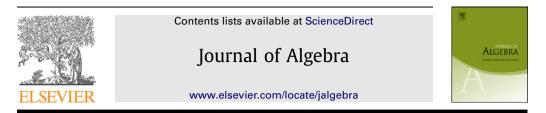
Journal of Algebra 321 (2009) 1546-1554



Gorenstein injective complexes of modules over Noetherian rings ${}^{\bigstar}$

Liu Zhongkui*, Zhang Chunxia

Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, People's Republic of China

ARTICLE INFO

Article history: Received 17 July 2008 Available online 30 December 2008 Communicated by Luchezar L. Avramov

Keywords: Gorenstein injective complex Gorenstein injective module Cover Gorenstein injective dimension

ABSTRACT

A complex *C* is called Gorenstein injective if there exists an exact sequence of complexes $\dots \rightarrow I_{-1} \rightarrow I_0 \rightarrow I_1 \rightarrow \dots$ such that each I_i is injective, $C = \text{Ker}(I_0 \rightarrow I_1)$ and the sequence remains exact when Hom(E, -) is applied to it for any injective complex *E*. We show that over a left Noetherian ring *R*, a complex *C* of left *R*-modules is Gorenstein injective if and only if C^m is Gorenstein injective in *R*-Mod for all $m \in \mathbb{Z}$. Also Gorenstein injective dimensions of complexes are considered.

© 2008 Published by Elsevier Inc.

1. Introduction and preliminaries

Throughout this paper, *R* denotes a ring with unity. A complex

 $\cdots \to C^{-1} \xrightarrow{\delta^{-1}} C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} \cdots$

of left *R*-modules will be denoted (C, δ) or *C*.

It is an important question to establish relationships between a complex *C* and the modules C^m , $m \in \mathbb{Z}$. It is well known that a complex (C, δ) is injective (respectively projective) if and only if each left *R*-module Ker (δ^m) is injective (respectively projective) in *R*-Mod and *C* is exact; and *C* is finitely generated if and only if *C* is bounded and C^m is finitely generated in *R*-Mod for all $m \in \mathbb{Z}$ [6, Lemma 2.2]. It is natural to consider the relationships of Gorenstein injectivity of a complex *C* and Gorenstein injectivity of all *R*-modules C^m , $m \in \mathbb{Z}$. If *R* is an *n*-Gorenstein ring (that is, *R* is left and right Noetherian and the injective dimensions of $_RR$ and R_R are at most *n*), then E.E. Enochs

* Corresponding author.

^{*} Supported by National Natural Science Foundation of China, TRAPOYT and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China.

E-mail address: liuzk@nwnu.edu.cn (L. Zhongkui).

^{0021-8693/\$ –} see front matter $\, @$ 2008 Published by Elsevier Inc. doi:10.1016/j.jalgebra.2008.11.031

and J.R. Garcia Rozas in [5] (also, see [12]) showed that a complex C is Gorenstein injective if and only if C^m is Gorenstein injective in *R*-Mod for all $m \in \mathbb{Z}$. In this paper we will show that the same result holds if R is a left Noetherian ring. We also consider the Gorenstein injective dimensions of complexes by showing that if R is a left Noetherian ring and C a complex of left R-modules, then $Gid(C) = sup{Gid(C^m) | m \in \mathbb{Z}}$ where Gid(-) denotes Gorenstein injective dimension.

In the following C will be the abelian category of complexes of left *R*-modules. This category has enough projectives and injectives. For complexes C and D, Hom(C, D) is the abelian group of morphisms from *C* to *D* in the category of complexes and $\text{Ext}^i(C, D)$ for $i \ge 1$ will denote the groups we get from the right derived functor of Hom.

Let \mathcal{B} be a class of objects in an abelian category \mathcal{D} . Let X be an object of \mathcal{D} . We recall the definition introduced in [4]. A homomorphism $\alpha: B \to X$, where B is in B, is called a B-precover of *X* if the diagram

can be completed for each homomorphism $\beta : B' \to X$ with B' in \mathcal{B} . If furthermore, when B' = B and $\beta = \alpha$ the only such γ are automorphisms of B, then $\alpha : B \to X$ is called a β -cover of X. Dually we have the concepts \mathcal{B} -preenvelope and \mathcal{B} -envelope. If \mathcal{B} is the class of all injective objects of \mathcal{D} , then \mathcal{B} -precover and \mathcal{B} -cover are called injective precover and injective cover, respectively. There are a lot of results concerning covers and envelopes (see, for example, [6-9,14,1]).

Given a left *R*-module *M*, we will denote by \overline{M} the complex

$$\cdots \to 0 \to 0 \to M \xrightarrow{\text{id}} M \to 0 \to 0 \to \cdots$$

with the M in the -1 and 0th position. Given a complex C and an integer m, C[m] denotes the complex such that $C[m]^n = C^{m+n}$ and whose boundary operators are $(-1)^m \delta^{m+n}$.

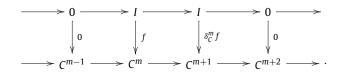
Throughout the paper we use both the subscript notation for complexes and the superscript notation. When we use superscripts for a complex we will use subscripts to distinguish complexes; for example, if $(K_i)_{i \in I}$ is a family of complexes, then K_i^n denotes the degree-*n* term of the complex K_i .

General background material can be found in [10,12,13].

2. Gorenstein injective complexes

Lemma 1. Let C be a complex and $\alpha : E \to C$ an injective precover of C. If C^m is Gorenstein injective for all $m \in \mathbb{Z}$, then α is surjective.

Proof. Suppose that I is an injective left R-module and $f: I \to C^m$ an R-homomorphism. Consider the complex $\overline{I}[-m-1]$ and define a map of complexes $\gamma: \overline{I}[-m-1] \to C$ as following



Since $\overline{I}[-m-1]$ is an injective complex and $\alpha : E \to C$ an injective precover of *C*, there exists a map of complexes $\beta : \overline{I}[-m-1] \to E$ such that $\alpha \beta = \gamma$. Thus we have a communicative diagram

This means that $\alpha^m : E^m \to C^m$ is an injective precover of C^m .

Since C^m is a Gorenstein injective left *R*-module, it is easy to see that there exists an epimorphism $I \rightarrow C^m$ with *I* injective. Hence α^m is an epimorphism. Therefore α is surjective. \Box

According to [12], a complex C is called Gorenstein injective if there exists an exact sequence of complexes

 $\cdots \rightarrow I_{-1} \rightarrow I_0 \rightarrow I_1 \rightarrow \cdots$

such that

(1) each I_i is injective;

(2) $C = \text{Ker}(I_0 \rightarrow I_1);$

(3) the sequence remains exact when Hom(E, -) is applied to it for any injective complex E.

Lemma 2. Let C be a complex. Then C is Gorenstein injective if and only if there exists an exact sequence of complexes

 $\cdots \rightarrow I_{-1} \rightarrow I_0 \rightarrow I_1 \rightarrow \cdots$

such that

(1) each I_i is injective;

(2) $C = \operatorname{Ker}(I_0 \to I_1);$

(3) $\text{Ext}^1(E, K_i) = 0$ for all injective complexes E and all $K_i = \text{Ker}(I_i \rightarrow I_{i+1}), i \in \mathbb{Z}$.

Proof. It follows from the definition. \Box

Note that the similar result holds for left R-modules.

Lemma 3. Let k be a positive integer. If a complex C satisfies $\text{Ext}^k(E, C) = 0$ for all complexes E with finite injective dimension, then $\text{Ext}^k(M, C^m) = 0$ for all $m \in \mathbb{Z}$ and all left R-modules M with finite injective dimension.

Proof. Let *M* be a left *R*-module with finite injective dimension. Then there exists exact sequence

$$0 \to M \to I_0 \to I_1 \to \cdots \to I_n \to 0$$

of left *R*-modules with each I_i injective. Thus we have the following exact sequence of complexes

$$0 \to \overline{M}[-m-1] \to \overline{I_0}[-m-1] \to \overline{I_1}[-m-1] \to \dots \to \overline{I_n}[-m-1] \to 0.$$

Hence the injective dimension of $\overline{M}[-m-1]$ is finite since each $\overline{I_j}[-m-1]$ is injective. Consider exact sequence

$$0 \rightarrow Q \rightarrow P_{k-1} \rightarrow P_{k-2} \rightarrow \cdots \rightarrow P_0 \rightarrow M \rightarrow 0$$

with each P_j projective. Let $H = \text{Im}(P_{k-1} \to P_{k-2})$ (if k = 1, then let H = M). Then $\text{Ext}^k(M, C^m) \cong \text{Ext}^1(H, C^m)$. Now from the exact sequence

$$0 \rightarrow Q \rightarrow P_{k-1} \rightarrow H \rightarrow 0$$

it follows that the sequence

$$0 \to \overline{Q}[-m-1] \to \overline{P_{k-1}}[-m-1] \to \overline{H}[-m-1] \to 0$$

is exact and $\overline{P_{k-1}}[-m-1]$ is projective. By the hypothesis, $\operatorname{Ext}^k(\overline{M}[-m-1], C) = 0$. Thus, from the exact sequence

$$0 \to \overline{H}[-m-1] \to \overline{P_{k-2}}[-m-1] \to \dots \to \overline{P_0}[-m-1] \to \overline{M}[-m-1] \to 0$$

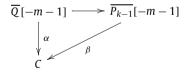
it follows that

$$\operatorname{Ext}^{1}(\overline{H}[-m-1], C) \cong \operatorname{Ext}^{k}(\overline{M}[-m-1], C) = 0$$

since each $\overline{P_i}[-m-1]$ is projective. Hence we have an exact sequence

$$\operatorname{Hom}(\overline{P_{k-1}}[-m-1], C) \to \operatorname{Hom}(\overline{Q}[-m-1], C) \to 0.$$

Let $f : Q \to C^m$ be an *R*-homomorphism. Define $\alpha^m = f$, $\alpha^{m+1} = \delta_C^m f$ and $\alpha^n = 0$ for any $n \neq m$, m + 1. Then $\alpha : \overline{Q}[-m-1] \to C$ is a map of complexes. Thus there exists $\beta : \overline{P_{k-1}}[-m-1] \to C$ such that the diagram



commutes. Hence, considering the degree-m term of the complexes yields that the sequence

$$\operatorname{Hom}(P_{k-1}, C^m) \to \operatorname{Hom}(Q, C^m) \to 0$$

is exact. On the other hand we have an exact sequence

$$\operatorname{Hom}(P_{k-1}, C^m) \to \operatorname{Hom}(Q, C^m) \to \operatorname{Ext}^1(H, C^m) \to 0.$$

Thus $\operatorname{Ext}^k(M, C^m) \cong \operatorname{Ext}^1(H, C^m) = 0.$

Corollary 4. If a complex C satisfies $\text{Ext}^1(E, C) = 0$ for all injective complexes E, then $\text{Ext}^1(I, C^n) = 0$ for all $n \in \mathbb{Z}$ and any injective left R-module I.

Proof. It follows by analogy with the proof of Lemma 3. \Box

1549

Corollary 5. If C is a Gorenstein injective complex, then C^m is a Gorenstein injective left R-module for all $m \in \mathbb{Z}$.

Proof. Suppose that *C* is a Gorenstein injective complex. We use the notation of Lemma 2. Then, for each $m \in \mathbb{Z}$, the following sequence

$$\cdots \to I_{-1}^m \to I_0^m \to I_1^m \to \cdots$$

is exact, each I_i^m is injective and $C^m = \text{Ker}(I_0^m \to I_1^m)$. Also by Lemma 2, $\text{Ext}^1(E, K_i) = 0$ for all injective complexes *E*. Thus, by Corollary 4, $\text{Ext}^1(I, K_i^m) = 0$ for any injective left *R*-module *I* and for all $m \in \mathbb{Z}$. Now, by the version for modules of Lemma 2, C^m is Gorenstein injective. \Box

A left *R*-module *K* is called an *n*th syzygy of a left *R*-module *N*, if there exists an exact sequence

 $0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to N \to 0$

such that each P_i is projective.

Lemma 6. Let *M* be a Gorenstein injective left *R*-module. Then for any syzygy *K* of an injective left *R*-module *I*, $Ext^{i}(K, M) = 0$ for all $i \ge 1$.

Proof. Let I be an injective left R-module and K an nth syzygy of I. Then There exists an exact sequence

 $0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to I \to 0$

such that each P_i is projective. Thus for any $i \ge 1$,

$$\operatorname{Ext}^{i}(K, M) \cong \operatorname{Ext}^{i+n}(I, M) = 0$$

since *M* is Gorenstein injective and *I* is injective. \Box

Lemma 7 (Dual version of [13, Corollary 2.11]). Let $0 \to M \to N \to L \to 0$ be a short exact sequence of left *R*-modules where *N* and *L* are Gorenstein injective. If $\text{Ext}^1(I, M) = 0$ for all injective left *R*-modules *I*, then *M* is Gorenstein injective.

Now we are in the position to give our main result. Note that the same result was shown in [5,12] if *R* is an *n*-Gorenstein ring.

Theorem 8. Let *R* be a left Noetherian ring and *G* a complex of left *R*-modules. Then the following conditions are equivalent.

(1) *G* is a Gorenstein injective complex;

(2) G^m is a Gorenstein injective left *R*-module for all $m \in \mathbb{Z}$.

Proof. (1) \Rightarrow (2). It follows from Corollary 5.

 $(2) \Rightarrow (1)$. Let *I* be an injective left *R*-module. Consider an exact sequence

 $0 \to K \to P_{n-1} \to \cdots \to P_1 \to P_0 \to I \to 0$

where each P_j is projective. Let $K_j = \text{Ker}(P_{j-1} \rightarrow P_{j-2})$ for $j \ge 2$, $K_1 = \text{Ker}(P_0 \rightarrow I)$ and $K_0 = I$. Then for any $m \in \mathbb{Z}$ the following sequence

$$0 \to \overline{K}[-m] \to \overline{P_{n-1}}[-m] \to \cdots \to \overline{P_1}[-m] \to \overline{P_0}[-m] \to \overline{I}[-m] \to 0$$

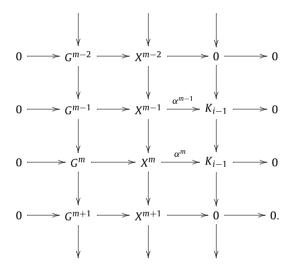
is exact and each $\overline{P_j}[-m]$ is a projective complex. Then

$$\operatorname{Ext}^{i}(\overline{I}[-m], G) \cong \operatorname{Ext}^{1}(\overline{K_{i-1}}[-m], G).$$

Let

$$0 \to G \to X \to \overline{K_{i-1}}[-m] \to 0$$

be an exact sequence. Consider the following commutative diagram:



Since G^{m-1} is Gorenstein injective and K_{i-1} is a syzygy of injective left *R*-module *I*, by Lemma 6, it follows that $\operatorname{Ext}^1(K_{i-1}, G^{m-1}) = 0$. Thus the exact sequence $0 \to G^{m-1} \to X^{m-1} \to K_{i-1} \to 0$ splits. Hence there exists $h: K_{i-1} \to X^{m-1}$ such that $\alpha^{m-1}h = 1$. Now define a map of complexes $\gamma: \overline{K_{i-1}}[-m] \to X$ via $\gamma^{m-1} = h$, $\gamma^m = \delta_X^{m-1}h$ and $\gamma^n = 0$ for $n \neq m-1, m$. Then $\alpha\gamma = 1$ and so the sequence $0 \to G \to X \to \overline{K_{i-1}}[-m] \to 0$ splits. Thus $\operatorname{Ext}^1(\overline{K_{i-1}}[-m], G) = 0$. Hence $\operatorname{Ext}^i(\overline{I}[-m], G) = 0$ for all $i \ge 1$, for all $m \in \mathbb{Z}$ and for all injective left *R*-modules *I*.

Now suppose that *E* is an injective complex. Then *E* is a direct sum of complexes in the form $\overline{I}[m]$ with *I* an injective left *R*-module. Thus $\operatorname{Ext}^{i}(E, G) = 0$ for all $i \ge 1$ and for all injective complexes *E*.

Since *R* is left Noetherian, by [11], there is a set \mathcal{X} of injective left *R*-modules such that any injective left *R*-module is the direct sum of modules each isomorphic to an element of \mathcal{X} . Set

$$\mathcal{S} = \left\{ \overline{I}[m] \mid I \in \mathcal{X}, \ m \in \mathbb{Z} \right\}.$$

Then it is clearly that every injective complex is the direct sum of complexes each isomorphic to an element of S. Thus, by [2, Theorem 3.2], any complex has an injective cover. (Or, by analogy with the proof of [4, Proposition 2.2], any complex has an injective precover. Now apply Zorn's Lemma for

categories (see, [12]).) Suppose that $\alpha_{-1}: E_{-1} \to G$ is an injective cover of *G*. Then, by Lemma 1, we have an exact sequence

$$0 \to H_{-2} \to E_{-1} \to G \to 0$$

where $H_{-2} = \text{Ker}(\alpha_{-1})$. A standard argument yields that $\text{Ext}^i(E, H_{-2}) = 0$ for all $i \ge 1$ and for all injective complexes *E*.

Now consider exact sequence

$$0 \to H^m_{-2} \to E^m_{-1} \to G^m \to 0.$$

By the hypothesis, G^m is Gorenstein injective. Since E_{-1} is an injective complex, E_{-1}^m is injective and hence Gorenstein injective. By Corollary 4, $\text{Ext}^1(I, H_{-2}^m) = 0$ for all injective left *R*-modules *I* since $\text{Ext}^1(E, H_{-2}) = 0$ for all injective complexes *E*. Thus, from Lemma 7, it follows that H_{-2}^m is Gorenstein injective for all $m \in \mathbb{Z}$.

By analogy with above discussion, we have an exact sequence

$$0 \rightarrow H_{-3} \rightarrow E_{-2} \rightarrow H_{-2} \rightarrow 0$$

where $E_{-2} \rightarrow H_{-2}$ is an injective cover of H_{-2} , $H_{-3} = \text{Ker}(E_{-2} \rightarrow H_{-2})$ and H_{-3}^m is Gorenstein injective for all $m \in \mathbb{Z}$.

Continuing this process yields the following exact sequence:

$$\cdots \rightarrow E_{-2} \rightarrow E_{-1} \rightarrow G \rightarrow 0$$

where E_{-1} is an injective cover of G and E_{-n} is an injective cover of $H_{-n} = \text{Ker}(E_{-(n-1)} \rightarrow H_{-(n-1)})$ for all $n \ge 2$ (set $H_{-1} = G$). Note that this sequence remains exact when Hom(E, -) is applied to it for any injective complex E.

Taking injective envelopes yields the following exact sequence:

$$0 \to G \to E_0 \to E_1 \to \cdots$$

Since $\text{Ext}^{i}(E, G) = 0$ for all $i \ge 1$ and for all injective complexes *E*, it is easy to see that this sequence remains exact when Hom(E, -) is applied to it for any injective complex *E*.

Hence *G* is Gorenstein injective. \Box

3. Gorenstein injective dimensions

Let *C* be a complex of left *R*-modules. The Gorenstein injective dimension, Gid(*C*), of *C* is defined as Gid(*C*) = inf{*n* | there exists an exact sequence $0 \rightarrow C \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_n \rightarrow 0$ with each E_i Gorenstein injective}. If no such *n* exists, set Gid(*C*) = ∞ . Similarly, the Gorenstein injective dimension, Gid(*M*), of a left *R*-module *M* is defined. Details and results on Gorenstein injective dimension of modules appeared in [3,13].

Theorem 9. Let *R* be a left Noetherian ring and *G* a complex of left *R*-modules. Then $Gid(G) = sup{Gid(G^m) | m \in \mathbb{Z}}$.

Proof. If $\sup{Gid(G^m) | m \in \mathbb{Z}} = \infty$, then $Gid(G) \leq \sup{Gid(G^m) | m \in \mathbb{Z}}$. So naturally we may assume that $\sup{Gid(G^m) | m \in \mathbb{Z}} = n$ is finite. Consider an injective resolution

$$0 \to G \to E_0 \to E_1 \to \cdots \to E_{n-1} \to K_n \to 0$$

1552

of *G*, where each E_i is an injective complex. Then K_n^m is Gorenstein injective for all $m \in \mathbb{Z}$ by [13, Theorem 2.22]. Now, by Theorem 8, K_n is a Gorenstein injective complex. This shows that $\text{Gid}(G) \leq n$ and so $\text{Gid}(G) \leq \sup\{\text{Gid}(G^m) \mid m \in \mathbb{Z}\}$.

Now it is enough to show that $\sup{Gid(G^m) | m \in \mathbb{Z}} \leq Gid(G)$. Naturally we may assume that Gid(G) = n is finite. Then there exists an exact sequence

$$0 \rightarrow G \rightarrow E_0 \rightarrow E_1 \rightarrow \cdots \rightarrow E_{n-1} \rightarrow E_n \rightarrow 0$$

with each E_i Gorenstein injective. By Theorem 8, E_i^m is Gorenstein injective for all $m \in \mathbb{Z}$ and all $i = 0, 1, \dots, n$. Thus $\text{Gid}(G^m) \leq n$ and so $\sup{\text{Gid}(G^m) \mid m \in \mathbb{Z}} \leq n = \text{Gid}(G)$. \Box

For a general ring R, Propositions 10, 11 and Corollary 12 can be proved by applying the proofs of [13, Theorems 2.22, 2.15, 2.6 and (dual of) Corollary 2.11]. If R is left Noetherian, Propositions 10, 11 and Corollary 12 can be proved more easily by combining Theorem 9 with references to [13] given above.

Proposition 10. Let *G* be a complex with finite Gorenstein injective dimension and *n* an integer. Then the following conditions are equivalent.

(1) $\operatorname{Gid}(G) \leq n$;

(2) $\operatorname{Ext}^{i}(E, G) = 0$ for all i > n and all injective complexes E;

(3) $\operatorname{Ext}^{i}(L, G) = 0$ for all i > n and all complexes L with finite injective dimension.

Proposition 11. Let *C* be a complex with finite Gorenstein injective dimension *n*. Then there exists an exact sequence $0 \rightarrow C \rightarrow K \rightarrow L \rightarrow 0$ with $C \rightarrow K$ a Gorenstein injective preenvelope and *L* a complex with finite injective dimension n - 1 (if *C* is Gorenstein injective, then this should be interpreted as L = 0).

Corollary 12. Let $0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$ be an exact sequence of complexes.

- (1) If L is Gorenstein injective, then M is Gorenstein injective if and only if N is Gorenstein injective.
- (2) If M and N are Gorenstein injective, and if $\text{Ext}^1(E, L) = 0$ for all injective complexes E, then L is Gorenstein injective.

Acknowledgment

The authors wish to express their sincere thanks to the referee for his/her valuable suggestions which simplified the proof of the main results and led to the new version of Propositions 10, 11 and Corollary 12.

References

- S.T. Aldrich, E.E. Enochs, J.R. Garcia Rozas, Luis Oyonarte, Covers and envelopes in Grothendieck categories: Flat covers of complexes with applications, J. Algebra 243 (2001) 615–630.
- [2] R. El Bashir, Covers and directed colimits, Algebr. Represent. Theory 9 (2006) 423-430.
- [3] L.W. Christensen, A. Frankild, H. Holm, On Gorenstein projective, injective and flat dimensions—A functorial description with applications, J. Algebra 302 (2006) 231–279.
- [4] E.E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981) 189-209.
- [5] E.E. Enochs, J.R. Garcia Rozas, Gorenstein injective and projective complexes, Comm. Algebra 26 (1998) 1657-1674.
- [6] E.E. Enochs, J.R. Garcia Rozas, Flat covers of complexes, J. Algebra 210 (1998) 86-102.
- [7] E.E. Enochs, O.M.G. Jenda, Ω -Gorenstein projective and flat covers and Ω -Gorenstein injective envelopes, Comm. Algebra 32 (2004) 1453–1470.
- [8] E.E. Enochs, O.M.G. Jenda, Gorenstein and Ω-Gorenstein injective covers and flat preenvelopes, Comm. Algebra 33 (2005) 507–518.
- [9] E.E. Enochs, O.M.G. Jenda, J.A. Lopez-Ramos, Dualizing modules and *n*-perfect rings, Proc. Edinb. Math. Soc. 48 (2005) 75–90.

- [10] E.E. Enochs, O.M.G. Jenda, J. Xu, Orthogonality in the category of complexes, Math. J. Okayama Univ. 38 (1996) 25–46.
 [11] P. Gabriel, Objects injectifs dans les Catégories abéliennes, Sém. Dubreil, 1958/59.
- [12] J.R. Garcia Rozas, Covers and Envelopes in the Category of Complexes of Modules, CRC Press, Boca Raton, FL, 1999.
- [13] H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004) 167-193.
- [14] A. Iacob, Direct sums of exact covers of complexes, Math. Scand. 98 (2006) 161-181.