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INTRODUCTION

The general theory of localization, developped by Rattray and the author
[19] from a method of Fakir [7], vields not only the localization of Bourbaki—
Gabriel [2], but also the localization associated with any epimorphism of rings,
such as that of Cohn [3, 4]. (Incidentally, ring epimorphisms are characterized
in terms of systems of equations whose solutions are uniquely determined.)
After a discussion of a slightly generalized version of Jacobson’s density
theorem {13], the density theorem of the author [17, 18] is shown to be
extendable to this general situation. Quasi-injectives do not, in general,
appear to permit localization in Mod R, but they do in Cont R, the category of
“continuous” R-modules. In this category, localization alone accomplishes
what requires localization and completion under favorable circumstances in
Mod R. Crucial to this result is a lemma of Harada [12]. Some observations
about Mod R may be deduced by specializing the topology to be discrete.

1. LocavizatioN 1N CoMPLETE CATEGORIES

We begin by giving a brief exposition of the theory developed in [15].
Let ¢ be a complete category, I a given object of (7. We introduce the
functor

T = T = Homt=D: g > (7.

It comes equipped with a natural transformation % = #;: id — T from the
identity functor, which satisfies mm(A) = f for each fe Hom(4,I), where
st T(A) — I is the canonical projection associated with f.

* This paper was written at Paris VII, while the author was on sabbatical leave from
McGill University on a France~Canada exchange. A preliminary version, “Localisation
des modules continus,” has appeared in Lesieur’s “Séminaire d’algtbre non com-
mutative,” Publications Mathématiques d’Orsay 1974.
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Following the idea of [7], for each object 4 of €7, we let «(4) ==
k(A): O(4)— T(4) be the equalizer of the two morphisms 37(4),
Ty(A): TA=3x T%A4). As was shown in [19], it is also the intersection of the
equalizers of all pairs of morphisms ¢, : T(4) = I such that pn(4) = ¢n(A).
One obtains a natural transformation A = }A;: id —Q such that xo A = .
The following is known [19].

Tueorem 1.1.  The following conditions on I are equivalent:
(1) AQ is an isomorphism;
(2) for each f:Q(A)— 1, there exists an f': T(A)—1 such that
fid) =F;
(3) the full subcategory Fix(Q, ) of (X, which consists of all objects A of (A
Jor which NA) is an isomorphism, is the smallest full subcategory of (¢ that
contains I and is closed under limits.

Property (1) assures that (Q, A) determines an idempotent triple [7].

In view of property (2), we call the object I w~injective.

Property (3) assures that Fix(Q, A) is a full reflective subcategory of (%, the
reflector being given by the assignment 4 i Q(4).

Many examples of this situation have been discussed in [19], among them
the following: (¥ is the category of topological spaces, the category of uniform
spaces, the category of presheaves on a topological space, the category
(Mod R)%P, and the category Mod R.

2. LocavizatioNn 1N Mod R

We shall briefly review some known facts about Mod R and add some new
ones. Which are the x-injectives of Mod R?

ExavpLE 2.1. Let I be an injective R-module and & = %, the set of all
those right ideals D of R for which Homg(R/D,I) =0. Then, Z is an
“idempotent filter” in the sense of Bourbaki-Gabriel [2] and

O(A) = limpes Hom(D, 4/4),
where
Ay ={acA|3Ipeg aD =0}.
Conversely, any idempotent filter of right ideals of R gives rise to an injective

I=T] E(R/C),

Ce¥
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where € is the set of all those right ideals C of R such that
V,-éc r1C ¢ g 5

and E(—) is the injective envelope. One calls O(4) “module of quotients™
of A4 and Q “localization functor.”

Exampre 2.2. Let e: R— R’ be a given epimorphism in the category of
rings. Then, every injective in the full subcategory Mod R’ is k-injective in
Mod R. In particular, one may take [ to be an injective cogenerator of Mod R,
for instance, I = Homz(R', Q/Z). Then, Fix(Q, A) ~ Mod R’ and O(4) =
AR R.

Note that the intersection of Examples 2.1 and 2.2 is the localization theory
determined by an epimorphism R — R’, such that the left module R’ is flat,
which theory has been discussed by Silver {241. This vague observation will
be made precise in Corollary 2.7 below.

The localization of Cohn [3, 4] is a special case of Example 2.2 not included
in Example 2.1. He obtained an epimorphism e; R — R’ by forcing a set of
matrices with entries from R to become invertible in R'.

To find a two-sided inverse of an # X # matrix, one has to satisfy 2a?
equations in #? unknowns; but we know that the solutions, if they exist, are
unique. There are other such systems of equations with uniquely determined
solutions, for example,

FX¥r = 7% Xry = X Yy = Xxr.
s ’

Consider a ring extension /: R - R[X] obtained from R by adjoining a set
X of indeterminates.! A set of polynomials

PA(r),eess BT 0), %y 5ene, %) € R[X]

with “coeficients” r;e R and “‘unknowns” x;& X will be said to have a
solution @: X — R’ in an extension (= ring homomorphism) f: R— R’ if

P (D)o F(Tm)s 931y P60)) = O

for cach polynomial p in the set.

A set of polynomials always has a solution in some extension, for example
in wh: R — R[X]/K, where K is the ideal generated by the given polynomials
and #=: R[X]— R[X]/K is the canonical projection: the solution is of course
% — m(x).

We say that a set of polynomials in R[X] is uniquely solvable for X if it
has, at most, one solution in each extension of R.

1 They do not commute with elements of R or with each other,
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TraeoreM 2.3. Let K be an ideal of R[X], then K is uniquely solvable for X
if and only if R — R[X]/K is an epimorphism of rings. Moreover, every epimor-
phism R — S is of this form, up to isomorphism over R.

Proof. Assume K is uniquely solvable for X. We claim that #% is an
epimorphism. Indeed, suppose u,v: R[X]/K=x R’ are such that unh =
ork == f, say. Then, x1— un(x) and x:— on(x) are solutions in f: R— R/,
hence, wir = v and therefore, # = v.

Conversely, suppose wh is an epimorphism of rings and suppose p: X — R
is a solution of K in the extension f: R — R’. Then,

P(f(rl)""sf(rm)’ ‘P(xl)’"', P(x,)) =0

for each polynomial p in K. Now, there exists a unique ring homomorphism
¢t R[X]— R, such that ¢’k = f and ¢'(x) = ¢(v) for all ¥ X. Clearly,

(P"(p(h(rl))"'s h(rm)’ X3 eees ”n)) =0

for each p in K, hence, there exists a unique p*: R[X]/K — R’ such that
o*r = ¢'. It follows that ¢*wh =f and ¢ n(x) = ¢(x) for all xe X. If
¢ X — R’ is another solution of K in f: R — R’, then likewise, we obtain ™,
such that §*=k = f and *7(x) = () for all x € X. Since =/ is epi, we have
@* = =, hence, ¢ = .

Finally, let ¢: R — .S be any epimorphism of rings. To each element s € S,
assign the indeterminate x, and let X = {x, | s € S}. Let K be the ideal of

R[X] generated by the following polynomials:

X 5 Xy — 1: Xy T X_g, Kgrgh — &g — X' Kgg® — Xy
Xe(r) — h(?’),

forall¥ e Rands, ' € S. Let g: R[X]— S be the unique ring homomorphism
such that gh = e and g(x,) == s for all s =.S. Then, g(x;) =0, g(x; — 1) =
1 — g(1) = 0, etc., hence, g(K) = 0. Therefore, there exists a unique ring
homomorphism g’: R[X]/K — S such that g’z = g. We claim that g’ is an
isomorphism. Since g'wh = gh = ¢, this will complete the proof.

Clearly, g'n(x;) = g(x,) = s, hence, g’ is a surjection. It remains to show
that it is one-to-one. Suppose

g(p(h(ry),..., Alry), X yeees X)) = 0,

that is to say,

Ple(F1)yeees €(Fm)s S13eeey $) = 0.
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Then, modulo K, we have

\

PATL)senes BlFm)s X5y s0ees Xg ) == P(Xo(r)) 3eves Kelr) » Xg, yeees X5 )
= Nplelry),.anelrglisy,. o8y

=x, = 0.
Thus, g'a{p) = 0 implies that =(p) = 0, and our proof is cornplete.

Remark 2.4. It also follows from considerations similar to the above that
ah: R — R[X}/K has the following universal property: If the polynomizals
in K are also solvable in f: R— R', then there exists a unique ring homo-
morphism g: R[X]/K — R’ such that gnh = f.

Tinally, let it be mentioned that these observations about epimorphisms
are not special to the category of rings. They are valid for all algebraic
categories, provided one notes that, in general, an equation has the form
?p = q and not just p == 0. Thus, one should speak of solutions for pairs of
polynomials and one should replace the ideal K by a suitable congruence
relation.

The following well-known result depends only on the fact that Fix(Q, A)
is a reflective subcategory of Mod R.

Lemya 2.5. Let I be a «-injective right R-module; then
(a) Q(R) s a ring,
(b) AR} is a ring homomorphism,
{c) every object of Fix(Q, X) is a right Q(R)-module,
(d) every R-homomorphism between objects of Fix{(Q,A) is a Q(R)-

komomorphism.

For a proof, see [16]. As explained there, Mod Q(R) is, in a certain technical
sense, the “‘best coapproximation” of Fix((Q, }) by a module category.
The foliowing result is known in case I is injective.

ProrositioN 2.6. Let I be a x-injective right R-module. Then, the following
statements are equivalent:
0y n(B) is mono for every Q(R)-module B,
(1) Fix(Q, %) = Mod O(R),
2) Q=2 (—) @ OB),
(3) O preserves colimiis,
(4) TFix(0O, X) is closed under colimits.
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Proof. We show (0) = (1) = (2) = (3) = (4) = (0).
(0) = (1). Let B Mod Q(R), then, also, T(B)/B € Mod Q(R). By (0),
7(B) and «(T'(B)/B) are both mono.? The first fact implies that B o im (B)

and the second fact implies that im %(B) = Q(B). Thus, Mod Q(R) C
Fix(Q, A) and the converse inclusion follows from Lemma 2.5.

(1) = (2). The reflectors 4+—Q(4) and Ar>A @ Q(R) must be
isomorphic.

(2) = (3). Since (—) ®z O(R) preserves colimits, so does Q.

(3) = (4). 'This is obvious.

(4) = (0). Let Be ModQ(R). Then, there is an exact sequence

Y O(R) > Y O(R) > B0

in Mod R. By (4), B € Fix(Q, A), hence, #(B) is mono.

Two x-injectives I and I’ are called similar if they have the same limit
closures, that is, if they give rise to isomorphic localization functors.

CoroLLARY 2.7. There is a one-to-one correspondence between

(a) similarity classes of x-injectives in Mod R satisfying the equivalent
conditions of Proposition 2.6,
(b) isomorphism classes of epimorphisms R — R’ in the category of vings.

Moreover, xR’ is a flat left R-module if and only if the associated similarity
class contains an injective.

Proof. To the x-injective I, we associate the ring homomorphism
A(R): R—>Qy(R), as usual. Under the equivalent conditions of Proposition
2.6, this is an epi, for then, Mod Q(R) = Fix(Q, A) is a full subcategory of
Mod R. (We note that I is a cogenerator of Mod Q(R).)

To the ring epimorphism e: R — R’, we associate the injective cogenerator
I, of Mod R/, as in Example 2.2. But then, Q; ~ (—) @z R/, so that
Q1 (R) = R, hence, the equivalent conditions of Proposition 2.6 are satisfied.

Ifr =1®, then Qp o~ (—) ®z O/(R) =~ Q;, hence, I’ is similar to I.

Also, Q; induces the reflector Mod R — Mod R’, hence, Q; =~ (—) ®r R,
hence, O; (R) = R @ R’ = R'. One may check that A, (R) =< e.

If I is injective, O, =~ (—) &z R’ preserves monomorphisms, hence,
gR’ is flat.

If zR’ is flat, the injective cogenerator I = Homy(R', @/Z) of Mod R’ is
injective as a right R-module.

2Put B = im 7(B) and observe that, in view of Section 1, Q(B)/B = ker 7(T(B)/B).
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3. DexsiTy THEOREMS

Given a module T € Mod R, let E be its ring of endomorphisms, so that I
may be viewed as a bimodule gl . For any 4 € Mod R, we define its double
dual

S(4) = S)(4) = Homg(Homg(4, I), I}.
Clearly, it is a submodule of T(4)and the canonical morphism n(4): 4— T(4)
factors through S(4). In particular, S(R) is a ring, the bicommutator of I and
R — S(R) is a ring homomorphism.

The following is an obvious generalization of Jacobson’s Density Theorem
[13] from rings to modules.

ProrositioN 3.1. Let I be a completely reducible right R-module. Then,
for any AcMod R, A— S(A4) is “dense” in the following sense: for all
JisesJur A—I and all s € S(A), there exists a € A such that

(f1) s = Fu(@)--o (fn) s = ful)-

Proof (inspired by [20]). First consider the case n = 1. Let f: 4 — I and
s€ 8(A4) be given. Since I is completely reducible, f(A4) == eE for some
e* = ec E, hence, f = ¢f and

() s =(f)s =e(f)s) =f(a)

for some a € 4.
In general, suppose f; ,...,f,: A—1I. Then, we obtain f={f;,..., fu>:
A —I*, where

f(@) = (fi(@)s--., fu(@))-
Moreover, any s € S/(4) induces s, € Sp.(A), where

() sn = ((f2) 00 () 9)-

Since I* is completely reducible, we may apply the special case of the theorem
already proved and obtain a € 4, such that ( f) s, = f(4), that is,

((f2) $52-es () ) = (Fu(@)s-es ful@))-

This result may be interpreted by saying that the image of 4 — S(4) is
actually dense in S(4) for the finite topology, that is, the topology induced by
the product topology of T(4), 2 power of the discrete module I.
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Remark 3.2. Suppose 4 is endowed with the I-adic topology, that is to
say, fundamental open neighbourhoods of zero have the form Ker f, where
f:A—1I" Then, S(A4) is the Hausdorff completion of 4. If A is already
Hausdorff and complete, it follows that the canonical homomorphism
A — S(4) is an isomorphism.

Goldman [11] has recently shown that a ring R is isomorphic to a direct
product of endomorphism rings of vector spaces over division rings if and
only if it is Hausdorff and complete in what he calls the ntrinsic topology:
fundamental open neighborhoods of zero have the form

el'r N--Ne,,

where the e¢; are idempotent elements such that the Re; are minimal left
ideals and ¢, = {r e R | e;r = 0}. (I have taken the liberty of interchanging
right and left in Goldman’s definition.)

One part of Goldman’s result may be deduced from the above considera-
tions, if one checks that the intrinsic topology agrees with the I-adic topology
for suitable I. In fact, let us suppose that R is semiprime and that I is its
socle. Then, a fundamental neighborhood of 0 in the I-adic topology on R is a
finite intersection of " =={re R  ir =0}, where ic] = Re; © - D Re, .
Now, " D e” N -~ Ng,”, hence, the two topologies coincide.

We shall make frequent use of a lemma that, among other things, will
yield another proof of Proposition 3.1.

Lemwva 3.3. Let I be any right R-module. For any f: A—I", define
J*:T(4)—I* by
150 = (A) by (Fa) D),
Jor all t e T(A). Then, for any h: 1" — I, if hf(A) =0, then hf *S(4) = 0.
Proof. Suppose h: I* — I is such that if (A) = 0. Take any s € S(4), then

hf¥(s) = 3. hwei((f) 3)

i=1
where the «;: I — I" are the canonical injections. Now, /ik; € E and s is an
E-homomorphism, hence,

n

BfX(s) = ). (if) s = (hf) s = (0) s = 0.
i=1
This simple argument is essentially the same as that given by Miiller [22]
in an earlier result, which may be obtained as an application of the lemma,
while the present author used an argument involving triples in [18].



EPIMORPHISMS AND QUASI-INJECTIVES 171

ArrricaTiox 3.4 (Miiller).? If I is a cogenerator of Moc R, 5{d): 4 — S(4)
is dense for all 4 € Mod R.

Proof. Let f: A->1I" Since I is a cogenerator, there is a set X and a
monomorphism I*[f(A) — I%. In view of Lemma 3.3, f*S(4) = f(4), that
is, for any s € §(A4), there exists a € 4 such that f*(5) = f{a).

AppricatioN 3.5 (Proposition 3.1). If I is completely reducible,
n(A4): 4 — S(4) is dense for all 4 e Mod R.

Froof. Let f: A—1I" Since I is completely reducible, {4} = el* for
some idempotent endomorphism e of I7. Hence, I*/f(A) =~ {1 — ¢) 1%, and
we proceed as above.

Frequently, it is not the image of A — S{A) that is dense in S{.4), but
0O(4). For completeness, we include the following known observation.

Leania 3.6, O(A) C S(.1).
Proof. Given g eQ(1), one wants to show that

F+MNe=Na— N (fla=4dN9
forall f, f': A —1Iand all e E. For example, let us verify the second equa-
tion, the first being shown similarly.
Define ¢, ¢: T(A)->1 by

o) = ()1, &) = () D)
for all t € T'(A). Recall that n(4): 4 — T(4) was defined by m(4) = f. Put
n(4) (@) = 4, then (f) & = f(a), hence,

en(d) (a) = (¢f ) & = (¢f ) (a) = e(f (@) = e(f) 4) = () (a)-
Therfore, pn(d) = ¢n(4), whence, ¢(g) = {g), by the definizion of O(A4),
that is to say, (ef) g = e{(f) q).

Turorear 3.7. Suppose R — R’ is an epimorphism and I is an injective in
Mod R’ such that the associated localization functor Q is right exact. Then, for
all 4 in Mod R, OQ(4) s dense in S(A) in the finite topology and S(A) is the
completion of O(A) in the I-adic topology.

Proof. Let f: A—I™ and consider the following diagram in which the
two squares commute and the top and bottom rows are exact:
O) > I" — I"f*0(4) —0
| a :

Y Y

02(A) — O(I") — QI *Q(A)) —> 0

2 Applications 3.4 and 3.5 are comprised by Sandomierski’s Lemma 3.4 (see [27]).
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Since Q(A) and I" are in Fix(Q, A), in view of Theorem 1.1 and Example 2.2,
the first two vertical maps are isomorphisms, hence, so is the last.

In particular, there is 2 monomorphism of I"/f *Q(4) into some power of I.
Thus, for any element j of I not in f *Q(A4), one can find 4: I* — I such that
Bf*O(A) == 0 and A(j) # 0. But, by Lemma 3.3, 2f *S(4) = 0, hence, j is
not in f*S(A). Therefore, f*S(4) C f *O(A4), that is, for any s & S(4), there
exists ¢ € Q(4) such that £*(s) = f *(q).

This shows that Q(4) is a dense submodule of S(4) in the finite topology.
On the other hand, it is easily seen that S(4) induces the I-adic topology on
Q(A4) and that S(4) is complete in the finite topology, being a closed subspace
of T(4).

The above result has been shown for R = R’ in [18] and many examples
were given. Let us now add one new example.

ExampLi 3.8. Let R — R’ bean epimorphism of rings and I an injective
cogenerator of Mod R’. Then, Q o~ (—) ®z R’ is right exact, hence, Theo-
rem 3.7 applies.

A density theorem for quasi-injectives was also proved by Johnson and
Wong [14] in case 4 = R. However, they stipulate that the elements
Ty yeues in €I are “‘E-linearly independent,” which is not assumed when
Theorem 3.7 is specialized to the case 4 = R (so that f, ,..., f,, become
f1 5.y iy). An interesting density theorem in their sense was obtained by
Thierrin [25] (see also [15, p. 151]).

4. QUASI-INJECTIVE MODULES

An object I of Mod R is called quasi-injective if every partial endomorphism
of I can be extended to an endomorphism. Clearly, injective as well as com-
pletely reducible modules are quasi-injective. (For discussions of quasi-
injective modules see [5, 9, 14], for example.)

To obtain a x-injective object, in the sense of Section 1, one requires a
slightly stronger property: for every set X and for each submodule B of I%,
every homomorphism f:B->I can be extended to a homomorphism
f': I¥ — I. Evidently, this is equivalent to saying that every power of I is
quasi-injective. As was shown by Fuller [10] and Tisseron [26], it is also
equivalent to saying that I is injective as an R/N-module, where
N ={re R |Ir =0}. Since R — R|N is a ring epimorphism, we have here a
special case of Example 2.2. (This stronger property is discussed in [23]. For
a short proof of the above equivalence, see Proposition 6.4 below.)

Unfortunately, not every quasi-injective has this nice property. For
example [10], if R == Z and I is the direct sum of all Z/pZ, p ranging over the
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prime numbers, N = 0, but I is not injective. A weak form of this property is,
however, contained in the following lemma of Harada [12]. As we shall use
this lemma quite heavily and as Harada’s original proof is not very direct, we
present a direct proof here,

Levma 4.1 (Harada). Let I be a any quasi-injective right R-module, n a
natural number, and B a submodule of I". Then, every homomorphism f: B — I
can be extended to a homomorphism f': I™ — I. That is to say, every finit power
of I is quasi-injective.

Progf. Let B be a submodule of I* =I"1O] and f: B—~ 1. The
restriction of f to I*1 N B may be extended to g: I"~1 —> I by inductional
assumption. Define A: I*! -- B—1I by

h(x + b) = g(x) + f(8),

for any xelI*' and beB. (First check that x -5 =0 implies
2(x) + f(6) =0.) Let

K ={kel|3 .+ keB

Then, K is a submodule of I, [*1 +~ B = I»1 L K and the latter sum is
direct. Now, % is determined by two homomorphisms: I** — T and K—I.
Extending the latter to I — I, we can extend & to I*1 L [ —1.

We shall see in the next section that the stronger property mentioned above
is valid provided we replace Mod R by a larger category.

With the help of a quasi-injective module I (or any module I for
that matter), one can define the I-adic topology on another module 4, by
declaring as fundamental open neighbourhoods of zero all kernels of homo-
morphisms 4 — I”, n being any natural number. When [ is injective, this
topology has been studied extensively, the interesting fact being that the
induced topology on any submodule B of 4 is also the [-adic topology of B.
Actually, this fact may be used to characterize the injectives among the
quasi-injectives.

PropositioN 4.2. Let I be a quasi-injective right R-module. Then, the
Jollowing properties of I are equivalent:
(1) I s imjective.
(2) The I-adic topology of each submodule B of any module A is induced
by the I-adic topology of A.

(3) The I-adic topology on each (essential) right ideal D of R is induced by
the I-adic topology of R.
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Proof. The implication (1) = (2) is known (e.g., [I18]) and straight-
forward. The implication (2) = (3) is evident. It remains to show that
(3) = (1). In view of Baer’s criterion, it suffices to show that any f: D —1T
can be extended to R — I, where D is any right ideal of R, or even any
essential right ideal. (For, we can always extend to D 4- D' — I, where D’
is maximal among right ideals such that DN D' =0 and then, D - D’
is an essential right ideal.)

Now, Ker f is an open neighborhood of  in D. Therefore, by (3), there
exists g: R — I, such that Ker f2 Ker g. Thus, we have a mapping
g(d)—f(d), de D. By Harada’s lemma, we may extend this to A: 1" — I,
Hence, #(g(d)) = f(d) for all d € D and so, hg: R — I extends f.

CoroLLArY 4.3. A right R-module I is injective if and only if it is quasi-
injective and the I-adic topology of any (essential) right ideal D of R is induced
by that of R.

5. LocaLizarioN oF CoNTINUOUS MODULES

Instead of endowing modules with various topologies to suit the purpose of
the moment, we find it convenient to work in the category Cont R of “continu-
ous” R-modules. The objects of this category are topological abelian groups
on which the ring R acts continuously. Thus, a continuous R-module is an
R-module A that is also a topological group such that, for each » € R, the
mapping a— ar from A to A is continuous. The morphisms of Cont R
are continuous R-homomorphisms. We write f e Contg(4, B) if
feHomg(d, B) and f is continuous. There are, of course, the forgetful
functor Cont R —> Mod R and its left adjoint, which endows each ordinary
module with the discrete topology.

A subobject (monomorphism) m: 4 — B is called regular in a category (¢
if it is the equalizer of a pair of maps u, v: B =3 C in (/.

Lemvnia 5.1. In the category Cont R, every regular subobject has the
induced topology. Conversely, any submodule with the induced topology is a
regular subobject in Cont K.

Proof. Given two continuous R-homomorphisms #, z: B=xC, put
A ={be B|u() = v(b)} with the induced topology and let m: 4 — B be
the inclusion. We claim that m: 4 — B is the equalizer of (%, v) in Cont R.

Indeed, suppose g: D — B equalizes (, ¢). Then, for each d € D, g(d) e 4,
hence, g factors through A in Mod R, that is, there exists an R-homomor-
phism £: D — A such that g = m#. To see that % is continuous, take any open
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set in /A, it must be of the form 4 N ¥ == m~1V, where I is open in B. Then,
FYANTY = (mh)? IV = g~V is open in D, since g is continuous, hence, 2
is continuous.

Since any equalizer of (, ¢) is isomorphic to the above n: 4 —» B, every
regular subobject has the induced topology.

Conversely, suppose m: 4 — B is mono in Mod R and 4 has the induced
topology. We claim that A is a regular subobject, in fact, that m: A — B is
the equalizer of the two canonical homomorphisms u, ¢: B =% C, where
C = (B x B)IK and K = {(m(a), —m(a)) | a € A}. We mav endow C with
any topology that renders « and ¢ continuous, for instance. the indiscrete
topology.

Indeed, u(b) is the equivalence class of (b, 0) modulo X and ¢(?) if the
equivalence class of (0, ) modulo K. Hence, u(b) = ¢(b) if and only if
(5, 0) = (0, b) modulo K, that is, (b, —b) € K. But this means that = m(a)
for some a € 4. Take m to be the inclusion. We see that 4 = {b = B | u{b) =
o(b)}. Then, it follows from the assertion at the beginning of this proof that
m: A — B is the equalizer of (u, ¢), as was to be shown.

Propositiox 5.2. Let I be a quasi-injective right R-module endowed witl
the discrete topology. Then, for any set X and any regular subobject B of I*,
every morphism g: B — I of Cont R can be extended to I* — 1.

Proof. By Lemma 5.1, B has the induced topology of a subspace of I,
which is a product of copies of the discrete module I. A fundamental open
neighborhood of zero in I* has the form Ker x*, where x*: I¥ — I is associa-
ted with & ¢ X* by the formula x*(f) = ((x;) £,..., (v,,) ), for each %,

Since g 1s continuous and [ is discrete, g(0) contains a fundamental
neighborhood of zero in B, that is,

Ker g 2 Ker x* N B,

for some element x € X”. Thus, for each b € B, x*(b) = 0 implies g(b) =0,
hence, there exists an R-homomorphism A: x*(B) — I such that Ax¥(b) = g(b).
By Harada’s lemma, /# may be extended to A": I* — I and A" is continuous,
since I” is discrete.
Moreover, x* is continuous, by definition of the product topology, hence,
sois A'x*: I* — I. Since #'x*(b) = Ax*(b) = g(b), /'™ extends g, as required.
Let I be a given object of Cont R. As in other categories, we write

T(A) — TI(:’I) — IContI(A,I)

and let «(A): O(4) — T(4) be the intersection of the equalizers of all patrs
o, fre Contx(T(A4), I) such that py(Ad) = ¢m(d), where n(d): 4 — T(4) is

481/38/1-12
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the canonical morphism. We recall that I is x-injective in Cont R if every
continuous R-homomorphism Q(A)—1I can be extended to a continuous
R-homomorphism T(4)~— 1. We also write

S(A) = S;(A) = Homg(Contg(4, I), I),

where E = Contg(/, ). When A and I are discrete, this agrees with our
earlier definition for Mod R.

ProposITION 5.3. Let I be a quasi-injective right R-module endowed with the
discrete topology. Then, I is x-injective in Cont R and S(A) = Q(A) for any
object A of Cont R.

Proof. That I is x-injective follows immediately from Proposition 5.2.
The proof that O(4) C S(A) is the same as that for Mod R in Lemma 3.6.
To show the converse inclusion, we let s .S(A4) and consider any
@, ¢ € Conty(T(A), I) such that gn(d) = ym(4). To assure that seQ(4),
we want to check that ¢(S) = #(s). Since Cont R is an additive category, we
may take $ = 0.

Since ¢ is continuous, there exists f: 4 — I", such that Ker ¢ 2 Ker f*,
where f*: T(A4) —I* is defined as in the proof of Proposition 5.2 or in
Lemma 3.3 by

FHO) = (A & (SR D),

for all ze T(4). Thus, f*() = 0 implies p(¢) = 0, hence, there exists an
R-homomorphism g: f*(T(A)) —1 such that gf *(¢) = ¢(z). By Harada’s
lemma, one may extend g to g': I* — I, hence,

g =g () = gf *n(d) = n(d) = 0.
Therefore, for any s € S(4),

o(s) =&f*(s) =£f* () =0,

by Lemma 3.3.
Upon examining the above argument more closely, we find we can prove a
slightly stronger result.

THEOREM 5.4. Let R — R’ be an epimorphism of rings, I a quasi-injective
R’-module equipped with the discrete topology. Then, I is k-injective in Cont R
and S(A4) =0(4) for any Ae Cont R

Proof. Any continuous R-homomorphism ((4)—1 is a ‘continuous
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R’-homomorphism, as Mod R’ is a full subcategory of Mod R (see [24],
hence, it may be extended to S(4) I, by Proposition 5.2. Thus, I is
r~injective.

The proof that Q(4) C S(4), as in Lemma 3.6 above, works for any
R-module I, hence, for an R'-module. In the proof that S(4) CQ(4), we
observe that f*: T(4)—I* is an R'-homomorphism and so, Harada’s
lemma may still be applied in Mod R'.

It may well happen that S(4) has the discrete topology, as we shall now
see in a result adapted from {18].

ProrosiTiON 5.5. Let I be a quasi-injective right R-module endowed with the
discrete topology. Then, the following conditions are equivalent for any
AeCont R,

(1) There exists fe Contg(d, I™), such that Ker n(A) = Ker f.
(2) Conty(A4,1) is a finitely generated left E-module.
(3) S(A) has the discrete topology.

Proof. 'We shall show that (1) = (2) = (3) = (1).

Suppose (1) and let g € Contg(4, I). Then Ker g O Ker f, hence, there exists
an R-homomorphism h: f(a)— g(a) and this may be extended to #': [* —T
by Harada’s lemma. Thus,

¢(a) = Ff(a) = z W fa)

where «;: I — I* canonically. Since A, € E, we see that g is generated by the:
fiyi=1,.,n

Suppose (2) and let fi,.., f, be a basis of Contg(d, I). Put
J=<{ftsufar: A—I" and consider an element s e Ker f* N S(4). Then,
(s =0,...,(fn) s =0, hence, (Z:-zzl e;f)s=0 for all ¢ ,...,e,cE. It
follows that the fundamental neighbourhood of zero Ker f* N S(4) =0,
hence, S(A) has the discrete topology.

Suppose (3), that is, Ker f* N S(A) = 0, for some fe Contg(4, I"). Let
asKer f, then, %(d)(a)eKerf*n S(A)y =0, hence, aeKern(d). It
follows that Ker f C Ker n(4) and the converse inclusion holds in any case.

Remark 5.6. Condition (1) is easily verified when the underlying
R-module of 4 is Artinian, or even when the descending chain condition.
holds for closed submodules of 4. On the other hand, it is easy to check
condition (2) if 4 is discrete and I = E(A) is the injective envelope of 4.
Indeed, the inclusion fy: A4 — I then generates Homg( A4, I) as a left E-module,
since each f: A — I can be extended to some e: I — I, hence, f = ¢f,.
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ProrositioN 5.7. Let I be a quasi-injective right R-module endowed with
the discrete topology. Then, for any A e Cont R, Contg(4, I) is principal as a
left E-module if and only if Kern(d)2 Kerg for some ge Conty(4, I).

Proof. Assume Contg(4, 1) = Ef and let a € Ker f, g € Contg(4, I), then,
g = ¢f for some e € E, hence, g(a) = ¢f(a) = 0, thus, Ker g C Ker n(4).

Conversely, assume KergCKery(d) and let fe Contg(4,I). The
assignment g(a) - f(a) is an R-homomorphism g(4) — I, hence, it may be
extended to ¢ € E. It follows that f = eg.

6. ArpLicaTioNs To Mop R

It may be of interest that sometimes, results about ordinary modules may
be deduced from results about continuous modules. The following proposi-
tion is known when 7 is injective [16, 21]. It makes sense even when [/ is only
quasi-injective, although Fix(Q, A) need not then be a reflective subcategory.

ProposITION 6.1.  Suppose I is a quasi-injective right R-module, A € Mod R
and Homgy(A4, I) is a finitely generated left E-module, where E = Endg(I).
Then, S(A) = O(4), already in Mod R.

Proof. If A and I are endowed with the discrete topology, we need not
distinguish between T(4) in Mod R and T'(4) in Cont R and similarly, for
S(4). For the moment, let us write Q(A) for the equalizer of T(A) = T%(4)
in Mod R, whereas, the same equalizer in Cont R is .S(4), by Proposition 5.3.
In view of Lemma 3.6, we need only show S(4) C O(d).

Let s€.5(A) and suppose ¢, : T(A) =31 are such that en(A4) = n(4).
The homomorphisms ¢ and s need not be continuous, but their restrictions to
S(A) are, since S(A4) has the discrete topology, by Proposition 5.5. Evidently,
S(4) is a regular subobject of T'(4) in Cont R, as it is the intersection of
equalizers of pairs of mappings t—e(f)t +e'(f')t and ¢ (ef + €f') 2.
Therefore, by Proposition 5.2, ¢ ; S(4) and ¢ ' S(A) may be extended to
continuous R-homomorphisms ¢, #': T(4)=x 1. Since the image of 5(.d)
is contained in S(4), one has ¢'n(4) = ¢n(d) = ¥m(d) = '7(4). Therefore,
by Proposition 5.3, ¢" | S(4) = &' | S(A), that is, ¢ | S(d) =& ' S(4). It
follows that S(4) < Q(A).

However, it is only fair to point out that one just as easily can give a
direct proof of the inclusion S(A) CO(4), as was done in [18]. If f; ,..., £,
are the generators of Homg(.1, I), one puts f = {f; ,..., f,> and shows that
f* | S(41) is one-to-one, then uses Lemma 3.3.

ExampLE 6.2. If [ = E(A) is the injective hull of A4, one calls Q(4) the
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rational completion of A [8]. Now, it follows from Remark 5.6 that the rational
completion of A is given by S(4).

In the considerations that follow, we write S;(d) for S(4) to indicate its
dependence on I. Even when Q(4) == S,(4), one may ask if Q,(4) = S,(4)
for some [ % I. The answer is “ves”” when [ is injective. In the special case of
rings, this is known [16, Proposition 2.8]. Here, we shall give a proof in the
general case of modules, which is a bit simpler.

First, let us recall some facts from [16]. Let I be a given injective. One
calls 4 an I-torsion module if Hom (A4, I} = 0 and one savs that A4 is I-torsion-
free if m,(A) is a monomorphism, that is, if there is a monomorphism from .4
to a power of I. Necessary and sufficient conditions for h: 4 — B 10 be
isomorphic to A;(4): A—Q,(A), the module of quotients of 4 with respecttof,
are the following:

(a} Ker & and Cok £ are I-torsion modules,
(b) B and E(B)/B are I-torsionfree.

ProrositioN 6.3. Suppose I is an injective right R-module. Then, for any
AeNMod R, O[A4) =~ S,(4), where

J = E(Qd( 1)) & E(E(QAA))iQ(A))-

Progf. 'We want to show that i = \(A): 4 — Q,(4) = B is isomorphic to
nAA): 4 — S;(4), where | = E(B) & E(E(B)/B).

Clearly, B and E(B)/B are J-torsionfree. Moreover, [ is I-torsionfree,
hence, the I-torsion modules XKer /4 and Cok # are aiso [-torsion modules.
Therefore, h: A — B is isomorphic to A (A): 4 — Q,(4).

Since Ker A is a J-torsion module and since 4: 4 — B C ], it follows from
Proposition 5.7 that Hompg(4, J) is principal as a left Endg(/)-module.
Therefore, by Proposition 6.1, O,(4) = S,(4) and this entails A,(A) = 7,(4).

For completeness, we shall also include the following known results {9,
10, 6].

Prorosrtiox 6.4. Let I be a quasi-injective right R-module, E its ring of
endomorphisms, N ={re R|Ir = 0} = Ker 9(R). Then, I is injective as a
right R{N-module if any one of the following conditions is satisfied :

(1) (Fuchs) I is principal as a left E-module.

(2) (Fuller) I* is a quasi-injective vight R-module for some set X of
generators of I as a left E-module.

(3) (Faith) I is finitely generated as a left E-module.

Proof. (1) Suppose I = Ei, for some 7€ l. For any right ideal D of R
containing N, consider fe Hompg,(D/N, I). Put g(id) = f([d]), where [d]
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is the equivalence class of d € D modulo N, and extend g € Homg(iD, I) to
ec E, then f([d]) = e(id) = (ef) [d]. Thus, I,y is injective, by Baer’s crite-
rion.

(2) Let gel® correspond to the inclusion g: X —I. Then, gr =0
implies Xr = 0, hence, Ir = 0, that is, r € N. Therefore, Ker g € N; but ¥
is the kernel of 9x(R): R — Tix(R), hence, we may apply Proposition 5.7
with 4 = R and deduce that I¥ is principal over its ring of endomorphisms.
In view of the result of Fuchs, already proved, I is injective as an R/N-
module, hence, so is I.

(3) Suppose [ is generated by a finite set X of candinality z. Then,
JX¥ = [» is quasi-injective by Harada’s lemma, hence, we may invoke the
result of Fuller already proved.
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