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Localization at Epimorphisms and Quasi-injectives” 

JOXHIM LAMBEK 

The general theory of localization, developped by Rattray and the author 
[19] from a method of Fakir [7], yields not only the localization of Bourbaki- 
Gabriel [2]? but also the Iocalization associated with any epimorphism of rings, 
such as that of Cohn [3,4]. (Incidenta@, ring epimorphisms are characterized 

in terms of systems of equations whose solutions are uniquely determined.) 
After a discussion of a slightly generalized version of Jacobson’s density 
theorem [13], the density theorem of the author [17, IS] is shown to be 
extendable to this general situation. Quasi-injectives do not, in general, 
appear to permit localization in Mod R? but they do in Cont R, the category of 
“continuous” R-modules. In this category, localization alone accomplishes 
what requires localization and completion under favorable circumstances in 
Mod R. Crucial to this result is a lemma of Harada [12]. Some observations 
about Xod R may be deduced by specializing the topology to be discrete. 

1. LOCALIZATIOK 15 COMPLETE CATEGORIES 

Ke begin by giving a brief exposition of the theory developed in [19]. 
Let Gt be a complete category, I a given object of a. We introduce the 
functor 

T = Tj = IHOm(-J): &‘+ @. 

It comes equipped with a natural transformation 2, = vl: id - T from the 
identity functor, which satisfies ~r,q(A) = f  for each f  E HomjA, 1): where 
TV: T(A) + I is the canonical projection associated with j. 

x This paper was written at Paris VII, while the author was on sabbatical leave from 

McGil! University on a France-Canada exchange. h preliminarp version, “Localisation 
des modules continus,” has appeared in Lesieur’s “SCminaire d’algkbre non com- 

mutatke>” Publications Math&matiques d’Orsay 1974. 
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Following the idea of [7], for each object A of a, we let K(A) = 
K,(A): Q(A) --+ T(A) be the equalizer of the two morphisms ?T(A), 
Z’q(A): TA- T2(A). As was shown in [19], it is also the intersection of the 
equalizers of all pairs of morphisms p, 9: T(A) =$ I such that m(A) = #q(A). 
One obtains a natural transformation h = A,: id+ Q such that K 0 X = -q. 

The following is known [19]. 

THEOREM 1.1. The following conditions on 7 are equiz’alent : 

(1) hQ is an isomorphism; 

(2) for each f: Q(A) -+ I, there exists an f ‘: T(A) -+ I such that 

f'K(A) =fi 

(3) the full subcategory Fix(Q, A) of Fd, w ic h h consists of all objects A of ad 
for which h(A) is an isomorphism, is the smallest full subcategory of FL that 
contains I and is closed under limits. 

Property (1) assures that (Q, A) determines an idempotent triple [7]. 
In view of property (2), we call the object I K-injectivt?. 

Property (3) assures that Fix(Q), A) is a full reflective subcategory of 0?, the 
reflector being given by the assignment A t+ Q(A). 

Many examples of this situation have been discussed in [19], among them 
the following: 0Z is the category of topological spaces, the category of uniform 
spaces, the category of presheaves on a topological space, the category 
(Mod R)op, and the category Mod R. 

2. LOCALIZATION IN Mod R 

We shall briefly review some known facts about Mod R and add some new 
ones. Which are the K-injeCtiVes of Mod R ? 

EXAMPLE 2.1. Let I be an injective R-module and 9 = BI the set of all 
those right ideals D of R for which Hom,(RjD, I) = 0. Then, 5%’ is an 
“idempotent filter” in the sense of Bourbaki-Gabriel [2] and 

where 

Q(A) = l$n,,g Horn@, A/A,,), 

Conversely, any idempotent filter of right ideals of R gives rise to an injective 

I = fl E(R/C), 
CEQ 
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where %? is the set of all those right ideals C of R such that 

v,,, r-T $6 9, 

and E(-) is the injective envelope. One calls Q(A) “mod& of quotients” 
of -4 and Q “localization functor.” 

EXAMPLE 2.2. Let e: R + R’ be a given epimorphism in the category of 
rings, Then, every injective in the full subcategory Nod R’ is K-injective in 

Mod R. In particular, one may take I to be an injectke cogenerator of Mod R’, 
for instance, I = HomJR’, a/Z). Th en, Fix(Q, A) E Mod R’ and Q(A) g 

A OR Ii’. 
Note that the intersection of Examples 2.1 and 2.2 is the localization theory 

determined by an epimorphism R + R’, such that the left module & is flat, 
which theory has been discussed by Silver 1241. This vague observation will 
be made precise in Corollary 2.7 below. 

The localization of Cohn [3,4] . 1s a special case of Example 2.2 not included 
in Example 2.1. He obtained an epimorphism e: R -+ R’ by forcing a set of 

matrices with entries from R to become invertible in R’. 
To find a two-sided inverse of an n x pt matrix, one has to satisfy 29 

equations in na unknowns; but we know that the solutions, if they exist, are 
unique. There are other such systems of equations wth uniquely determined 
solutions, for example, 

rxr = Y, xrx = x, YX = xr. 

Consider a ring extension h: R -+ R[X] obtained from R by adjoining a set 
X of indeterminates.l A set of polynomials 

P(+,) ,... , h(r,), xl a..., 4 E REXI 

with “coefficients” ri E R and “unknowns” xi E X will be said to have a 

solution tp: X-+ R’ in an extension (= ring homomorphism) j: R -+ R’ if 

for each polynomial p in the set. 
A set of polynomials always has a solution in some extension, for example 

in ?rh: R -+ R[X’j/K, where K is the ideal generated by the given polynomiais 
and n’: R[X] -+ R[XjIK is the canonical projection: the solution is of course 
x ‘+> X(X). 

We say that a set of polynomials in R[Xj is uniquely solmzble for X if it 
has, at most, one solution in each extension of R. 

1 They da not commute with elements of R or with each other. 
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THEOREM 2.3. Let K be an ideal of R[X], then K is uniquely soleable for X 
if and only ;f  R -+ R[XjjK is an epimorphism of rings. Moreover, ecery epimor- 
phism R -+ S is of this form, up to isomorphism over R. 

Proqf. Assume K is uniquely solvable for X. We claim that mh is an 
epimorphism. Indeed: suppose u, z’: R[X]/K* R’ are such that u&z = 
v?rh = f, say. Then, x I-+ UT(X) and x :+ VT(~) are solutions in f:  R---f R’, 
hence, ~17~ = wr and therefore, u = z’. 

Conversely, suppose rh is an epimorphism of rings and suppose I: X + R’ 
is a solution of K in the extension f : R -+ R’. Then, 

for each polynomial p in K. Sow, there exists a unique ring homomorphism 
p’: R[X] + R’, such that y’h = f and v’(x) = y(x) for all x E X. Clearly, 

p@(&i),..., h(rm>, xl,..., G)) = 0 

for each p in K, hence, there exists a unique @: R[X]/K ---f R’ such that 
v*r = 3)‘. It follows that $+%h = f and $?r(~) = v(x) for all s E X. If  
6: X -+ R’ is another solution of K in f : R --f R’, then likewise, me obtain #“, 
such that $%h = f and #*z-(x) = y%(x) for all x E X. Since 4 is epi, we have 
q~* = z,F, hence, 9, = #. 

Finally, let e: R -+ S be any epimorphism of rings. To each element s E S, 
assign the indeterminate x, and let X = {xs / s E S>. Let K be the ideal of 
R[X] generated by the following polynomials: 

for all r E R and s, s’ E S. Let g: R[X] -+ S be the unique ring homomorphism 
such that glz = e and g(xJ = s for all s E S. Then, g(xo) = 0, g(xl - 1) = 
1 - g(1) = 0, etc., hence, g(K) = 0. Therefore, there exists a unique ring 
homomorphism g’: R[X]/K --+ S such that g’q = g. We claim that g’ is an 
isomorphism. Since g’zh = g/z = e, this will complete the proof. 

Clearly, g’r(xJ = g(xs) = s, hence, g’ is a surjection. It remains to show 
that it is one-to-one. Suppose 

that is to say, 

g(PWd,..v +,A “vsl ,a..> GJ = 0, 

p(e(rl) ,...: e(r,), s1 ,..., sn) = 0. 
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Then, modulo K: we have 

Thus, g’+o) = 0 implies that z(p) = 0, and our proof is complete. 

Remark 2.4. It also follows from considerations similar to the above that 
AZ: R +- R[AJ!K has the following universal property: I f  the polynomials 
in K are also solvable in f: R -+ Ii’, then there exists a unique ring homo- 
morphism g: R[X],!K --f R’ such that g&z = f. 

Finally, let it be mentioned that these observations about epimorphisms 
are not special to the category of rings. They are valid for ail algebraic 
categories, provided one notes that, in general, an equation has the form 
p = q and not just p = 0. Thus, one should speak of solutions for pairs of 

polynomials and one should replace the ideal K by a suitable congruence 
relation. 

The following well-known result depends only on the fact that Fis(Q, h) 
is a reflective subcategory of Mod R. 

(a) Q(R) is a ring, 

(b) X(R) is a ring homomorphism, 

(c) ezeyy object of Fix(Q, A) b a rkht Q(R)-module, 

(d) eyeq R-homomorphism between o@ects oj’ Fix(Q, A) is a Q(R)- 
lm~omoYphis??z. 

For a proof, see [16]. As explained there, Mod Q(R) is, in a certain technical 
sense, the “best coapproximation” of Fix(Q, h) by a module category. 

The foliowing result is known in case i is injective. 

PROPOSITIOK 2.6. Let I be a K-ilzjectice right R-mod& Therz, the follemkg 
statements are equivalent : 

(0) T(Bj is mono fey eaey Q(R)-module B, 

(1) Fix(Q, A) = Mod Q(R), 

(2) Q ss (-1 l@h Q(R), 
(3) Q preserses colimits, 

(4) Fix(Q, A) is closed wnder colimits. 



168 JOACHIM LAMBEK 

Proof. We show (0) + (1) 3 (2) * (3) * (4) 3 (0). 

(0) 3 (1). Let B E Mod Q(R), then, also, T(B)/B E Mod Q(R). By (0), 
q(B) and v( T(B)/@ are both mono.2 The first fact implies that B c im v(B) 
and the second fact implies that im v(B) = Q(R). Thus, Mod Q(R) C 
Fix(Q, A) and the converse inclusion follows from Lemma 2.5. 

(1) * (2). The reflectors A w Q(A) and A w A OR Q(R) must be 
isomorphic. 

(2) z- (3). Since (-) OR Q(R) preserves colirnits, so does Q. 

(3) * (4). This is obvious. 

(4) => (0). Let B E Mod Q(R). Then, there is an exact sequence 

fQ(R)+fQ(R)+B+O 

in Mod R. By (4), B E Fix(Q, A), hence, y(B) is mono. 

Two K-injectives I and I’ are called similar if they have the same limit 
closures, that is, if they give rise to isomorphic localization functors. 

COROLLARY 2.7. There is a one-to-one coreesponde?lce between 

(a) similarity classes of K-iwjectives in Mod R satisfying the equivalent 
conditions of Proposition 2.6, 

(b) isomorphism classes of epimo~phisms R + R’ in the category of rings. 

MOreoVer , RR’ is a flat left R-module if and only ;f  the associated similarity 
class contains an injective. 

Proof. To the K-injeCtiVe I, we associate the ring homomorphism 
h,(R): R --+ Q1(R), as usual. Under the equivalent conditions of Proposition 
2.6, this is an epi, for then, ModQ(R) = Fix(Q, A) is a full subcategory of 
Mod R. (We note that I is a cogenerator of Mod Q(R).) 

To the ring epimorphism e: R + R’, we associate the injective cogenerator 
I, of Mod R’, as in Example 2.2. But then, Qr, E (-) @)R R’, so that 
QJR) z R’, hence, the equivalent conditions of Proposition 2.6 are satisfied. 

If  I’ = I,+,) , then Q1, z (-) OR Q,(R) g Q, , hence, I’ is similar to I. 
Also, Q1* mduces the reflector Mod R -+ Mod R’, hence, Q,, E (-) OR R’, 

hence, QIe(R) E R OR R’ s R’. One may check that &JR) c e. 
If  I is injective, Q1 E (-) @JR R’ preserves monomorphisms, hence, 

RR’ is flat. 
I f  RR’ is flat, the injective cogenerator I = Homz(R’, Q/Z) of Mod R’ is 

injective as a right R-module. 

2 Put i? = im v(B) and observe that, in view of Section 1, Q(B):‘B = ker ?(T(B)/E). 
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3. DEXSITY THEOREMS 

Given a module I E Mod R, let E be its ring of endomorphisms, so that I 
may be viewed as a bimodule EIR . For any A E Mod R, we define its doubb 
dual 

S(A) = S,(A) = HomE(HomR(A, I), I). 

Clearly, it is a submodule of T(A)and the canonical morphism 77(S): A+ T(A) 
factors through S(A). In particular, S(R) is a ring, the bicommutator of I and 
R --t S(R) is a ring homomorphism. 

The following is an obvious generalization of Jacobson’s Density Theorem 
[13] from rings to modules. 

PROPOSITION 3.1. Let I be a completely reducible right R-module. Then, 
for alty A E Mod R, A + S(A) is “dense” in the follozLing sense: for all 

fi :..., fn: A -+ I and all s E S(A), there exists a E A such that 

(fi) s =fi(4v (.fJ s =f?&Q 

Proof (inspired by [20]). First consider the case n = 1. Letf: A -+I and 
s E S(A) be given. Since I is completely reducible, j(-4) = eE for some 
e2 = e E E, hence, f  = ef and 

(f) s = (ef) s = 4(f) 4 = fW 

for some a E A. 
In general, suppose fi ,..., fn : A + 1. Then, we obtain f = ( fI ,..,, fn>: 

A -> In, where 

f  (4 = (f&),...,f&j). 

Moreover, any s E S,(A) induces s, E S,,(,4), where 

(f) s, = ((fi) s,*Y (fn) s). 

Since 1% is completely reducible, we may apply the special case of the theorem 
already proved and obtain a E A, such that (f) s, = f  (a}, that is, 

((fi> s,..v (frz) 4 = (fi(4Y*~fizw)” 

This result may be interpreted by saying that the image of A-t S(A) is 
actually dense in S(A) for theJinite topology, that is, the topology induced by 
the product topology of T(A), a power of the discrete module I. 
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Remark 3.2. Suppose A is endowed with the I-adic topology, that is to 
say, fundamental open neighbourhoods of zero have the form Ker f,  where 
f: A -+I”. Then, S(A) is the Hausdorf? completion of A. If  A is already 

Hausdorff and complete, it follows that the canonical homomorphism 
A -+ S(4) is an isomorphism. 

Goldman [ll] has recently shown that a ring R is isomorphic to a direct 
product of endomorphism rings of vector spaces over division rings if and 
only if it is Hausdorff and complete in what he calls the intrinsic topology: 
fundamental open neighborhoods of zero hare the form 

elr n ... n e,‘, 

where the ei are idempotent elements such that the Rei are minimal left 
ideals and e; = {r E R j eir = 0). (I have taken the liberty of interchanging 
right and left in Goldman’s definition.) 

One part of Goldman’s result may be deduced from the above considera- 
tions, if one checks that the intrinsic topology agrees with the I-adic topology 
for suitable I. In fact, let us suppose that R is semiprime and that I is its 
socle. Then, a fundamental neighborhood of 0 in the I-adic topolo= on R is a 
finite intersection of 9 = {r E R I in = 0}, where i E I = Re, 0 *.. (3 Re, . 
Xow, ir 2 elr n ... n enr, hence, the two topologies coincide. 

We shall make frequent use of a lemma that, among other things, will 

yield another proof of Proposition 3.1. 

LEnma 3.3. Let I be any rig?zt R-module. For aqv f: i-l -+I”, de$ne 
f  *: T(A)+P by 

fV> = ((fi) t,...: (fn> t), 

fol all t E T(A). Then, fog any h: I’” -+ I, if hf (A) = 0, thei hf *S(A) = 0. 

Proof. Suppose h: I” --f I is such that hf(A) = 0. Take any s E S(A), then 

hf*(s) = i h/c&&) s), 
i=l 

where the ICY: I + In are the canonical injections. lXow, hq E E and s is an 
E-homomorphism, hence, 

hf *(s) = f  (hKifJ s = (hf) s = (0) s = 0. 
i=l 

This simple argument is essentially the same as that given by Mtiller [22] 
in an earlier result, which ‘may be obtained as an application of the lemma, 
while the present author used an argument involving triples in [18]. 
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APxIcaTros 3.4 (Miillerj.3 Ifl is a cogenerator of MoC fz, ??(A): d -+ S(A) 
is dense for all ,4 E Mod R. 

Proof. Let f:  d -+I’“. Since I is a cogenerator, there is a set X and a 
monomorphism J”,!f(A) + Ix. In view of Lemma 3.3? f *S(4) = f(A), that 
is, for any 5 E S(A)? there exists a E A such that f  *(s) = i(a). 

_lPPLICaTiOs 3.5 (Proposition 3.1). I f  1 is completely reducible, 

?(A): _+I ---f S(A) is dense for all A E >Iod R. 

Proof. Let f  : d +Iiz. Since I is c ompletely reducible, f(A) = el” for 

some idempotent endomorphism e of I”. Hence, I”!f (A) z (1 -- e) li;, and 
we proceed as above. 

Frequently, it is not the image of -4 --f S(A) that is dense in S(A), but 

Q(A). For completeness, we include the following knou:c observation. 

LESI5Lk 3.6. Q(A) c S(A). 

Proof. Given q E Q(A): one wants to show that 

(f +f:)g = (f) 4 -l (f’) 4, (ef) q = 5 ( ( f )  q) 

for ail f ,  -f’: d -+ I and all e E E. For example, let us verify the second equa- 
tion, the first being shown similarly. 

Define ~~ #: T(A j --t I by 

s)(t) = (ef) t, $Ntj = e((f j tj, 

for all t E T(A). Recall that ?(A): A -+ T(d) was defined by TUT =.Y Put 

y(A) (a) = hT then (f) d = f  (a), hence, 

95*(A) (aj = (ef) 6 = (ef) (a) = e( f  (U)) = e(( f  j S) = $?(A) (f2). 

Therfore; &A) = $7(A), ,h w ence, y(q) = c&), by the definkion of Q(Aj, 

that is to say: (ef) q = e(( f) 4). 

THEOREN 3.7. Suppose R ---f R’ is an e&morphism ad i is an inject& in 
Mod R’ such that the associated localization functor Q is right exact. Then, fgr 
al2 A ix 5Iod R, Q(A) is dense in S(A) ill the finite topology alzd S(Aj is the 
completion of Q(A) i?l the I-a&c topology. 

Proof. Let f  : A + I” and consider the following diagram in which the 

two squares commute and the top and bottom rows are exact: 

Q(dj -j I!1 4 I”,f”Q(_;lj 3 0 

h 
Q&j + Q(P) -+ Q(I”;<f~‘Q(A)) - 0 

3 .lppiications 3.4 and 3.5 are comprised bp Sandomierslri’s Len-ma 3.4 (see [271f. 
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Since Q(A) and In are in Fix(Q, X), in view of Theorem 1.1 and ExampIe 2.2, 
the first two vertical maps are isomorphisms, hence, so is the last. 

In particular, there is a monomorphism of 1%/f *Q(A) into some power of I. 
Thus, for any element j of 1” not inf *Q(A), one can find h: I% ---f I such that 
1zf*Q(A) = 0 and /z(j) f  0. But, by Lemma 3.3, hf*S(A) = 0, hence, j is 
not in f*,!?(A). Therefore, f*S(/l) cf*Q(kl), that is, for any s E &(-A), there 
exists 4 E Q(A) such that f*(s) =f*(q). 

This shows that 8(/l) is a dense submodule of S(A) in the finite topology. 
On the other hand, it is easily seen that S(A) induces the I-adic topology on 
Q(,4) and that S(,4) is complete in the finite topology, being a closed subspace 

of T(A). 
The above result has been shown for R = R’ in [IS] and many examples 

were given. Let us now add one new example. 

EXAMPLE 3.8. Let R -+ R’ be an epimorphism of rings and I an injective 
cogenerator of Mod R’. Then, Q s (-) OR R’ is right exact, hence, Theo- 

rem 3.7 applies. 
A density theorem for quasi-injectives was also proved by Johnson and 

Wang [14] in case d = R. However, they stipulate that the elements 
i1 ,..., i, E I are “E-linearly independent,” which is not assumed when 
Theorem 3.7 is specialized to the case B = R (so that fi ,...,fm become 
ii ,..., in). An interesting density theorem in their sense was obtained by 
Thierrin [25] (see also [15, p. 1511). 

4. QUASI-INJECTIVE MODULES 

An object I of Mod R is called quasi-injectire if every partial endomorphism 
of I can be extended to an endomorphism. Clearly, injective as well as com- 
pletely reducible modules are quasi-injective. (For discussions of quasi- 
injective modules see [5, 9, 141, for example.) 

To obtain a K-injective object, in the sense of Section 1, one requires a 
slightly stronger property: for every set X and for each submodule B of Ix, 
every homomorphism f: B-+ I can be extended to a homomorphism 
f I: P + I. Evidently, this is equivalent to saying that every power of I is 
quasi-injective. As was shown by Fuller [lo] and Tisseron [26], it is also 
equivalent to saying that I is injective as an R/N-module, where 
M = {Y E R ! IY = O}. Since R -+ RIM is a ring epimorphism, we have here a 
special case of Example 2.2. (This stronger property is discussed in [23]. For 
a short proof of the above equivalence, see Proposition 6.4 below.) 

Unfortunately, not every quasi-injective has this nice property. For 
example [lo], if R = Z and I is the direct sum of all Z/p& p ranging over the 
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prime numbers, N = 0, but I is not injective. A weak form of this property is, 
however, contained in the following lemma of Harada [12]. As we shall use 

this lemma quite heavily and as Harada’s original proof is not very direct, we 
present a direct proof here. 

L~xm.4 4.1 (Harada). Let I be a any quasi-injective right R-module, n a 
natural number, and B a suhmodule of In. Then, every homomorphism f : B + I 
can be extended to a homomorphism f ‘: IT” ---t I. That is to say, every finit pwuw 
of I is quasi-injective. 

Proof. Let B be a submodule of In = P-r 0 I and f: B -+ I. The 
restriction off to I--l n B may be extended to g: P-l + I by inductional 
assumption. Define k: P-l + B -+ I by 

h(x + 6) = g(x) f f(b), 

for any x C P-l and b E B. (First check that x + b = 0 implies 
g(x) +-f(b) = 0.) Let 

K - (h E I j 32EI,+1~ + k E B). 

Then, K is a submodule of I, In-l + B = In-l + K and the latter sum is 
direct. Sow, h is determined by two homomorphisms: In-l -+ I and K -+ I. 
Extending the latter to I+ I, we can extend h to P-i + I + I. 

We shall see in the next section that the stronger property mentioned above 
is valid provided u-e replace Mod R by a larger category. 

With the help of a quasi-injective module I (or any module I for 
that matter), one can define the I-udic topology on another module A, by 
declaring as fundamental open neighbourhoods of zero all kernels of homo- 
morphisms A + I”, n being any natural number. When I is injective, this 
topology has been studied extensively, the interesting fact being that the 
induced topology on any submodule B of A is also the I-adic topology of B. 
Actually, this fact may be used to characterize the injectives among the 
quasi-injectives. 

PROPOSITION 4.2. Let I be a quasi-injective Tight R-module. Then, the 
follozl;ing properties of I al-e equivalent: 

(1) I is injective. 

(2) The I-adic topology of each submodule B of any modu?e A is induced 
by the I-adic topology of A. 

(3) The I-adic topology on each (essential) right ideal D of R is induced by 
the I-adic topology of R. 
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Proof. The implication (1) = (2) is known (e.g., [IS]) and straight- 
forward. The implication (2) 5 (3) is evident. It remains to show that 
(3) * (1). In view of Baer’s criterion, it suffices to show that any f: D -+ I 
can be extended to R + I, where D is any right ideal of R, or even any 
essential right ideal. (For, we can always extend to D f  D’- I, where D’ 
is maximal among right ideals such that D n D’ = 0 and then, D + D’ 
is an essential right ideal.) 

Now, Ker f is an open neighborhood of 0 in D. Therefore, by (3), there 

exists g: R 4 I’“? such that Ker f 2 Ker g. Thus, we have a mapping 
g(d) + f (d), d E D. By Harada’s lemma? we may extend this to h: 1” --+ I. 
Hence, h(g(d)) = f (d) for all d E D and so, J7g: R -+ I extends f. 

COROLLARY 4.3. A right R-module I is injectize if and only if it is quasi- 
injectize and tlze I-adic topology of azy (essential) right ideal D of R is induced 
by that of R. 

5. LOCALIZATION OF COXTIXVOLS &IODL-LES 

Instead of endowing modules with various topologies to suit the purpose of 
the moment, we find it convenient to work in the category Cont R of “continu- 
ous” R-modules. The objects of this category are topological abelian groups 
on which the ring R acts continuously. Thus, a continuous R-module is an 
R-module A that is also a topological group such that, for each Y E R, the 
mapping a:+ ar from A to A is continuous. The morphisms of Cont R 

are continuous R-homomorphisms. We write f E Cont,(A, B) if 

f E Hom,(A, B) and f is continuous. There are, of course, the forgetful 
functor Cant R + Mod R and its left adjoint, which endows each ordinary 
module with the discrete topology. 

A subobject (monomorphism) 02: A --jr B is called regular in a category GZ 
if it is the equalizer of a pair of maps U, ‘L: B s C in 02. 

LEMNA 5.1. In the category Cont R, ezery regular subobject has the 
induced topology. Conceysely, any submodule with the induced topology is a 
regular subobject in Cont R. 

Proof. Given two continuous R-homomorphisms u, S: B 3 C, put 
A = (6 E B ] u(b) = a(b)) with the induced topology and let wz: A -+ B be 
the inclusion. We claim that m: A --f B is the equalizer of (u, V) in Cont R. 

Indeed, suppose g: D -+ B equalizes (u, c). Then, for each d E D, g(d) E A, 
hence, g factors through A in Mod R, that is, there exists an R-homomor- 
phism la: D + A such thatg = mh. To see that h is continuous, take any open 
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set in A, it must be of the form A n E- = nz-IV, where 6’ is open in B. Then, 
i??(A n I’) = (mh)-1 v  = g-lV. IS o p en in D, since g is continuous, hence, h 
is continuous. 

Since any equalizer of (u, c) is isomorphic to the above wz: A - I?: every 
regular sdbobject has the indluced topology. 

Conversely, suppose m: A + 6 is mono in Mod R and A has the induced 

topologv. We claim that d is a regular subobject, in fact, that m: A + B is 
the equalizer of the txvo canonical homomorphisms tiF c: B 3 C, where 
C = (B x B)!K and K = {(m(a), -M(U)) / a E -41. We may endow C with 
any topology that renders u and v  continuous, for instance. the indiscrete 
topology. 

Indeed, u(b) is the equivalence ciass of (b, 0) modulo K and z(5) if the 
equivalence class of (0, b) modulo K. Hence, a(b) = c(b) if and only if 
(b, 0) = (0, b) modulo K, that is, (b, --b) E K. But this means that b = m(a) 
for some a E A. Take FFZ to be the inclusion. We see that A = {b E B j u(b) = 
a(b)). Then, it follows from the assertion at the beginning of this proof that 
FE: 9 -+ 6 is the equalizer of (u, z.), as was to be shown. 

PROPOSITION 5.2. Let I be a qllasi-i+ectke right R-module emhzed ~zith 
the discrete topology. Then, for any set X ad aq regdar subobject B c$ P, 
ezely mo!pkism g: B --f I of Cont R can be extended to Ix -+ I. 

PI-oq$ By Lemma 5.1: B has the induced topolog; of a subspace of F, 
which is a product of copies of the discrete module I. A fundamentai open 
neighborhood of zero in IX has the form Ker x*> where s?‘: P’ -+ I” is associa- 
ted with x E Xn by the formula x*(t) = ((x1) i,...; (NJ t), for each t E Jr. 

Since g is continuous and I is discrete, g-l(O) contains a fundarner& 
neighborhood of zero in B, that is, 

Ker g 2 Ker s* n B, 

for some element x E Xn. Thu s, f  or each b E B, x*(b) = 0 implies g(b) = 0, 
hence, there exists an R-homomorphism h: x”(B) - I such that h+(b) = g(b). 
By Harada’s Iemma, h may be extended to k’: I” + I and A’ is continuous, 
since P is discrete. 

Moreover, x* is continuous, by definition of the product topoiogy, hence, 
so is h’s”: FZ --t I. Since h’x*(b) = /W(b) = g(b), /Z’S” extendsg, as required. 

Let I be a given object of Cont R. As in other categories. we write 

T(A) = T,(A) = ICo”tJ(A*‘) 

and iet +4;ri: &(A) ---f T(A) be the intersection of the equalizers of all pairs 
ye, 4 E Cont,( T(,4), I) such that &A) = $$A), where ,(A): d -+ T(A) is 
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the canonical morphism. We recall that I is +c-injective in Cont R if every 
continuous R-homomorphism Q(i4) -+ I can be extended to a continuous 
R-homomorphism T(,4) ---f I. We also write 

S(A) = S,(A) = Hom,(Cont,(A, I), I), 

where E = Cont,(l, I). When A and I are discrete, this agrees with our 
earlier definition for Mod R. 

PROPOSITION 5.3. Let I be a quasi-injectize right R-module endmed with the 
discrete topology. Then, I is K-injectiz’e in Cont R and S(A) = Q(A) for any 

object A of Cont R. 

Proof. That I is K-injective follows immediately from Proposition 5.2. 
The proof that Q(A) _C S(.4) is th e same as that for Mod R in Lemma 3.6. 
To show the converse inclusion, we let s E S(,4) and consider any 
9, # E Cont,(T(A), I) such that &A) = #v(A). To assure that s E Q(A), 
we want to check that v(S) = #( s . Since Cont R is an additive category, we ) 

may take + = 0. 
Since 9) is continuous, there exists f: A --t P, such that Ker q~ 3_ Kerf *, 

where f *: T(A) + I” is defined as in the proof of Proposition 5.2 or in 
Lemma 3.3 by 

f v> = ((fi> 4.**, (fd t>r 

for all t E T(A). Thus, f*(t) = 0 implies q(t) = 0, hence, there exists an 
R-homomorphism g: f *( T(A)) + I such that gf*(t) = p(t). By Harada’s 

lemma, one may extend g to g’: Jn ---f I, hence, 

g’f = gy*q(;4) = @“?(A) = vq(A) = 0. 

Therefore, for any s E S(A), 

v(s) = g-f*(s) = glf*(s) = 0, 

by Lemma 3.3. 
Upon examining the above argument more closely, we find we can prove a 

slightly stronger result. 

THEOREM 5.4. Let R -+ R’ be an epimorphism of rings, I a quasi-injective 
R-module equipped m’th the discrete topology. Then, I is K-injectice in Cont R 
and S(A) = Q(A) fog any A E Cont R. 

Proof. Any continuous R-homomorphism Q(A) -+ I is a ‘continuous 
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R-homomorphism, as ModR’ is a full subcategory of Xod R (see [24]: 
hence, it may be extended to S(A) -+I, by Proposition 5.2. Thus, I is 
K-injeCtiVe. 

The proof that Q(:4) C S(A), as in Lemma 3.6 above, works for any 
R-module I, hence, for an R-module. In the proof that S(A) 6 Q(A), we 
observe that f  *: T(A) --f 1” is an R-homomorphism and so, Harada’s 
lemma may still be applied in Mod R’. 

It may well happen that s(A) has the discrete topology, as w-e shall now 
see in a result adapted from [lS]. 

PROPOSITION 5.5. Let I be a quasi-ixjectize right R-module endowed with the 
discrete topology. Then, the follov;ing conditiom are equivalent for any 
A E Cant R. 

(1) There exists f  E ContJS, I”), such that Ker n(A) = Kerf. 

(2) ConW4 4 is a finitely generated left E-module. 

(3) S(A) has the discrete topology. 

Proof. We shall show that (1) * (2) r, (3) 3 (1). 
Suppose (1) and let g E Cont,(B, I). Then Ker g 1 Ker f,  hence, there exists 

an R-homomorphism h: f(a) -g(a) and this may be extended to h’: In +-I 
by Harada’s lemma. Thus, 

g(a) = h’f(a) = f  h’qfi(a>, 
i=l 

where Ki: 1 ---f I’” canonically. Since f2’K.i E E, we see that g is generated by the 

fi , i = l,..., n. 
Suppose (2) and let fi ,..., f+E be a basis of Cont,(A, 1). Put: 

f = ( fi ,..., fn,): A + F and consider an element s E Ker f * n A(A). Then, 
(fr)s==O ,..., (fn)s=O, hence, (C%leifi)s=O for all e, :..., e,EE. It 
follows that the fundamental neighbourhood of zero Kerj* n S(-4) = 0, 
hence, S(A) has the discrete topology. 

Suppose (3) that is? Ker f  * n S(A) = 0, for some f E Cont,(A, I”). Let 
a E Ker f,  then, 7(d) (a) E Kerf * n S(A) = 0, hence, a E Ker ~(~4). It. 

follows that Ker f _C Ker ~(4) and the converse inclusion holds in any case. 

Remmk 5.6. Condition (1) is easil!- verified when the underl+ng- 
R-module of $ is Artinian, or even when the descending chain condition 
holds for closed submodules of A. On the other hand, it is easy to check 
condition (2) if A is discrete and I = E(A) is the injective envelope of A- 
Indeed, the inclusion fu: A -+ I then generates Hom,(A: I) as a left E-module, 
since each f: A --+I can be extended to some e: I-+ I, hence, f  = Ed::, . 
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PROPOSITIOIX 5.7. Let I be a quasi-injectke right R-module endozced with 
the discrete topology. Then, fog any A E Cont R: Cont,(B, I) is principal as a 
left E-module if and only if Ker 7(*4) > Kerg for some g E Cont,(A, I). 

Proof. Assume Cont&4, I) = Ef and let a E Ker f,  g E Cont,(A, I), then, 
g = ef for some e E l?, hence, g(a) = ef (a) = 0, thus, Kerg C Ker q(A). 

Conversely, assume Ker g c Ker ~(4) and let f  5 Cont,(A, I). The 
assignment g(a) :+ f  (a) is an R-homomorphism g(A) + I, hence, it may be 

extended to e E E. It follows that f  = eg. 

6. z%PPLICATIOXS TO h'lOD R 

It may be of interest that sometimes, results about ordinary modules may 
be deduced from results about continuous modules. The following proposi- 
tion is known when 1 is injective [16, 211. It makes sense even when I is only 

quasi-injective, although Fix@, A) need not then be a reflective subcategory. 

PROPOSITIO~X 6.1. Suppose I is a quasi-injectiz*e r&ht R-module, _4 E Mod R 
and Hom,(A, I) is a finitely genesated left E-module, zhere E = End,(I). 
Then, S(A) = Q(A), already in Mod R. 

Proof. I f  A and I are endowed with the discrete topology, we need not 
distinguish between T(A) in Mod R and T(A) in Cont R and similarly, for 
S(Aj. For the moment, let us write Q(A) for the equalizer of T(A) 3 T”(A) 
in Mod R, whereas, the same equalizer in Cont R is S(A), by Proposition 5.3. 
In view of Lemma 3.6, we need only show S(A) cQ(A). 

Let s c S(_4) and suppose v, $J: T(A) =f I are such that pq(,rl(A) = &(A). 
The homomorphisms 9; and # need not be continuous, but their restrictions to 
S(A) are, since S(A) has the discrete topology, by Proposition 5.5. Evidently, 
S(d) is a regular subobject of T(B) in Cont R, as it is the intersection of 
equalizers of pairs of mappings t :++ e(f) t + e’( f  ‘) t and t it (ef $ e’f’) t. 

Therefore, by Proposition 5.2, v  ; S(A) and $ S(A) may be extended to 
continuous R-homomorphisms (y’, yY: T(A) 3 I. Since the image of T(a) 

is contained in S(A), one has q’g(A) = yzq(A) = &(A) = #‘~(A). Therefore, 
by Proposition 5.3, v’ 1 S(A) = #’ ! S(d), that is, v  I S(A) = 4 ! S(A). It 
follows that S(4) c Q(A). 

However, it is only fair to point out that one just as easily can give a 
direct proof of the inclusion S(A) !Z_O(A), as was done in [18]. I f  fr ,...,ftz 
are the generators of Hom,(A, I), one puts f  = (fi ,..., f,J and shows that 
f* ( S(A) is one-to-one, then uses Lemma 3.3. 

EXAMPLE 6.2. If  I = E(d) is the injective hull of A, one calls Q(L4) the 
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rational completion of A [S]. 3 -OK., it follows from Remark 5.6 that the rationai 
completion of d is given by S(A). 

In the considerations that follow, me write S,(A) for S(A) to indicate its 

dependence on I. Even when QX-4) + S,(A), one may ask if Q,(A) = S,(A) 

for some <i f  I. The answer is “yes” when I is injective. In the special case of 
rings, this is known [16, Proposition 2.81. Here, we shall give a proof in the 
general case of modules, which is a bit simpler. 

First, let us retail some facts from [16]. Let 1 be a given injective. One 
ca!ls A anl-torsiwz module if Hom,(A, I) = 0 and one says that A is I-torsion- 

free if ~~(-2) is a monomorphism, that is, if there is a monomorphism from A 
to a power of I. Necessary and sufficient conditions for k: A -+ 3 to be 
isomorphic to X,(A): A+,(A)? the module of quotients of A with respect to1, 
are the following: 

(4 Rer lz and Cok Iz are I-torsion modules, 

(b) B and E(B)/B are I-torsionfree. 

PROPOSITIOS 6.3. Suppose I is an injectize right R-module. Theft, $0~ any 
B E Mod R: Q,(A) s S,(Aj, zhere 

J = E@,(A)) \s E(E(Q,(L4));&&4)). 

Proof. We want to show that h = &(A): d +- f&A j = 3 is isomorphic to 
Q(A): A+ S,(A)? where J = E(B) :s E(E(B)!Bj. 

Clearly, B and E(B)/B are ]-torsionfree. Moreover, J is I-torsionfree, 
hence, the I-torsion modules Rer h and Cok h are aiso J-torsion modules. 
Therefore, 12: A + B is isomorphic to A,(A): B -+ Q,(A). 

Since Ker h is a J-torsion module and since h: A ---f B c J, it follows from 
Proposition 5.7 that Hom,(B, J) is principal as a left End,(J)-mod&. 

Therefore, by Proposition 6.1, QJ(A) = S,(A) and this entails E,;(A j = ~~(~4). 
For completeness, we shall also include the foilowing known rewlts [9, 

10, 6]. 

PROPOSITIOK 6.4. Let I be a quasi-injectiue right R-mod&e, E its kg of 

endonto~phism, 1Y = (1. E R 1 Ir = 01 = Ker y(R). Then, I is injectke as a 
right R/G-module if any one qf the follozciug conditions is satisfied: 

(1) (Fuchs) I is principal as a left E-module. 

(2) (Fuller) Ix is a quasi-injectize right R-module for some set X C$ 

generators of I as a kft E-module. 

(3) (Faith) I isJinitel?, generated as a left E-module. 

PYOOJ-. (1) Suppose I = Ei, for some i E I. For any right ideal D of R 
containing N, consider f E Horn RIN(D/AT, I). Put g(idj = f([d]), where [dj 
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is the equivalence class of d E D modulo :V, and extend g E Hom,(iD, I) to 
e E E, then f([d]) = e(id) = (ei) [d]. Th us, IRjatF is injective, by Baer’s crite- 
rion. 

(2) Let g ~1~ correspond to the inclusion g: X-t I. Then, gr = 0 
implies Xr = 0, hence, Ir = 0, that is, T E AT. Therefore, Ker g E N; but M 
is the kernel of q&?): R -+ Tp(R), hence, we may apply Proposition 5.7 
with A = R and deduce that Ix is principal over its ring of endomorphisms. 
In view of the result of Fuchs, already proved, P is injective as an R/N- 
module, hence, so is 1. 

(3) Suppose I is generated by a finite set X of candinality n. Then, 
IX = I” is quasi-injective by Harada’s lemma, hence, we may invoke the 
result of Fuller already proved. 
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