jv00j2

q
0B@

1CA:
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7. Explicit branching formula (discrete decomposable case)

7.1. If one of p0; q0; p00 or q00 is zero, then the restriction $p;qjG0 is decomposed

discretely into irreducible representations of G0 ¼ Oðp0; q0Þ �Oðp00; q00Þ as we saw in
Section 4. In this case, we can determine the branching laws of $p;qjG0 as follows:

Theorem 7.1. Let p þ qA2N: If q00
X1 and q0 þ q00 ¼ q; then we have an irreducible

decomposition of the unitary representation $p;q when restricted to Oðp; q0Þ �Oðq00Þ:

$p;qjOðp;q0Þ�Oðq00ÞC
XN
l¼0

"
pp;q0

þ;lþq00

2

1
2p0;q

00


;lþq00

2

1

C
XN
l¼0

"
pp;q0

þ;lþq00

2

1
2HlðRq00 Þ: ð7:1:1Þ

We shall prove Theorem 7.1 in Section 7.5 after we prepare an algebraic lemma in
Section 7.3 and a geometric lemma in Section 7.4.

Remark. The formula in Theorem 7.1 is nothing but a K-type formula (see Theorem
3.6.1) when q0 ¼ 0:

7.2. The branching law (7.1.1) is an infinite direct sum for q0041: This subsection
treats the case q00 ¼ 1; which is particularly interesting, because the branching

formula consists of only two irreducible representations (we recallHlðR1Þa0 if and
only if l ¼ 0; 1). For simplicity, we shall assume qX3 in Section 7.2.

It follows from Theorem 7.1 with q0 ¼ 1 that

$p;qjOðp;q
1Þ�Oð1ÞC pp;q
1
þ;
1

2

2p0;1

;
1

2

� �
" pp;q
1

þ;
1
2

2p0;1

;
1
2

� �
Cðpp;q
1

þ;
1
2

21Þ"ðpp;q
1
þ;
1
2

2 sgnÞ: ð7:2:1Þ

This means that $p;q
K can be realized in a subspace of CN

1
2

ðXðp; q 
 1ÞÞ; namely, the

kernel of the Yamabe operator *DXðp;q
1Þ (see (5.2.3)).

More precisely, according to the direct sum decomposition (see (5.2.4)), we have

Ker *DX ðp;q
1Þ � CN

1
2

ðXðp; q 
 1ÞÞ ¼ CN

1
2
;þ
ðXðp; q 
 1ÞÞ þ CN

1
2
;

ðXðp; q 
 1ÞÞ: ð7:2:2Þ

We recall that the central element 
IpþqAG acts on $p;q with scalar d; where

d :¼ ð
1Þ
p
q
2 : ð7:2:3Þ
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In view of the composition series of eigenspaces on the hyperboloid (see [18] for the
case d ¼ þ; similarly for d ¼ 
), we have non-splitting exact sequences of Harish-
Chandra modules of Oðp; q 
 1Þ:

0-ðpp;q
1
þ;
12

ÞK-CN

1
2;d
ðXðp; q 
 1ÞÞK-ðpp;q
1


;
1
2

ÞK-0; ð7:2:4Þ

0-ðpp;q
1
þ;
1
2

ÞK-CN

1
2
;
d

ðX ðp; q 
 1ÞÞK-ðpp;q
1

;
1

2

ÞK-0: ð7:2:5Þ

Here is a realization of $p;q in a subspace of the kernel of the Yamabe operator on
the hyperboloid Xðp; q 
 1Þ; on which Oðp; qÞ acts as meromorphic conformal
transformations.

Corollary 7.2.1. Let W7 be the unique non-trivial subrepresentation of Oðp; q 
 1Þ in

ðKer *DX ðp;q
1ÞÞ7 � CN

1
2
;7
ðX ðp; q 
 1ÞÞ: Each of the underlying ðg;KÞ-modules is

infinitesimally unitarizable, and we denote the resulting unitary representation by

W7: Then, the irreducible unitary representation $p;q of Oðp; qÞ is realized on the

direct sum Wþ þ W
:

We note that W
dCL2ðXðp; q 
 1ÞÞ and WdgL2ðXðp; q 
 1ÞÞ where d ¼ ð
1Þ
p
q
2 :

It is interesting to note that the Laplacian DX ðp;q
1Þ acts on a discrete series p
p;q
1
þ;l

for the hyperboloid X ðp; q 
 1Þ as a scalar 
l2 þ 1
4
ðp þ q 
 3Þ2; which attains the

maximum when l ¼ 1
2
if p þ ðq 
 1ÞA2Nþ 1:

Taking the direct sum of two exact sequences (7.2.4) and (7.2.5), we have the
following:

Theorem 7.2.2. There is a non-split exact sequence of Harish-Chandra modules for

Oðp 
 1; qÞ:

0-ð$p;qÞK-ðKer *DX ðp;q
1ÞÞK-ð$pþ1;q
1ÞK-0: ð7:2:6Þ

It is a mysterious phenomenon in (7.2.6) that $p;q extends to a representation of

Oðp; qÞ and ð$pþ1;q
1ÞK to that of Oðp þ 1; q 
 1Þ: So, different real forms of Oðp þ
q;CÞ act on subquotients of the kernel of the Yamabe operator on the hyperboloid
Xðp; q 
 1Þ ¼ Oðp; q 
 1Þ=Oðp 
 1; q 
 1Þ!
Here, we remark that Ker *DX ðp;q
1Þ-L2ðXðp; q 
 1ÞÞaf0g if and only if p þ

qA2Z; by the classification of discrete series for the hyperboloid Xðp; q 
 1Þ for p41:

7.3. By Theorem 4.2, the restriction $p;qjK 0 is K 0-admissible, where K 0COðpÞ �
Oðq0Þ �Oðq00Þ: Let us first find the K 0-structure of $p;q: We recall a classical
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branching law with respect to ðOðqÞ;Oðq0Þ �Oðq00ÞÞ ðq ¼ q0 þ q00; q0
X1; q00

X1Þ:

HnðRqÞC "
k;lAN
kþlpn

kþl�n mod 2

HkðRq0 Þ2HlðRq00 Þ: ð7:3:1Þ

We define b ¼ 1
2
ðq 
 pÞ: Then we have isomorphisms as K 0-modules:

"
m;nAN
m
n¼b

HmðRpÞ2HnðRqÞjOðpÞ�Oðq0Þ�Oðq00Þ

C"
m;nAN
m
n¼b

"
k;lAN
kþlpn

kþl�n mod 2

HmðRpÞ2HkðRq0 Þ2HlðRq00 Þ

C"
lAN

"
m;kAN

m
bXkþl
m
b�kþl mod 2

HmðRpÞ2HkðRq0 Þ2HlðRq00 Þ

C"
lAN

XðOðpÞ �Oðq0Þ: b þ lÞ2HlðRq00 Þ:

In view of Theorem 3.6.1, we have proved:

Lemma 7.3. We have an isomorphism of K 0-modules:

$p;q
K C"

lAN

XðOðpÞ �Oðq0Þ: q 
 p

2
þ lÞ2HlðRq00 Þ: ð7:3:2Þ

7.4. By Theorem 4.2 and [10, Lemma 1.3], the underlying ðg;KÞ-module $p;q
K is

decomposed into an algebraic direct sum of irreducible ðg0;K 0Þ-modules:

$p;q
K C"

t
mttC"

t1;t2
mt1;t2t12t2; ð7:4:1Þ

where mtAN and t runs over irreducible ðg0;K 0Þ-modules or equivalently, t1 runs
over irreducible ðg01;K 0

1Þ-modules (with obvious notation for G0
1 :¼ Oðp; q0Þ) and t2

runs over irreducible Oðq00Þ-modules. It follows from Lemma 7.3 that for each l there
exists a ðg01;K 0

1Þ-module Wl which is a direct sum of irreducible ðg01;K 0
1Þ-module such

that Wl is isomorphic to XðOðpÞ �Oðq0Þ: q
p
2

þ lÞ as K 0
1-modules. Let us prove that

Wl is in fact irreducible as a ðg01;K 0
1Þ-module.

Lemma 7.4. Wl is realized in a subspace of CN

l ðX ðp; q0ÞÞ with l ¼ l þ q00

2

 1:

Proof. In our conformal construction of $p;q in Section 3, we recall that each
K-finite vector of $p;q is an analytic function satisfying the Yamabe equation

on MCSp
1 � Sq
1: By using the conformal diffeomorphism F1 :Xðp; q0Þ �
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Sq00
1-Mþ; an open dense subset of M (see (6.1.4) with p00 ¼ 0), we can realize

Wl �HlðRq00 Þ in the space of smooth functions on Xðp; q0Þ � Sq00
1 satisfying the
Yamabe equation by the following diagram:

AðMÞ C
dense

CNðMÞ +
restriction

CNðMþÞ F�
1

!B CNðX ðp; q0Þ � Sq00
1Þ

, , , ,

Wl2HlðRq00 Þ C $p;q
K C

dense
Ker *DM +

restriction
Ker *DMþ F�

1

!B Ker *DXðp;q0Þ�Sq00
1 :

Because *DXðp;q0Þ�Sq00
1 ¼ *DX ðp0;q0Þ 
 *DSq00
1 (see (6.2.2)) acts on Wl2HlðRq00 Þ as 0; and
because *DSq00
1 acts on HlðRq00 Þ as a scalar 1

4

 ðl þ q00

2

 1Þ2 (see (3.5.1)), we conclude

that *DXðp0;q0Þ acts on Wl as the same scalar. Hence, Lemma is proved. &

7.5. Let us complete the proof of Theorem 7.1. It follows from Lemma 7.4 together
with the K 0

1-structure of Wl in Section 7.3 that Wl is irreducible and isomorphic to

ðpp;q0

þ;lþq00
2
2

ÞK 0
1
as ðg01;K 0

1Þ-module (see Fact 5.4). Therefore, we have an isomorphism

of ðg0;K 0Þ-modules

$p;q
K C"

N

l¼0
ðpp;q0

þ;lþq00

2

1
ÞK 0

1
2HlðRq00 Þ ðalgebraic direct sumÞ:

Taking the closure in the Hilbert space, we have (7.1.1). Hence Theorem 7.1 is
proved. &

7.6. So far, we have not used the irreducibility of $p;q in the branching law.
Although the irreducibility of $p;q ðp; qÞað2; 2Þ is known [1], we can give a new and
simple proof for it, as an application of the branching formulae in Theorem 7.1.

Theorem 7.6. Let p; qX2; p þ qA2Z and ðp; qÞað2; 2Þ: Then, $p;q is an irreducible

representation of Oðp; qÞ:

Proof. Suppose Waf0g is a closed invariant subspace of the unitary representation
ð$p;q;V p;qÞ: We want to prove W ¼ V p;q:
Without loss of generality (p and q play a symmetric role), we may assume qX3;

and fix q0
X1; q00

X2 such that q0 þ q00 ¼ q: We write Vp;q ¼
P"
N

l¼0
Vl according to the

irreducible decomposition (7.1.1) of G0 ¼ G0
1 � G0

2 :¼ Oðp; q0Þ �Oðq00Þ:
Because W is non-zero, W contains a K-type of the form HaðRpÞ2HbðRqÞ;

which we fix once for all. In view of the branching formula (7.3.1),HbðRqÞ contains
a non-zero Oðq00Þ-fixed vector. That is,

V0 :¼ Vp;qG0
2*W G0

2*HaðRpÞ2ðHbðRqÞÞG0
2af0g:
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Because G0
1 ¼ Oðp; q0Þ acts on V0 by pp;q0

þ;
q00

2

1
(see Theorem 7.1) which is irreducible,

and because V0*W G0
2 is stable under the action of G0

1; we conclude that V0 ¼ W G0
2 :

Hence, we have proved

W*V0: ð7:6:1Þ
If WaVp;q; the orthogonal complement W>*V0 by the same argument. This

would contradict to W-W> ¼ f0g: Therefore, W must coincides with Vp;q: Hence,
$p;q is irreducible. &

8. Inner product on -p;q and the Parseval–Plancherel formula

In this section, we prove the Parseval–Plancherel-type formula for our discrete
decomposable branching law given in Theorem 7.1. The proof of Theorem 3.9.1 of
Part I [15] is also given. Our main result in this section is Theorem 8.6.

8.1. In Sections 8.1–8.3, we give some explicit formulas on the Jacobi functions,
which are key to the proof of the Parseval–Plancherel-type formula of branching
laws of representations attached to minimal nilpotent orbits (Theorem 8.6) and also
to minimal elliptic orbits [14].

For readers’ convenience, we include here some of the proofs.
We begin with a brief summary of some known fact on the Jacobi function (see

[16]). Let us consider the differential operator

L :¼ d2

dt2
þ ðð2l0 þ 1Þ tanh t þ ð2l00 þ 1Þ coth tÞd

dt
:

We recall that for l; l0; l00AC; l00a
 1;
2;y; the Jacobi function jðl00;l0Þ
il ðtÞ is the

unique even solution to the following differential equation

ðL þ ððl0 þ l00 þ 1Þ2 
 l2ÞÞj ¼ 0 ð8:1:1Þ

such that jð0Þ ¼ 0:

Under the change of variables y ¼ e
2t; L has also a regular singularity at y ¼ 0:

Then (8.1.1) has characteristic exponents 1
2
ð7l
 ðl0 þ l00 þ 1ÞÞ at y ¼ 0: Thus, for

each lAC; there exists a unique analytic solution Cðl00;l0Þ
l ðtÞ to (8.1.1) on t40 such

that limt-N e
ðl
l0
l00
1ÞtCðl00;l0Þ
l ðtÞ ¼ 1: If la0 then Cðl00;l0Þ

l ðtÞ and Cðl00;l0Þ

l ðtÞ are

linearly independent, and jðl00;l0Þ
il ðtÞ is a linear combination of both. Since jðl00;l0Þ

il ðtÞ ¼
jðl00;l0Þ

il ðtÞ; we can write as

jðl00;l0Þ
il ðtÞ ¼ cðl

00;l0ÞðlÞCðl00;l0Þ
l ðtÞ þ cðl

00;l0Þð
lÞCðl00;l0Þ

l ðtÞ: ð8:1:2Þ
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We have from [16, (2.18)] (or from [2, 2.10 (2)]) that

cðl
00;l0ÞðlÞ � cðl

00;
l0ÞðlÞ :¼ 2
lþl0þl00þ1 Gð1þ l00Þ GðlÞ
Gðl00
l0þ1þl

2
Þ Gðl00þl0þ1þl

2
Þ
: ð8:1:3Þ

For l0; l0040 and Re lX0; we note

cðl
00;l0ÞðlÞ ¼ 0 if and only if l40 and 
 lþ l0 
 l00 
 1A2N: ð8:1:4Þ

In terms of the hypergeometric function, we have the following expressions:

jðl00;l0Þ
il ðtÞ ¼ 2F1

l0 þ l00 þ 1
 l
2

;
l0 þ l00 þ 1þ l

2
; l00 þ 1;
sinh2 t

� �
;

Cðl00;l0Þ
l ðtÞ ¼ ð2 sinh tÞl
l0
l00
1

2F1
l0 þ l00 þ 1
 l

2
;
l0 
 l00 þ 1
 l

2
; 1
 l;
 1

sinh2 t

� �
:

We introduce a meromorphic function of three variables l; l0 and l00 by

M � Mðl; l0; l00Þ :¼ ð
1Þ
l0
l00
l
1

2
Gðl0þl00
lþ1

2
ÞGðlþ 1Þ

Gðl0
l00þlþ1
2

ÞGðl00 þ 1Þ
: ð8:1:5Þ

Lemma 8.1 (Triangular relation of the Jacobi function, cf. [14]). Assume that

l; l0; l0040 and l0 
 l00 
 l
 1A2N: If 0oyop
2

and 0ot satisfy sin y cosh t ¼ 1; then

jðl;l00Þ
il0 ðiyÞ ¼ Mðcosh tÞlþl0þl00þ1jðl00;l0Þ

il ðtÞ:

For the sake of completeness, we give a proof here. The coordinate change
between y and t appears in a conformal embedding that we shall use later in
Section 8.5.

Proof. We recall one of Kummer’s relations among hypergeometric functions (see
[2, 2.9 (33)])

2F1ða; b; c; zÞ ¼ GðcÞ Gða þ b 
 cÞ
GðaÞ GðbÞ u6 þ

GðcÞ Gðc 
 a 
 bÞ
Gðc 
 aÞ Gðc 
 bÞu2

where u6 :¼ zb
cð1
 zÞc
a
b
2F1ðc 
 b; 1
 b; c þ 1
 a 
 b; 1
 z
1Þ and u2 :¼

z
b
2F1ðb þ 1
 c; b; a þ b þ 1
 c; 1
 z
1Þ: The substitution

a ¼ 
l0 þ l00 þ 1þ l
2

; b ¼ l0 þ l00 þ 1þ l
2

; c ¼ 1þ l; z ¼ sin2 y ¼ cosh
2t

gives the desired equation because the first term vanishes if 
aAN: &
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8.2. We recall the definition of A0ðp; qÞ from (5.1.1), and set

Aþðp; qÞ :¼ A0ðp; qÞ-flAR: l40g;

Lþ
ðlÞ :¼ fðl0; l00ÞAAþðp0; q0Þ � Aþðq00; p00Þ: l0 
 l00 
 l
 1A2Ng;

LþþðlÞ :¼ fðl0; l00ÞAAþðp0; q0Þ � Aþðp00; q00Þ: l
 l0 
 l00 
 1A2Ng:

We define meromorphic functions of three variables l; l0 and l00 by

V
ðl0;l00Þ
þ
;l :¼

ðGðl00 þ 1ÞÞ2 Gðl0
l00þlþ1
2

Þ Gðl0
l00
lþ1
2

Þ
2l Gðl0þl00þlþ1

2
Þ Gðl0þl00
lþ1

2
Þ

; ð8:2:1Þ

V
ðl0;l00Þ
þþ;l :¼

ðGðl00 þ 1ÞÞ2 Gð
l0
l00þlþ1
2

Þ Gðl0
l00þlþ1
2

Þ
2l Gð
l0þl00þlþ1

2
Þ Gðl0þl00þlþ1

2
Þ

: ð8:2:2Þ

Then we have readily

l0V ðl00lÞ
þþ;l ¼ Mðl; l0; l00Þ2lV

ðl0;l00Þ
þ
;l : ð8:2:3Þ

Here are the meanings of the functions V
ðl0;l00Þ
þ
;l and V

ðl0;l00Þ
þþ;l :

Lemma 8.2. (1) For l40 and ðl0; l00ÞALþ
ðlÞ; we haveZ
N

0

jjðl00;l0Þ
il ðtÞj2ðcosh tÞ2l

0þ1ðsinh tÞ2l
00þ1

dt ¼ V
ðl0;l00Þ
þ
;l : ð8:2:4Þ

(2) For l40 and ðl0; l00ÞALþþðlÞ; we have

Z p
2

0

jjðl00;l0Þ
il ðiyÞj2ðcos yÞ2l

0þ1ðsin yÞ2l
00þ1

dy ¼ V
ðl0;l00Þ
þþ;l : ð8:2:5Þ

Proof. (1) The condition ðl0; l00ÞALþ
ðlÞ implies that cðl
00;l0ÞðlÞ ¼ 0 (see (8.1.4)) and

that jðl00;l0Þ
il appears in the discrete spectrum of the Plancherel–Parseval formula for

the Jacobi transform [16, Theorem 2.4], from which the L2-norm (8.2.4) is obtained
by the following residue computation:

Res
n¼l

22ðl
0þl00þ1Þ

cðl
00;l0ÞðnÞ cðl

00;l0Þð
nÞ
¼ 1

V
ðl0;l00Þ
þ
;l

: ð8:2:6Þ
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(2) The Jacobi function reduces to the (classical) Jacobi polynomial, denoted by

P
ða;bÞ
m ðxÞ as usual, up to a scalar multiple if ðl0; l00ÞALþþðlÞ; and then we have

jðl00;l0Þ
il ðiyÞ ¼ Gðl00 þ 1Þ m!

Gð
l0þl00þlþ1
2

Þ
Pðl00;l0Þ

m ðcos 2yÞ; ð8:2:7Þ

where we put m :¼ 1
2ðl
 l0 
 l00 
 1ÞAN: We now recall a classical integral formula

of the Jacobi polynomial P
ðl00;l0Þ
m ðl0; l004
 1Þ (see [3, 16.4 (5)]):Z 1


1
ðPðl00;l0Þ

m ðxÞÞ2ð1
 xÞl
00
ð1þ xÞl

0
dx

¼ 2l
0þl00þ1

2m þ l0 þ l00 þ 1

Gðm þ l00 þ 1Þ Gðm þ l0 þ 1Þ
m! Gðm þ l0 þ l00 þ 1Þ

The substitution ðm; xÞ :¼ ð1
2
ðl
 l0 
 l00 
 1Þ; cos 2yÞ leads to (8.2.5). &

8.3. In this subsection, we prove Theorem 3.9.1 of [15], which gives explicit
eigenvalues of the Knapp–Stein integral operator (see (3.9.3)).

Analogously to the Knapp–Stein integral operator, we define the Poisson
transform for an affine symmetric space Xðp; qÞ by

P
l;e : Ind
G
Pmaxðe#ClÞ-CN

l;eðXðp; qÞÞ; ð8:3:1Þ

ðP
l;ef ÞðxÞ :¼
Z

M

cl
r;eð½x; b�Þ f ðbÞ db ðxAXðp; qÞÞ:

Here, r ¼ pþq
2
2

and db is the Riemannian measure on MCSp
1 � Sq
1; a double

cover of G=Pmax:
For Re l40; we can define the boundary value map

bl :C
N

l;eðX ðp; qÞÞK-IndG
Pmaxðe#C
lÞ ð8:3:2Þ

such that for fACN

l;eðXðp; qÞÞK we have

ðblf ÞðgxoÞ :¼ 2l
r lim
t-N

eðr
lÞtf ðg expðtEÞxoÞ:

Here, we recall from Sections 3.7 and 5.2 that expðtEÞxo ¼
tðcosh t; 0;y; 0; sinh tÞAX ðp; qÞ and xo ¼ tð1; 0;y; 0; 1ÞAX: Again as in Section

3.7, we have regarded an element of IndG
Pmaxðe#C
lÞ as a function over X:

We recall the barrier functions from (3.9.5):

B
e1;e2
l � B

e1;e2
l ðm; nÞ ¼ l
 1
 e1 m þ p

2

 1

� �

 e2 n þ q

2

 1

� �
;
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and define

aðl;m; nÞ :¼ cðnþ
q
2

1;mþp

2

1ÞðlÞ

2mþn
lþr ¼
Gðn þ q

2
Þ GðlÞ

Gð1þ B


l Þ Gð1þ Bþ


l Þ; ð8:3:3Þ

bðl;m; nÞ :¼ 4p
pþq
1
2 ð
1Þ½

m
n
2

� Gð1þ B


l Þ

Gðn þ q
2
ÞGð2lþpþq
1
e

4
Þ Gð
Bþ


l Þ
: ð8:3:4Þ

Lemma 8.3. Suppose hm;nAHmðRpÞ#HnðRqÞ:

Pl;ehm;n ¼ bðl;m; nÞh̃m;n; ð8:3:5Þ

blh̃m;n ¼ aðl;m; nÞhm;n: ð8:3:6Þ

Here, h̃m;nACNðXðp; qÞÞ is given by

h̃m;nðx cosh t; y sinh tÞ :¼ hm;nðx; yÞðcosh tÞmðsinh tÞnj
ðnþq

2

1;mþp

2

1Þ

il ðtÞ: ð8:3:7Þ

Proof. (1) The case e ¼ 1 was proved in [18, Lemma 7.2] which is based on the
integral formula of [4, Appendix B]. The case e ¼ 
1 is similar. Note that we have
normalized Pl;e slightly different from [18].

(2) This is a direct consequence of the asymptotic behavior of the Jacobi function
(see (8.1.2)). &

We are now ready to prove Theorem 3.9.1 of [15]:

Proof of Theorem 3.9.1. For Re l40; we have

Al;e ¼ bl3P
l;e ð8:3:8Þ

because the boundary value of the Poisson kernel is essentially the Knapp–Stein
kernel:

2l
r lim
t-N

eðr
lÞtcr
l;eð½g expðtEÞxo; b�Þ ¼ cr
l;eð½gxo; b�Þ:

In particular, it follows from (8.3.3) and (8.3.4) that Al;e acts as a scalar

aðl;m; nÞbð
l;m; nÞ ¼ 4p
pþq
1
2 ð
1Þ½

m
n
2

� GðlÞ Gð
Bþþ
l Þ

Gð
2lþpþq
1
e
4

Þ Gð1þ B


l Þ Gð1þ Bþ


l Þ Gð1þ B
þ
l Þ
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on the K-type HmðRpÞ#HnðRqÞ: Now, Theorem 3.9.1 follows by the analytic
continuation of this formula on l: &

8.4. Unitarizaition of pp;q
þ;l ðlAA0ðp; qÞÞ:

In this subsection, we give an explicit unitary inner product on pp;q
þ;l for lAA0ðp; qÞ:

In view of Fact 5.4, the ðg;KÞ-module ðpp;q
þ;lÞK is realized in CN

l ðX ðp; qÞÞK with

K-types XðK :bÞ where b ¼ l
 p
2
þ q

2
þ 1: Suppose fACN

l ðXðp; qÞÞK belongs to the

K-type HmðRpÞ2HnðRqÞAXðK :bÞ: Then f is of the form

f ðo cosh t; Z sinh tÞ ¼ hmðoÞhnðZÞðcosh tÞmðsinh tÞnj
ðnþq

2

1;mþp

2

1Þ

il ðtÞ; ð8:4:1Þ

where hmAHmðRpÞ; hnAHnðRqÞ; oASp
1; ZASq
1; and t40: We put

jj f jj2pp;q

þ;l
:¼ jjhmjj2L2ðSp
1Þ jjhnjj2L2ðSq
1Þ lV

ðmþp
2
2

;nþq
2
2

Þ
þ
;l : ð8:4:2Þ

Proposition 8.4. For lAA0ðp; qÞ; jj jjpp;q

þ;l
defines an inner product on ðpp;q

þ;lÞK and one

can define an irreducible unitary representation of G ¼ Oðp; qÞ on its Hilbert

completion.

Proof. Proposition 8.4 follows from the Parseval–Plancherel formula of the branching
law of the minimal representations (see Theorem 8.6) (for this, we need to replace
ðq; q0; q00Þ in Theorem 8.6 by ðq þ c; q; cÞ for some c40). See also Remark (4). &

There is an obvious inner product for l40; because ðpp;q
þ;lÞKCL2ðX ðp; qÞÞ: The

relation between our norm jj jjpp;q
þ;l
and the L2-norm jj jjL2ðXðp;qÞÞ is given by

jj f jj2pp;q

þ;l
¼ ljj f jj2L2ðX ðp;qÞÞ for any fAðpp;q

þ;lÞK ; ð8:4:3Þ

if l40 owing to Lemma 8.2(1). This observation gives an alternative proof of
Proposition 8.4 for l40: We should note that even for lAA0ðp; qÞ such that lp0

(this can happen if l ¼ 0;
1
2
), pp;q

þ;l is still unitarizable by the inner product ð; Þpp;q
þ;l

given in (8.4.2), which we have proved to be positive definite.

Remark (Unitarity). As we explained, all of ðpp;q
þ;lÞK are unitarizable for lAA0ðp; qÞ:

We summarize four different approaches to the proof of unitarizability:

(1) If l40; then ðpp;q
þ;lÞK is unitarizable because of the realization in L2ðXðp; qÞÞ:

(2) If lX0; then ðpp;q
þ;lÞK is unitarizable because of the realization of Zuckerman–

Vogan’s derived functor module Rp
2
q ðClÞ with the parameter l in the weakly

fair range [20].
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We note that the case l ¼ 
1
2 is not treated in the above two methods.

However, the following two methods cover all lAA0ðp; qÞ including the singular
cases l ¼ 0 and 
1

2
:

(3) Use the classification of unitarizable subquotients of IndG
Pmaxðe#ClÞ given in

[5, Section 3].

At last, here is a new proof of the unitarizability of ðpp;q
þ;lÞK for all lAA0ðp; qÞ:

The idea is to use our branching formula Theorem 7.1, for which the proof does

not use the unitarizability of ðpp;q
þ;lÞK :

(4) All of ðpp;q
þ;lÞK are unitarizable because they appear as discrete spectra in the

branching law of a unitary representation $p;qþc of a larger group Oðp; q þ cÞ to
Oðp; qÞ �OðcÞ for some c40 (see Theorems 7.1 and 8.6). For this purpose, cp3
will do.

8.5. We notice that the map F1: Xðp; q0Þ � Sq00
1-Mþ (6.2.3) (in the case p00 ¼ 0) is
given by

ððo cosh t; Z0 sinh tÞ; Z00Þ/ðo; ðZ0 cos y; Z00 sin yÞÞ;

where y and t satisfy sin y cosh t ¼ 1: Suppose fACNðX ðp; q0Þ � Sq00
1Þ belongs to

pp;q0

þ;lþq00

2

1
2HlðRq00 Þ

as an Oðp; q0Þ �Oðq00Þ-module, and furthermore to HmðRpÞ2HnðRq0 Þ as an
OðpÞ �Oðq0Þ-module in the first factor. Then f is of the form:

f ððo cosh t; Z0 sinh tÞ; Z00Þ ¼ hmðoÞ hkðZ0Þ hlðZ00Þðcosh tÞmðsinh tÞkj
ðkþq0

2

1;mþp

2

1Þ

iðlþq00

2

1Þ

ðtÞ;

where hmAHmðRpÞ; hkAHkðRq0 Þ; hlAHlðRq00 Þ; oASp
1; Z0ASq0
1; Z00ASq00
1; and
t40:

Lemma 8.5. The twisted pull-back fðF
1
1 Þ�ðF
1
1 Þ� :CNðXðp; q0Þ � Sq00
1Þ-CNðMþÞ (see

(6.3.2) for definition) is given by the formula:

ðfðF
1
1 Þ�ðF
1
1 Þ�f Þðo; ðZ0 cos y; Z00 sin yÞÞ

¼ M
1hmðoÞ hkðZ0Þ hlðZ00Þ ðcos yÞk ðsin yÞl j
ðlþq00

2

1;kþq0

2

1Þ

iðnþq
2

1Þ

ðiyÞ: ð8:5:1Þ
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Proof. In view of the definition, we have

ðfðF
1
1 Þ�ðF
1
1 Þ�f Þðo; ðZ0 cos y; Z00 sin yÞÞ ¼ ðcosh tÞ

pþq
4
2 f ððo cosh t; Z0 sinh tÞ; Z00Þ:

Then (8.5.1) follows from the triangular relation of the Jacobi-function (Lemma 8.1)

and from m þ p
2
¼ n þ q

2
: &

8.6. Let us consider the restriction from G ¼ Oðp; qÞ to G0 ¼ Oðp; q0Þ �Oðq00Þ:
Because we use an explicit map to prove the branching law, the generalized Parseval–
Plancherel formula makes sense.

Theorem 8.6. (1) If we develop FAKer *DM as F ¼
P

N

l F
ð1Þ
l F

ð2Þ
l according to the

irreducible decomposition (see Theorem 7.1)fðF1Þ�ðF1Þ� :$p;qjOðp;q0Þ�Oðq00Þ !
B XN

l¼0

"
pp;q0

þ;lþq00

2

1
2HlðRq00 Þ ð8:6:1Þ

then we have

jjF jj2$p;q ¼
XN
l¼0

jjF ð1Þ
l jj2

pp;q0

þ;lþ
q00

2

1

jjF ð2Þ
l jj2L2ðSq00
1Þ: ð8:6:2Þ

(2) In particular, if q00
X3; then all of pp;q0

þ;lþq00

2

1

are discrete series for the hyperboloid

Xðp; q0Þ and

jjF jj2$p;q ¼
XN
l¼0

ðl þ q00

2

 1Þ jjF ð1Þ

l jj2L2ðXðp;q0ÞÞjjF
ð2Þ
l jj2L2ðSq00
1Þ: ð8:6:3Þ

Remark. Formula (8.6.3) coincides with the Kostant–Binegar–Zierau formula (see
Section 3) in the special case where q0 ¼ 0 (namely, where G0 is a compact subgroup).

Proof. We write l :¼ l þ q00

2

 1; l0 :¼ m þ p

2

 1 ¼ n þ q

2

 1 and l00 :¼ k þ q0

2

 1: If F

is of the form of the right side of (8.5.1), then

jjfðF1Þ�ðF1Þ�F jj2
pp;q0
þ;l2HlðRq00 Þ

jjF jj2$p;q

¼
M2 jjhmjj2L2ðSp
1Þ jjhkjj2L2ðSq0
1Þ jjhl jj2L2ðSq00
1Þ lV

ðl0;l00Þ
þ
;l

jjhmjj2L2ðSp
1Þ jjhkjj2L2ðSq0
1Þ jjhl jj2L2ðSq00
1Þ l0V ðl00;lÞ
þþ;l0

¼ 1

Here, the first equality follows from definition (8.4.2), Lemmas 8.5 and 8.2(2). The
second equality is given by (8.2.3). Hence the first statement is proved. The second
statement follows from (8.4.3). &
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9. Construction of discrete spectra in the branching laws

9.1. In Section 7, we determined explicitly the branching law $p;qjG0 of the minimal

unipotent representation $p;qAĜ where G0 ¼ Oðp; q0Þ �Oðq00Þ: The resulting
branching law has no continuous spectrum (see Theorems 4.2 and 7.1). In this
section, we treat a more general case where continuous spectrum may appear,
namely, the branching law with respect to the semisimple symmetric pair

ðG;G0Þ ¼ ðOðp; qÞ;Oðp0; q0Þ �Oðp00; q00ÞÞ;

where p0 þ p00 ¼ p ðX2Þ; q0 þ q00 ¼ q ðX2Þ; p þ qA2N; and ðp; qÞað2; 2Þ:
We shall construct explicitly discrete spectra by using the conformal geometry.
Retain the notation in Section 5.1. We set

A0ðp; qÞ :¼ A0ðp; qÞ-flAR: l41g: ð9:1:1Þ

Theorem 9.1. The restriction of the unitary representation $p;qjG0 containsX"

lAA0ðp0;q0Þ-A0ðq00;p00Þ
pp0;q0

þ;l 2pp00;q00


;l "
X"

lAA0ðq0;p0Þ-A0ðp00;q00Þ
pp0;q0


;l 2pp00;q00

þ;l

as a discrete summand. Here, pp0;q0

þ;l 2pp00;q00


;l A bG0G0 is the outer tensor product of

pp0;q0

þ;l AdOðp0; q0Þ and pp00;q00


;l AOdðp00; q00Þ:

We have already established the full branching law $p;qjG0 if p0q0p00q00 ¼ 0: Thus,
the main part of this section will be devoted to the proof of Theorem 9.1 when
p0q0p00q00a0: We shall give some remarks on Theorem 9.1 at the end of this
subsection.

9.2. Let K 0 ¼ Oðp0Þ �Oðq0Þ �Oðp00Þ �Oðq00Þ: We realize the unitary representation
$p;q on the Hilbert space V p;q: Here we recall the notation of Section 3.9, briefly as
follows:

Vp;q ¼ Ker ðDp 
 DqÞ C
closed

V ¼ DomðDpÞ-DomðDqÞ ð C
dense

L2ðMÞÞ

M ¼ Sp
1 � Sq
1 *
dense

Mþ,M
:

Different from Corollary 4.3 in the discretely decomposable case ðp0q0p00q00 ¼ 0Þ; a
K 0-finite vector of a G0-irreducible summand (i.e. a discrete spectrum) in $p;qjG0 is

not necessarily a real analytic function on M if p0q0p00q00a0 in our conformal

construction of $p;q:With this in mind, we extend fðF
1
1 Þ�ðF
1
1 Þ�fACNðMþÞ (see Section 6
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for notation) to a function, denoted by Tþf ; on Sp
1 � Sq
1 as

Tþf :¼ fðF
1
1 Þ�ðF
1
1 Þ�f on Mþ;

0 on M\Mþ:

8<: ð9:2:1Þ

Here is a key lemma:

Lemma 9.2. Suppose l0AA0ðp0; q0Þ and l00AA0ðq00; p00Þ: Let fACNðXðp0; q0Þ �
Xðq00; p00ÞÞ be a K 0-finite function which belongs to pp0;q0

þ;l02pp00;q00


;l00 (see Fact 5.4(1) (ii)).

(1) If l0X1
2

and l00X1
2
; then TþfAV:

(2) If l041 and l0041; then YðTþf ÞAL2ðMÞ and YY 0ðTþf ÞAL1ðMÞ for any smooth

vector fields Y ;Y 0 on M:
(3) If l0 ¼ l0041 then TþfAVp;q:

Before proving Lemma 9.2, we first show that Lemma 9.2 implies Theorem 9.1. In
fact, Lemma 9.2(3) constructs a non-zero ðg0;K 0Þ-homomorphism

Tþ: ðpp0;q0

þ;l ÞK 0
1
2ðpp00;q00


;l ÞK 0
2
-$p;q;

for lAA0ðp0; q0Þ-A0ðq00; p00Þ: Then Tþ is injective because ðpp0;q0

þ;l ÞK 0
1
2ðpp00;q00


;l ÞK 0
2
is

irreducible. Since $p;q is a unitary representation of G; Tþ extends to an isometry of
unitary representations of G0:

pp0;q0

þ;l 2pp00;q00


;l -$p;q;

by taking the closure with respect to the inner product induced from $p;q: This

proves Theorem 9.1 for the irreducible representation pp0;q0

þ;l 2pp00;q00


;l that appears in

the first summand. The second summand is constructed similarly by using the
conformal diffeomorphism (see Lemma 6.4)

F2 :X ðq0; p0Þ � X ðp00; q00Þ!B M
 ðCMÞ:

Hence, the proof of Theorem 9.1 is completed by assuming Lemma 9.2.

9.3.

Remark 9.3. There exist l0AA0ðp0; q0Þ and l00AA0ðq00; p00Þ satisfying l0 ¼ l0041 if and
only if p0 þ q0 � p00 þ q00 mod 2 and p0

X2; q00
X2: This implies p þ qA2N; pX2 and

qX2; and V p;q is non-zero (see Section 3). Of course, Lemma 9.2(3) also implies
V p;qaf0g:
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9.4. It follows from Lemma 3.8.1 that the first statement of Lemma 9.2 is proved if

YðTþf ÞAL2
e for any e40 and for any smooth vector field Y on M: Therefore, both
of (1) and (2) of Lemma 9.2 are proved by studying the asymptotic behavior of Tþf

near the boundary of Mþ in M: This asymptotic estimate is studied below.

Any K 0-finite vector f is a finite linear combination of the form f1f2; where

f1ACNðX ðp0; q0ÞÞ is an Oðp0Þ �Oðq0Þ-finite vector that belongs to pp0;q0

þ;l0 ;

f2ACNðX ðq00; p00ÞÞ is an Oðp00Þ �Oðq00Þ-finite vector that belongs to pp00;q00


;l00 :

8<:
In order to prove Lemma 9.2, we may and do assume f is of the form f1f2: Then we
have

ðTþð f1f2ÞÞðu; vÞ

¼ ð ju0j2 
 jv0j2Þ

pþq
4
4

þ f1
ðu0; v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 
 jv0j2

q
0B@

1CAf2
ðu00; v00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju00j2 
 jv00j2

q
0B@

1CA: ð9:4:1Þ

Here, we have used the following notation:

rnþ :¼
rn ðr40Þ;
0 ðrp0Þ:

(

9.5. In order to analyze the asymptotic behavior of Tþð f1f2Þ (see (9.4.1)) near the
boundary of Mþ; we consider a change of variables on Sp
1 � Sq
1 by the surjective
map

ðS1 � Sp0
1 � Sp00
1Þ � ðS1 � Sq0
1 � Sq00
1Þ-Sp
1 � Sq
1;

ðeiy;o0;o00Þ; ðeij; Z0; Z00Þ/ðu; vÞ

defined by

ðu; vÞ � ðu0; u00; v0; v00Þ :¼ ðo0 cos y;o00 sin y; Z0 cos j; Z00 sin jÞ: ð9:5:1Þ

Because ju0j2 
 jv0j2 ¼ jo0 cos yj2 
 jZ0 cos jj2 ¼ jcos yj2 
 jcos jj2; M7 defined in
(6.1.1) is rewritten as

Mþ ¼ fðo0 cos y;o00 sin y; Z0 cos j; Z00 sin jÞ: jcos yj4jcos jjg;

M
 ¼ fðo0 cos y;o00 sin y; Z0 cos j; Z00 sin jÞ: jcos yjojcos jjg:
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Here is an elementary computation corresponding to the change of variables (9.5.1):

Lemma 9.5. (1) The volume element du dv on Sp
1 � Sq
1 is given by

du dv ¼ jcos yjp
0
1 jsin yjp

00
1 jcos jjq
0
1 jsin jjq

00
1
dy dj do0 do00 dZ0 dZ00;

where do0 is the volume element on Sp0
1 and so on.

(2) Any smooth vector field on Sp
1 � Sq
1 is a linear combination of

1

cos y
X 0;

1

sin y
X 00;

1

cos j
Y 0;

1

sin j
Y 00;

@

@j
;
@

@y
;

whose coefficients are smooth functions of ðo0;o00; Z0; Z00; y;jÞ: Here, X 0;X 00;Y 0 and Y 00

are smooth vector fields on Sp0
1;Sp00
1;Sq0
1 and Sq00
1; respectively.

Fact 5.4(2) describes the asymptotic behavior of K-finite functions that
belong to discrete series representations for a hyperboloid. Applying it to f1 with

respect to coordinate (9.5.1), we find a1ACNðSp0
1 � Sq0
1Þ and h1ACNðRÞ
such that

f1
ðu0; v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0j2 
 jv0j2

q
0B@

1CA ¼ a1ðo0; Z0Þ cos2 yþ cos2 j
cos2 y
 cos2 j

� �
2l
0þp0þq0
2

4

þ
h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 y
 cos2 j
cos2 yþ cos2 j

s0@ 1A:

Likewise, there exist a2ACNðSq00
1 � Sp00
1Þ and h2ACNðRÞ such that

f2
ðv00; u00Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jv00j2 
 ju00j2

q
0B@

1CA ¼ a2ðZ00;o00Þ sin2 yþ sin2 j
cos2 y
 cos2 j

� �
2l
00þp00þq00
2

4

þ
h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 y
 cos2 j

sin2 yþ sin2 j

s !
:

We treat the boundary @Mþ of MþCM locally in the following three cases:

Case (1) cos2 y
 cos2 j ¼ 0; ðcos y; cos jÞað0; 0Þ; ðsin y; sin jÞað0; 0Þ:
Case (2) cos y ¼ cos j ¼ 0:
Case (3) sin y ¼ sin j ¼ 0:
We note that Case (2) or (3) happens only when p0q0p00q00a0:

9.6. Case 1: In this subsection, we consider a generic part of the boundary @Mþ
corresponding to Case 1. In a local coordinate ðo0;o00; Z0; Z00; y;jÞASp0
1 � Sp00
1�
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Sq0
1 � Sq00
1 � R2; Tþð f1f2Þðu; vÞ is written as

Aðcos2 y
 cos2 jÞ

pþq
4
4

þ2l
0þp0þq0
2

4
þ2l

00þp00þq00
2
4

þ ¼ Aðcos2 y
 cos2 jÞ
l0þl00
2

þ :

Here, A is a smooth function of variables o0;o00; Z0; Z00; ðcos2 y
 cos2 jÞ
1
2
þ: Therefore,

by using Lemma 9.5, we have:

l0 þ l004
 1 ) TþfAL2
loc;

l0 þ l00X1 ) YðTþf ÞAL2
e
loc for any e40;YAXðMÞ;

l0 þ l0042 ) Y1Y2ðTþf ÞAL1
loc for any Y1;Y2AXðMÞ;

in a neighborhood of the boundary point of Mþ for Case (1).

9.7. Case 2: In this subsection we consider a neighborhood of ðo0;o00; Z0; Z00; y;jÞ
satisfying the condition of Case 2. We take a polar coordinate for
ðcos y; cos jÞAð0; 0Þ as

cos y ¼ r cos c;

cos j ¼ r sin c:

(

The composition to (9.5.1) yields a new coordinate on Sp
1 � Sq
1 given by

ðu; vÞ ¼ ðu0; u00; v0; v00Þ ¼ ðo0r cos c;o00
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2 cos2 c

p
; Z0r sin c; Z00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 r2 sin2 c

q
Þ;

where o0ASp0
1; o00ASp00
1; Z0ASq0
1; Z00ASq00
1; rX0; and cAR: Then our interest is
in a neighborhood of r ¼ 0: In this coordinate, we have

Mþ ¼ fra0; cos 2c40g:

The Jacobian matrix of the transform ðy;jÞ-ðr;cÞ is given by

@r
@y

@r
@j

@c
@y

@c
@j

 !
¼


cos c sin y 
sin c sin j
1
r
sin c sin y 
1

r
cos c sin j

 !
:

Lemma 9.7. (1) The standard measure on Sp
1 � Sq
1 is locally represented as smooth

function of ðr;c;o0; Z0;o00; Z00Þ � rp0þq0
1 dr dc do0 dZ0 do00 dZ00:
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(2) Any smooth vector field on Sp
1 � Sq
1 near r ¼ 0 is a linear combination of

1

r cos c
X 0;X 00;

1

r sin c
Y 0;Y 00;

@

@r
;
1

r

@

@c
;

whose coefficients are smooth functions of ðo0;o00; Z0; Z00; r;cÞ: Here, X 0;X 00;Y 0 and Y 00

are smooth vector fields on Sp0
1;Sp00
1;Sq0
1 and Sq00
1; respectively.

By noting the relations

cos2 yþ cos2 j
cos2 y
 cos2 j

¼ 1

cos 2c
;

sin2 jþ sin2 y

sin2 j
 sin2 y
¼ 2
 r2

r2 cos 2c
;

Tþð f1f2Þðu; vÞ is locally written as

B ðr2 cos 2cÞ

pþq
4
4 ðcos 2cÞ

2l0þp0þq0
2
4

þ ðr2 cos 2cÞ
2l00þp00þq00
2

4
þ

¼ B r
2l00
p0
q0þ2

2
þ ðcos 2cÞ

l0þl00
2

þ ;

where B is a smooth function of variables o0;o00; Z0; Z00; rþ; ðcos 2cÞ
1
2
þ: Therefore, by

using Lemma 9.7, we have:

2l004
 1; l0 þ l004
 1 ) TþfAL2
loc;

2l00X0; l0 þ l00X1 ) YðTþf ÞAL2
e
loc for any e40; YAXðMÞ;

2l0042
 p0 
 q0; l0 þ l0042 ) Y1Y2ðTþf ÞAL1
loc for any Y1;Y2AXðMÞ;

in a neighborhood of the boundary @Mþ for Case (2).
The asymptotic estimate for Case (3) is parallel to that of Case (2).

Remark 9.7. Assume l0 ¼ l00AZþ p0þq0

2
: Then r

2l00
p0
q0þ2
2

þ is bounded near r ¼ 0 if

and only if l0Xp0þq0

2

 1; equivalently, l04p0þq0

2

 2; which means that Cl0 is in the

good range with respect to the y-stable parabolic subalgebra defined by Cl0 in the
sense of Vogan.

9.8. We end with some remarks and conjectures, primarily concerning the precise
form of the discrete spectrum and also the continuous spectrum (where it would be
very interesting to develop the complete Plancherel formula, given our explicit
intertwining operator).
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(1) Multiplicity free property. Each irreducible component in Theorem 9.1 occurs
as multiplicity free. If p ¼ 2; then $p;q is the direct sum of an irreducible highest
weight module and a lowest one. It was proved in [8,12] that the multiplicity in the
full Plancherel formula (both discrete and continuous spectrum) is at most one, in
the branching law of any highest weight module of scalar type with respect to any
symmetric pair.
(2) At most finitely many discrete spectrum, and full discrete spectrum. If p0; q0; p00

and q00 satisfy

minðp0; q00Þp1 and minðq0; p00Þp1; ð9:8:1Þ

then the parameter set in Theorem 9.1 is empty, namely,

A0ðp0; q0Þ-A0ðq00; p00Þ ¼ A0ðq0; p0Þ-A0ðp00; q00Þ ¼ |:

We conjecture that there are at most finitely many discrete spectra in the branching
law $p;qjG0 if (9.8.1) holds. We further conjecture that the full discrete spectrum is as

in Theorem 9.1 with A0ðp; qÞ replaced by A0ðp; qÞ everywhere.
(3) No discrete spectrum. Furthermore, if we exclude the case such as G0 ¼

Oðp; q 
 1Þ �Oð1Þ (see Section 7.2), namely, if

minðp0; q00Þp1; minðq0; p00Þp1; p0 þ q041; and p00 þ q0041; ð9:8:2Þ

then

A0ðp0; q0Þ-A0ðq00; p00Þ ¼ A0ðq0; p0Þ-A0ðp00; q00Þ ¼ |:

It is likely that there is no discrete spectra in the branching law $p;qjG0 if (9.8.2) is

satisfied.
We note that condition (9.8.2) is equivalent to that at least one of X ðp0; q0Þ or

Xðq00; p00Þ is a non-compact Riemannian symmetric space and at least one of Xðq0; p0Þ
or Xðp00; q00Þ is a non-compact Riemannian symmetric space.
(4) Discretely decomposable case. The opposite extremal case is when

minðp0; p00; q0; q00Þ ¼ 0: ð9:8:3Þ

As we have proved in Theorem 4.2, the restriction $p;qjG0 is discretely decomposable

without any continuous spectrum. We have obtained the full branching formula in
Theorem 7.1 by using Theorem 4.2 and the K-type formula of $p;q:
If we employ only the method in this section to the special case (9.8.3), then we do

not have to consider Cases (2) and (3) in Section 9.7. Then, Theorem 9.1 exhausts all
discrete spectra in Theorem 7.1 in most cases, but there are a few exceptions. To be
precise, we consider the case p00 ¼ 0 without loss of generality. Then, in view of
Theorem 7.1, the right side of Theorem 9.1 exhausts all discrete spectra if q00

X5;

while at most two of ðg0;K 0Þ-modules pp;q0

þ;l2p0;q
00


;l are missing in Theorem 9.1 if q0p4:

The precise missing parameters in the case p00 ¼ 0 and q0 ¼ 0 are: l ¼ 71
2
ðq00 ¼ 1Þ;
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l ¼ 0; 1 ðq00 ¼ 2Þ; l ¼ 1
2 ðq00 ¼ 3Þ; and l ¼ 1 ðq00 ¼ 4Þ: In order to cover all missing

parameter by the purely geometric method of this section, we should note a specific
feature in the case p00 ¼ 0:

(i) Mþ is a dense subspace of M:
(ii) Any real analytic functions on Mþ satisfying the Yamabe equation

corresponding to K 0-finite vectors of the ðg0;K 0Þ-module with the above missing
parameter extend to real analytic functions on M (see Corollary 4.3(2)).

(5) Explicit continuous spectrum.
We conjecture that

L2-Ind
G0
1

Pmax
1

ðe#C ffiffiffiffiffi

1

p
lÞ2L2-Ind

G0
2

Pmax
2

ðe#C ffiffiffiffiffi

1

p
lÞ ðlARÞ

is a continuous spectrum with multiplicity free if minðp0; p00; q0; q00Þ40:
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