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Starting with the interpretation of parton evolution with rapidity as a branching–diffusion process, we 
describe the different kinds of fluctuations of the density of partons which affect the properties of QCD 
scattering amplitudes at moderately high energies. We then derive some of these properties as direct 
consequences of the stochastic picture. We get new results on the expression of the saturation scale 
of a large nucleus, and a modified geometric scaling valid at intermediate rapidities for dipole–dipole 
scattering.
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1. Introduction

Processes such as the scattering of a virtual photon (which can 
be represented by a distribution of color dipoles) either off a nu-
cleus or off another virtual photon are partly described by pertur-
bative quantum chromodynamics when the virtuality of the pho-
ton(s) is large enough. When the energy 

√
s is also high, then the 

color fields generated in the interaction are strong, and one enters 
an interesting regime in which the effect on the scattering ampli-
tudes of any further increase of the reaction energy is described 
theoretically by intrinsically nonlinear equations. In the language 
of the quanta of the color field, this is the regime in which the 
densities of the partons saturate. The equation which describes 
saturation is known precisely in the nucleus case in the limit in 
which the number A of nucleons is very large, and in the limit of 
large number Nc of colors: It is the so-called Balitsky–Kovchegov 
(BK) equation [1,2]. (The Jalilian-Marian–Iancu–McLerran–Weigert–
Leonidov–Kovner (JIMWLK) equation [3–7] is a more sophisticated 
version of the latter, which includes finite-Nc corrections.) For 
other processes such as γ ∗γ ∗ (i.e. dipole–dipole) scattering, the 
relevant equations are not known for sure in the saturation regime, 
but some of their features follow from general arguments.

Some important properties of the BK equation have been un-
derstood, such as the behavior of the saturation scale at large 
rapidities y = log(s/Λ2

QCD), and the so-called “geometric scaling” 
property of the total deep-inelastic scattering cross section, derived 
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theoretically from the BK equation [8–11], after it had been discov-
ered in the experimental data [12].

Detailed theoretical studies have been carried out in the dipole–
dipole case at ultra-asymptotic energies, and predictions for the 
rapidity dependence of the saturation scale and for the scaling of 
the scattering amplitudes have been argued, based on an analogy 
between what QCD evolution is expected to look like in the satura-
tion regime and reaction–diffusion processes [13,14]. One peculiar 
feature of the evolution is that when the rapidity is large enough, 
no memory is kept of the initial condition and of the early stages.

However, phenomenological analysis of the available experi-
mental data has pointed out that at realistic energies, the ultra-
asymptotic regime may not have been reached [15]. In this case, 
the initial stages of the evolution would instead play a crucial role.

In this Letter, we shall come back to the moderate-rapidity form 
of the scattering amplitude of a dipole with a nucleus (described 
by the BK equation), and investigate the case of the scattering of 
two dipoles. By moderate rapidities we mean that y should be 
parametrically much less than log3(1/α2

s ). Our goal is not to build 
a model which can be compared right away to the data, but to 
propose a picture of dipole–nucleus versus dipole–dipole scattering 
at these intermediate rapidities. This picture leads to new asymp-
totic formulae for the shape of the amplitude and for the y- and 
αs-dependences of the saturation scale. The limits in which our 
exact results are expected to be valid (αs very small and fixed, y
very large) are unrealistic for a direct comparison to experimen-
tal data, but we hope that our work may pave the way to more 
detailed phenomenological studies.

In the next section (Section 2), we revisit the interpreta-
tion of the Balitsky–Kovchegov equation in different frames. We 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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then study the statistical properties of (linear) dipole evolution 
(Section 3), to finally arrive at predictions for the parametric form 
of the saturation scale in dipole–nucleus scattering and for the 
scaling of the amplitude in dipole–dipole scattering (Section 4).

2. Dipole–nucleus scattering viewed in different frames

In this section, we shall consider the scattering of a color dipole 
(e.g. a heavy quarkonium, or a virtual photon) off a large nucleus. 
We first recall how the BK equation is obtained from the QCD 
dipole model, and how it can be replaced by the simpler FKPP 
equation. Viewing the scattering process in particular frames, we 
then express the dipole–nucleus scattering amplitude T with the 
help of T itself at a lower rapidity, and of the dipole number den-
sity n obtained after dipole evolution.

2.1. BK and FKPP equations

Let us first view this process in the restframe of the nucleus, in 
which the dipole is highly boosted, and thus appears at the time 
of the interaction in a high-occupancy Fock state. The way how 
the Fock state of an initial dipole builds up through the succes-
sive emissions of gluons as its rapidity increases is conveniently 
described by the color dipole model [16]: In the large-Nc limit, 
gluons are similar to qq̄ pairs of zero size, and a gluon emission is 
interpreted as the splitting of a dipole into two dipoles of differ-
ent sizes. Dipole evolution is a branching–diffusion process: As the 
rapidity is increased by dy, a dipole of size r (r is a 2-dimensional 
vector) may be replaced by two new dipoles of respective sizes r′
and r − r′ with probability

ᾱdy
d2r′

2π

r2

r′ 2(r − r′)2
, (1)

where ᾱ ≡ αs Nc/π . We shall be concerned with the dipole den-
sity at a fixed impact parameter since this is what is relevant in 
scattering problems. It is very important to keep in mind that un-
der this condition, there is a largest and a smallest dipole in each 
realization of the evolution, whereas if we considered all impact 
parameters simultaneously, the evolution would generate an infin-
ity of dipoles of arbitrarily small sizes. (Later, we will replace the 
full QCD dipole evolution by the simplest branching–diffusion pro-
cess in which this property will be built in.)

The evolution with y of the S-matrix element for the elastic 
scattering of an elementary dipole of size r off a target such as a 
large nucleus can easily be deduced from this probability distribu-
tion. It is given by the BK equation [1,2]

∂

∂ y
S(y, r)

= ᾱ

∫
d2r′

2π

r2

r′ 2(r − r′)2

[
S
(

y, r′)S
(

y, r − r′) − S(y, r)
]
. (2)

The easiest way to establish this equation is to start from the rest-
frame of the dipole, in which the nucleus has the rapidity y, and 
write the change in S induced when the dipole is boosted by dy. 
The initial condition will be discussed later.

The physical picture of this mathematical description in the 
form of a deterministic integro-differential equation is clearest in 
the restframe of the dipole, in which the whole evolution takes 
place in the nucleus: The nucleus being a compound of many in-
dependent nucleons from the beginning, the evolution of its scat-
tering amplitude with a probe should essentially be deterministic, 
at least for small up to moderate rapidities, for a mean-field or a 
classical approximation is justified by the large number of objects. 
The nonlinearity present in Eq. (2) is a unitarity-preserving term, 
which makes sure that 0 ≤ S ≤ 1 throughout the evolution. Note 
that there is no explicit nonlinear effect in the dipole evolution 
completely determined by Eq. (1): We shall add saturation in the 
dipole wavefunction in Section 4.

For the sake of simplifying the discussion, we first observe that 
due to the form of the kernel, the appropriate scale for the dipole 
sizes r is actually a logarithmic scale, hence in the following, we 
will replace r by the variable x ≡ log(r2/r2

0), where r0 is an ar-
bitrary size which we shall choose later. We define the number 
density n(y, x′) of dipoles of logarithmic size x′ at rapidity y, start-
ing from a single dipole at x = 0. The manifest scale invariance of 
the evolution kernel (1) in the r variable becomes a translation in-
variance in the x variable: Therefore, the number density of dipoles 
starting with some generic x is just n(y, x′ − x).

Whenever the explicit form of the evolution is needed, instead 
of attempting to deal with the full dipole evolution, we shall re-
place it by the simplest possible branching random walk (BRW): 
When the rapidity is increased by the infinitesimal quantity dy, 
each given dipole characterized say by the variable x may split to 
two dipoles at x with probability dy, and may diffuse in x. The 
first process is the dipole branching, the diffusion accounts for the 
fact that when a dipole splits, its offspring actually have different 
sizes. In this framework, the equivalent of the BK equation (2) is 
the Fisher–Kolmogorov–Petrovsky–Piscounov (FKPP) equation [11,
17,18], namely

∂y S(y, x) = ∂2
x S(y, x) − S(y, x) + [

S(y, x)
]2

. (3)

In the original FKPP equation, y is the time, and x a spatial vari-
able: Therefore, from now on, we shall often call the x-variable 
“position”.

The basic reason why we can afford to replace dipole branching 
by a simpler model is that the solutions to the BK/FKPP equation 
are to a large extent universal, namely independent of the de-
tails. Generally speaking, at large rapidity, S tends to a traveling 
wave, namely a front translating as rapidity increases while keep-
ing its shape essentially unchanged. Mathematically, this means 
that at large y, S(y, x) becomes a function of x − X̃ y only. (The 
y-dependence of the position of the wave front X̃ y will be spec-
ified later on.) What is important to recall at this stage is that 
X̃ y and the shape of 1 − S(y, x), whose asymptotic expression for 
x − X̃ y large and negative reads eγ0(x− X̃ y) , do not depend on the 
details of the initial condition, provided that the latter is steep 
enough, namely that 1 − S(y = 0, x) ∼ eβx with β > γ0. The pa-
rameter γ0 is determined by the linearized part of the BK/FKPP 
equation, and its numerical value is 0.63 · · · in the case of the BK 
equation, and 1 for the FKPP equation. The other few parameters 
which characterize the subasymptotic corrections to the shape of 
the front and the position of the traveling wave are also deter-
mined by the linearized part of the evolution equation, and may 
easily be replaced when changing model.

2.2. Expression for the S-matrix element in different frames

Let us write S in a generic frame in which the rapidity is 
shared between the dipole and the nucleus. We boost the dipole 
to the rapidity y0, keeping the total rapidity fixed at y. Then at the 
time of the interaction, the elementary dipole initially at position 
x has fluctuated into a random set of dipoles of number density 
n(y0, x′ − x) at position x′ . We assume that these dipoles interact 
independently of each other with the target, which is the key as-
sumption leading to the BK equation. Let us view the variable x′
as discretized in bins of (infinitesimal) size dx′ . Then the S-matrix 
element for the scattering of a dipole at position x off the nucleus 
reads, at rapidity y,
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Fig. 1. Schematic picture of the states of the dipole and of the nucleus at the time 
of the scattering in one particular realization of the evolution, as viewed in three 
different frames. The nucleus is represented by its scattering amplitude T with an 
elementary dipole, whose evolution obeys the BK/FKPP equation, while the dipole 
evolves stochastically according to the model described in Section 3. Top: Dipole rest-
frame. All the evolution is in the nucleus: The scattering amplitude is a left-moving 
traveling wave solution of the BK/FKPP equation. In this frame, the evolution is 
fully deterministic: This means that the measured amplitude is merely the function 
T (y, x′ = x). Middle: Center-of-mass frame. The evolution is equally shared between 
the dipole and the nucleus. The rapidity evolution replaces the initial elementary 
dipole at position x by a stochastic density nΔ,δ(y/2, x′ − x). The measured ampli-
tude would be the convolution of n and T , averaged over the realizations of the 
dipole evolution. Bottom: Nucleus restframe. The nucleus remains in its initial state. 
In our idealized model for the nucleus (Eq. (6)), the measured amplitude would 
simply correspond to the fraction of realizations for which x + X̄ y + Δ + δ is posi-
tive, namely for which there is an overlap between n and T . (In the particular event 
represented here, there is no such overlap.)

S(y, x) =
〈∏

x′

[
S
(

y − y0, x′)]n(y0,x′−x)dx′〉
, (4)

with the convention 00 = 1. The average is taken over the realiza-
tions of the evolution of the dipole, namely, in a particle physics 
language, over events.

If y0 = 0, the above equality is trivial, since we are back to the 
restframe of the dipole in which n(0, x′) = δx′,0 (see Fig. 1, top). 
Let us go instead to the restframe of the nucleus by setting y0 = y
(see Fig. 1, bottom). S(0, x′) which appears in the r.h.s. of Eq. (4)
represents the scattering matrix element of a dipole at position 
x′ off a large nucleus at zero rapidity, and this is given by the 
McLerran–Venugopalan model [19–21]. In r space, it reads

S(y = 0, r) = SMV(r) = e
− r2 Q 2

MV
4 log 1

rΛQCD . (5)

Q MV is the saturation momentum of the nucleus. (It depends on 
the number of nucleons and on the parton density in each of 
them.) SMV is rapidly going to 1 as soon as |r| becomes smaller 
than 2/Q MV, and is 0 for |r| � 2/Q MV. For small r, neglect-
ing the subleading log factor and some uninteresting constants, 
1 − SMV(r) ∼ r2 Q 2

MV, which is proportional to ex in logarithmic 
variables. This is steeper than eγ0x and thus, according to the the-
ory of traveling waves (see Section 2.1), it should not make a 
significant difference to replace SMV by a step function in the x
variable in the context of QCD where γ0 < 1. Thus we shall opt for 
the following simplified form for S:

S(y = 0, x) = θ(−x), (6)

where we have set the scale r0 of the transverse sizes to twice 
the inverse saturation momentum of the nucleus: r0 = 2/Q MV. The 
physical meaning of Eqs. (5), (6) is obvious: Dipoles which have 
x > 0, namely sizes |r| larger than the inverse saturation scale 
of the nucleus are absorbed, while the nucleus is transparent to 
dipoles of smaller sizes. Inserting Eq. (6) into Eq. (4),

S(y, x) =
〈∏

x′

[
θ
(−x′)]n(y,x′−x)dx′〉

. (7)

This equation literally means that

S(y, x) =
⎛
⎜⎝

probability that all dipoles sit at a position

x′ < 0 after evolution of a single dipole

initially at position x for y units of rapidity

⎞
⎟⎠ . (8)

Hence

P (y, X) ≡ ∂ S(y,−X)

∂ X
(9)

is the distribution of the position X of the rightmost particle, 
namely of the logarithmic size of the largest dipole, in a BRW 
which starts with a dipole at x = 0, and which undergoes evolu-
tion for y units of rapidity.

We now move to the center-of-mass frame in which the rapid-
ity is equally shared between the dipole and the nucleus: y0 = y/2
(see Fig. 1, middle). We may rewrite S in Eq. (4) in the following 
way:

S(y, x) =
〈
exp

[∫
dx′ n

(
y/2, x′ − x

)
log S

(
y/2, x′)]〉

. (10)

We observe that the values of S which effectively contribute to the 
r.h.s. are S ∼ 1. Therefore, we can expand log S ≡ log(1 − T ) ∼ −T
in the integrand. We arrive at the expression

S(y, x) = 1 − T (y, x)

=
〈
exp

[
−

∫
dx′ n

(
y/2, x′ − x

)
T
(

y/2, x′)]〉
. (11)

Both in the right-hand and left-hand sides of this equation, S =
1 − T is a solution to the FKPP equation (3) with the initial con-
dition (6), namely a left-moving traveling wave. Here again, the 
average 〈· · ·〉 is on the realizations of the dipole evolution, which 
generates a stochastic density of dipoles n(y/2, x′ − x) at rapidity 
y/2 starting with a single dipole at position x, while T represents 
the nucleus whose evolution is assumed to be deterministic.

In the region of interest T � 1 and for large enough rapidities, 
this solution reads [22]

T (y, x) = CT ( X̃ y − x)exp

[
x − X̃ y − (x − X̃ y)

2

4y

]
θ( X̃ y − x),

(12)

where
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X̃ y = −2y + 3

2
log y (13)

is, up to a constant of order 1, the large-y expression for the posi-
tion of the FKPP front, namely the smallest x for which T is larger 
than say 1

2 . CT is a constant of order 1. Eq. (12) is valid for y � 1

and X̃ y −2
√

y < x < X̃ y . We see from Eq. (13) (see also Fig. 1) that 
the front is left-moving on the x-axis: indeed, smaller values of x
correspond to smaller dipoles, and the saturation momentum must 
indeed move to larger momenta as rapidity increases.

We now need a model for the distribution of the dipole size 
density n. This is the subject of the next section.

3. Dipole number density and its fluctuations

3.1. Picture of the dipole evolution and stochastic model for n

We start the dipole branching–diffusion process with a single 
dipole at x = 0.

For small y ∼ 1, the density of dipoles at position x and rapid-
ity y, n(y, x), is very noisy due to the small number of objects. At 
large y � 1, a smooth distribution builds up around x = 0 since 
the typical number of dipoles increases exponentially with y, al-
lowing for a mean-field approximation for the evolution. The tails 
at large |x| ∼ 2y where the particle density is low remain noisy 
instead, but the effect of this statistical noise may be taken into 
account in a first approximation by the so-called Brunet–Derrida 
cutoff [22], which is a moving absorptive boundary. It is actually 
the rightmost tail of the distribution of dipoles which is relevant 
to the computation of the scattering amplitude, see Fig. 1. The so-
lution of the deterministic evolution of the dipoles with this cutoff 
enforcing discreteness reads, near the rightmost boundary (located 
at position x = X̄ y ∼ +2y),

n̄(y, x) = Cn̄( X̄ y − x)exp

[
X̄ y − x − (x − X̄ y)

2

4y

]
θ( X̄ y − x),

(14)

where up to a constant of order one, the position of the boundary 
is

X̄ y = 2y − 3

2
log y. (15)

Eq. (14) is valid for X̄ y − 2
√

y < x < X̄ y .
Note that the y-dependence of X̄ y is precisely the same as for 

the position of the FKPP traveling wave, see the expression of − X̃ y
in Eq. (13). Technically, this is clear since in order to get these 
expressions, in both cases, one puts an absorptive boundary on a 
linear branching–diffusion equation, see e.g. Ref. [14]. More deeply, 
this identity between X̄ y and − X̃ y actually is a duality of the FKPP 
equation, see the mathematical work of Ref. [23] and the recent 
related work of ours [24].

We shall now propose a model for the fluctuations that deform 
this solution. They may occur in two different places. First, as al-
ready mentioned, in the early stages of the evolution, the whole 
system is stochastic since the overall number of dipoles is small. 
After further rapidity evolution, the early fluctuations essentially 
result in fluctuations of the position of the boundary X̄ of the 
deterministic form (14) by some random Δ, where Δ has an a 
priori rapidity-dependent distribution, which we shall denote by 
p f (y, Δ). We call these fluctuations “front fluctuations”. At rapidi-
ties y � 1, when the total number of dipoles is large, fluctuations 
still occur near the tip of the distribution. These tip fluctuations 
consist in sending randomly a small number of particles ahead of 
the deterministic front by some distance δ, which has the distri-
bution pt(δ) to be determined later. The simplest model for the 
shape of these fluctuations is a Dirac distribution δD with support 
at position X̄ y +Δ +δ. We call these fluctuations “tip fluctuations”.

We write

nΔ,δ(y, x) = n̄(y, x − Δ) + C × δD(x − X̄ y − Δ − δ)

with probability
[

p f (y,Δ)dΔ
][

pt(δ)dδ
]
, (16)

where C is a constant of order 1 which encodes our very ignorance 
of the detailed shape of the forward fluctuations. A sketch of the 
evolution of n in this model is represented in Fig. 1 (middle and 
bottom).

We refer the reader to the recent paper of Ref. [24] for a more 
complete discussion of the fluctuations in a general branching ran-
dom walk.

3.2. Constraining the distributions of fluctuations

Interestingly enough, we can actually to a large extent “guess” 
the distributions p f and pt of the two kinds of fluctuations we 
have identified. To this aim, we take a generating function of the 
moments of P defined in Eq. (9), namely of the moments of the 
distribution of the position X of the rightmost particle in the BRW:

〈
eλX 〉

y =
+∞∫

−∞
dXeλX P (y, X) =

+∞∫
−∞

dXeλX ∂ S(y,−X)

∂ X
. (17)

The y-index for the expectation value is meant to keep track of 
the fact that X has a y-dependent probability distribution.

We then go to the restframe of the nucleus in which S is re-
lated to n through Eq. (7). Using the model (16) for n, we get

S(y, x) = 〈
θ(−x − X̄ y − Δ − δ)

〉
y

=
∫

dΔ p f (y,Δ)

∫
dδ pt(δ) θ(−x − X̄ y − Δ − δ). (18)

Inserting Eq. (18) into Eq. (17), a straightforward calculation leads 
to the following relation between generating functions of centered 
moments:

〈
eλ(X−〈X〉y)

〉
y = 〈

eλ(Δ−〈Δ〉y)
〉
y

〈
eλ(δ−〈δ〉)〉. (19)

As always, the averages are over realizations of the dipole evolu-
tion, and the index y keeps track of the rapidity at which the mean 
is taken.

Of course, the factorization in the r.h.s. of Eq. (19) just follows 
from the assumption that the front fluctuations Δ and the tip fluc-
tuations δ are uncorrelated, which should be true for large enough 
values of the rapidity.

We now move to the center-of-mass frame, in which S is given 
by Eq. (11). We insert Eq. (12) and the model (16) into (11), 
and perform the integral over x′ . Keeping the leading term when 
y � 1, we find for this integral∫

dx′nΔ,δ

(
y/2, x′ − x

)
T
(

y/2, x′)


 Cn̄CT

√
π

4
y3/2e X̄ y/2− X̃ y/2+x+Δ. (20)

There is no δ dependence in the r.h.s., since the tip fluctuations 
would bring a negligible contribution to the integral over x′ . Using 
the expressions (13) and (15) for X̃ and X̄ respectively, S may be 
written as

S(y, x) = 〈
exp

(−αe X̄ y+x+Δ
)〉

, (21)
y
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Fig. 2. Schematic picture of a realization of the density of dipoles at rapidity y starting with a dipole at position x = 0. X̄ y is the position of the right discreteness cutoff, 
X̄ y − log N is the point where nonlinear saturation effects start to be significant, and thus the location of the right saturation boundary. The analytical expressions (31), (32)
are valid within these boundaries.
with α a constant of order 1 which includes the constants in 
Eq. (20) and the unknown additive constants in X̄ y . We take again 
the moments of P starting from Eq. (21). We find
〈
eλ(X−〈X〉y)

〉
y = �(1 − λ)e−γE λ

〈
eλ(Δ−〈Δ〉y)

〉
y . (22)

Identifying Eq. (22) to Eq. (19), we can get the generating function 
of the tip fluctuations:
〈
eλ(δ−〈δ〉)〉 = �(1 − λ)e−γE λ. (23)

Hence the probability distribution of δ is a Gumbel distribution:

pt(δ) = c exp
(−δ − ce−δ

)
, (24)

where c is a constant of order 1, which may easily be expressed 
with the help of 〈δ〉.

Incidentally, it seems that we have recovered the Lalley and
Sellke theorem [25] for the fluctuations of the boundary of a 
branching random walk, provided that Δ be identified to the ran-
dom variable log Z y , with

Z y =
∑

i

[
2y − xi(y)

]
exi(y)−2y, (25)

where xi(y) is the position of particle i in a particular realization 
of the evolution at rapidity y, and the sum goes over the particles 
present at this same rapidity.

Finally, in the restframe of the dipole, S(y, −X) is simply re-
lated to the solution of the FKPP equation. We do not have a full 
analytic form for this solution, however S(y, −X) can be deduced 
from Eq. (12) for X + X̃ y � 1 and large y. This turns out to be 
enough to enable us to evaluate the generating function of the 
moments of X in the limit λ → 1 in which the integral over X
in Eq. (17) is dominated by large values of X . Integrating Eq. (17)
by parts for 0 < λ < 1,

〈
eλX 〉

y = λ

+∞∫
−∞

dXeλX T (y,−X). (26)

At large rapidities and keeping the leading singularity when λ → 1,

〈
eλ(X+ X̃ y)

〉
y λ→1,y→+∞−−−−−−−−→ CT

(1 − λ)2
. (27)

Noticing that X̃ y is, up to a sign and to a constant, equal to the 
average position of the rightmost particle in the BRW, namely 
X̃ y = −〈X〉y + const, we may identify this expression to Eq. (22). 
We see that the generating function of the moments of Δ must 
have a simple pole at λ = 1, which means that

p f (y,Δ) ∼
1�Δ�√

y
e−Δ. (28)
We expect finite-y corrections: The exponential tail must be cut 
off at a distance Δ ∼ √

y, but this limitation is irrelevant at large 
y since obviously, typical Δ are of order 1.

We further note that the identification of the S-matrix element 
in the dipole restframe with the same quantity in the nucleus 
restframe enables one to relate the shape of the traveling wave 
solution of the FKPP equation to the fluctuations occurring in the 
initial stages of the rapidity evolution of the dipoles, as seen from 
the equation

+∞∫
−∞

dX eλ(X−〈X〉y)

[
−∂T (y,−X)

∂ X

]

= �(1 − λ)e−γE λ〈eλ(Δ−〈Δ〉y)〉y . (29)

The tip fluctuations are represented by the factor �(1 − λ) in the 
r.h.s. (e−γE λ is a mere normalization factor). This equation says that 
the shape of a BK/FKPP traveling wave near the unitarity region is 
directly related to the front fluctuations, that is, to the initial stages 
of the evolution.

4. Including saturation in the dipole evolution: predictions for 
amplitudes at moderate rapidities

So far, we have treated the evolution of the dipole as a branch-
ing process (with diffusion in the transverse momentum) with rate 
independent of the dipole density. No nonlinear mechanism was 
included in the evolution. (The nonlinearity in the BK equation 
may be seen as due to the independent multiple scatterings of the 
set of dipoles present in the wavefunction at rapidity y.)

There are however convincing arguments to expect that at 
higher energies, the growth of the gluon/dipole number density 
must slow down. This should happen in the phase space re-
gions where the number density of dipoles becomes as large as 
N ≡ 1/α2

s . At a rapidity y � log 1/α2
s , the dipole density should 

look like the sketch in Fig. 2. We shall call it ns , and discuss its an-
alytical properties before we use it to compute the dipole–nucleus 
and dipole–dipole scattering amplitudes.

4.1. Dipole number density with saturation

In practice, saturation can be implemented in the form of mov-
ing absorptive boundaries making sure that n ≤ N at all rapidities 
[26]. These “unitarity” boundaries turn out to be located at a dis-
tance ± log N of the discreteness boundaries.

The effect of saturation in the dipole evolution is to modify the 
shape of the dipole density, and the y-dependence of the position 
of the discreteness cutoff [22]. Starting with a single dipole at po-
sition 0, the position of the right discreteness cutoff now reads
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X̄ y =
⎧⎨
⎩

2y − 3
2 log y for y � log2 N,

(2 − π2

log2 N
)y − 3 log log N for y � log2 N,

(30)

up to constants of order one. The left cutoff is at position − X̄ y . As 
for the shape of the particle density, in a first approximation, for 
y � log2 N , n̄ in Eq. (14) is replaced by [22]

n̄s+(y, x) = Cn̄s
log N

π

[
sin

π( X̄ y − x)

log N

]
exp( X̄ y − x)

× θ( X̄ y − log N < x < X̄ y). (31)

The θ function indicates that this formula is valid within a distance 
log N of the right discreteness boundary.

We also write the expression of the particle density near the 
left discreteness boundary:

n̄s−(y, x) = Cn̄s
log N

π

[
sin

π( X̄ y + x)

log N

]
exp( X̄ y + x)

× θ(− X̄ y < x < − X̄ y + log N). (32)

These smooth functions can be promoted to stochastic functions 
ns±

Δ,δ by adding the front and tip fluctuations discussed before, as 
in Eq. (16). It is enough to substitute n̄ by n̄s± therein:

ns+
Δ+,δ+(y, x) = n̄s+(

y, x − Δ+) + C × δD
(
x − X̄ y − Δ+ − δ+)

with probability
[

p f
(

y,Δ+)
dΔ+][

pt
(
δ+)

dδ+]
,

ns−
Δ−,δ−(y, x) = n̄s−(

y, x + Δ−) + C × δD
(
x + X̄ y + Δ− + δ−)

with probability
[

p f
(

y,Δ−)
dΔ−][

pt
(
δ−)

dδ−]
. (33)

A schematic picture of these functions is represented in Fig. 2.
We shall use this model to compute the scattering amplitudes 

TdA of a dipole with a nucleus, and Tdd of two dipoles, including 
saturation in the wavefunction of the dipole(s).

4.2. Dipole–nucleus scattering

The saturation momentum of a large nucleus is easily deduced 
from Eq. (30). The simplest is to go to the nucleus restframe, and 
to recognize that up to an additive numerical constant of order 
one, the average logarithm of the squared saturation scale is given 
by X̄ .

We have so far worked with the FKPP equation. It is quite 
straightforward to generalize the universal results obtained for 
that equation to a generic branching–diffusion process, see e.g. 
Ref. [14]. We denote by χ(γ ) the eigenvalue of the dipole ker-
nel corresponding to the eigenfunction |r|2γ , and by γ0 the solu-
tion of the equation χ(γ0) = γ0χ

′(γ0) (which numerically gives 
γ0 = 0.63 · · ·) [10,27]. With this kernel and switching to the vari-
ables relevant to QCD, we find the following expression for the 
saturation scale of the nucleus:

log
Q 2

s,A(y)

Q 2
MV

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

v0ᾱy − 3
2γ0

log(ᾱy)

for ᾱy � 1
2γ 2

0 χ ′′(γ0)
log2 1

α2
s

vBDᾱy − 3
γ0

log log 1
α2

s

for ᾱy � 1
2γ 2

0 χ ′′(γ0)
log2 1

α2
s

(34)

where v0 is the asymptotic velocity of the BK traveling wave, and 
vBD includes the effect of the Brunet–Derrida discreteness cut-
off [22,26]:

v0 = χ ′(γ0), vBD = v0 − π2γ0χ
′′(γ0)

2 log2 1
2

. (35)

αs
Eq. (34) corrects Eq. (26) in Ref. [28].
The shape of the front is of course given by Eq. (12), which 

exhibits the well-known form of geometric scaling [10]:

TdA(y, r) ∼ log
1

r2 Q 2
s,A(y)

[
r2 Q 2

s,A(y)
]γ0

, (36)

provided that |r Q s,A(y)| � 1 and log2(r2 Q 2
s,A(y)) � 2χ ′′(γ0)ᾱy.

One could wonder what happens if one chooses to view the 
scattering in another frame, e.g. in the restframe of the dipole. 
Then, at rapidities parametrically larger than log2(1/α2

s ), the clas-
sical approximation breaks down, and the FKPP evolution must be 
replaced by a stochastic evolution. The main effect of stochasticity 
in that equation can be represented by an appropriate Brunet–
Derrida cutoff [22].

4.3. Dipole–dipole scattering in the saturation regime

We now consider the dipole–dipole case. We recall that gener-
ically, the scattering amplitude of a dipole of size r off a dipole of 
size r′ at zero rapidity is approximately local in impact parameter 
and essentially reads, for two dipoles at the same impact parame-
ter,

T el
dd

(
r, r′) ∼ α2

s
r2
<

r2
>

(37)

where r< = min(|r|, |r′|) and r> = max(|r|, |r′|).
Here we shall take as our initial configuration a dipole at po-

sition x and another one at position 0. Obviously, the scattering 
amplitude of these elementary dipoles reads

T el
dd(x) ∼ α2

s e−|x| (38)

and since this is an exponential steeper than e−γ0 |x| , as in the case 
of the McLerran–Venugopalan model discussed above, its width is 
irrelevant to the subsequent evolution and thus the initial condi-
tion for Tdd may be approximated by

Tdd(y = 0, x) = T el
dd(x) ∼ α2

s δx,0 = 1

N
δD(x). (39)

After rapidity evolution, assuming that the dipoles scatter inde-
pendently of each other, by analogy with Eq. (11), we may write 
the amplitude in a general frame as (see Fig. 3 for a sketch in the 
center-of-mass frame y0 = y/2)

Sdd(y, x)

= 1 − Tdd(y, x)

=
〈
exp

[
−
∫

dx′ dx′′ ns(y0, x′ − x
)
T el

dd

(
x′ − x′′)ns(y − y0, x′′)]〉

.

(40)

Assuming without loss of generality that x < 0, looking again at 
Fig. 3, we replace the saturated dipole densities ns in the expo-
nential by their appropriate form from the model in Eq. (33), T el

dd
by its expression in Eq. (39), and we express explicitly the aver-
age over realizations in terms of the probability distribution of the 
fluctuations given in Eq. (33). All in all, we get

Tdd(y, x)

=
∫

dΔ+ p f
(
Δ+)∫

dδ+ pt
(
δ+)

×
∫

dΔ− p f
(
Δ−)∫

dδ− pt
(
δ−)
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Fig. 3. Schematic picture of one dipole–dipole scattering event in the center-of-mass frame at rapidity y, with saturation included in the dipole evolution. What is actually 
represented is the density of dipoles in the two colliding objects after evolution over y/2 steps of rapidity for each object. The scattering amplitude is given in Eqs. (40), (41)
and involves in particular an average over the realizations.
×
{

1 − exp

[
− 1

N

∫
dx′ ns+

Δ+,δ+
(

y0, x′ − x
)

× ns−
Δ−,δ−

(
y − y0, x′)]}

. (41)

In the restframe of the dipole sitting at 0, for T much smaller than 
1 but significantly larger than α2

s = 1/N , the above formula sim-
plifies. The scattering amplitude is just the shape of the particle 
number density multiplied by the elementary dipole–dipole am-
plitude, averaged over the fluctuations of the evolved dipole:

Tdd(y, x) =
∫

dΔ p f (y,Δ)

∫
dδ pt(δ)

[
1

N
ns+

Δ,δ(y,−x)

]
. (42)

The tip fluctuations are irrelevant since we are looking for the scal-
ing form of T in the region T � 1/N . They can be neglected there.

From the exponential form (28) of the probability distribution 
of the front fluctuations Δ and using Eq. (33), we get

Tdd(y, x) ∼ (x + X̄ y − log N)2ex+ X̄ y−log N . (43)

This is a new form of geometric scaling, valid in the saturation 
regime at moderate rapidities, namely for log2 N � y � log3 N , 
and this scaling is valid for x satisfying |x + X̄ y − log N| � log N .

It is instructive to also go to the center-of-mass frame (see 
Fig. 3). We go back to Eq. (41), set y0 = y/2 and expand the ex-
ponential. Again, the tip fluctuations are negligible, but the front 
fluctuations of both evolved dipoles are important:

Tdd(y, x) = 1

N

∫
dΔ+dΔ− p f

(
Δ+)

p f
(
Δ−)

×
∫

dx′ n̄s+(
y/2, x′ − x − Δ+)

n̄s−(
y/2, x′ + Δ−)

.

(44)

Substituting n̄s± by Eqs. (31), (32), performing the integration and 
expanding the result for |x + X̄ y − log N| � log N , we recover 
Eq. (43).

Finally, we take over Eq. (43) to QCD, by substituting X̄ y by 
Eq. (30) and switching to the variables relevant for QCD:

Tdd(y, r) ∼ log2 1

r2 Q 2
s (y)

[
r2 Q 2

s (y)
]γ0

, (45)

where the dipole saturation scale reads, for ᾱy � 1
2γ 2

0 χ ′′(γ0)
log2 1

α2
s

,

log
(
r2

0 Q 2
s (y)

) = vBDᾱy − 1

γ0
log

1

α2
s

− 3

γ0
log log

1

α2
s
. (46)

vBD was defined in Eq. (35).
The difference between (45) and the usual geometric scal-
ing (36) is with the log which enters with a power 2 in the former. 
This is directly related to the front fluctuations which build up in 
the early stages of the dipole evolution.

5. Summary and outlook

In this paper, we have emphasized the role of the parton num-
ber fluctuations especially in the initial stages of the rapidity evo-
lution. The importance of rare fluctuations was argued in Ref. [29]
in the context of the BK equation, but we have now a more com-
plete and more quantitative understanding of the very nature of 
these fluctuations.

We have derived from the stochastic picture new properties for 
the scattering amplitudes when the total rapidity is parametrically 
less than log3(1/α2

s ), in the two following cases:

(i) Dipole–nucleus scattering: The amplitude exhibits the usual ge-
ometric scaling form (36), the saturation scale being given in 
Eq. (34),

(ii) Dipole–dipole scattering: The amplitude exhibits a modified ge-
ometric scaling form, given by Eq. (45), with the saturation 
scale (46). This is the main new result of this paper.

To complete the picture, let us recall that the regime of ra-
pidities larger than log3(1/α2

s ) was studied before [13,30,31]: The 
imprint of the initial stages of the evolution on the amplitude is 
washed out by fluctuations occurring at a rate 1/ log3(1/α2

s ), and 
consequently, geometric scaling is replaced by so-called “diffusive 
scaling”.

For the future, it would be interesting to test numerically espe-
cially the new form of geometric scaling we have found.
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