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A b s t r a c t - - I n  this paper, a theoretical framework for the least squares finite-element approxi- 
mation of a fractional order differential equation is presented. Mapping properties for fractional 
dimensional operators on suitable fractional dimensional spaces are established. Using these proper- 
ties existence and uniqueness of the least squares approximation is proven. Optimal error estimates 
are proven for piecewise linear trial elements. Numerical results are included which confirm the 
theoretical results. @ 2004 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - L e a s t  squares finite-element methods, Fractional differential operators, Fractional 
diffusion equations. 

1. I N T R O D U C T I O N  

In this paper, we investigate the least squares approximation to the following two-point  boundary  

value problem containing a fractional differential operator: 

dxO~ k = f ,  in [a, b], 

¢(a) = ¢0, (1) 

¢(b) = ¢1, 

where 0 < a _< 1, and ~ denotes a fractional order differential operator in the finite domain 

[a, b]. Physical models containing fractional differential operators have recently received renewed 

at tent ion from scientists. The interest in such models is mainly  due to the observation of power- 

law pat terns  in physical systems, in part icular  in con taminan t  t ranspor t  of ground-water  flow [1]. 

Using a probabilistic argument,  one can show tha t  a subdiffusive power law pa t te rn  leads to a 

partial  differential equat ion containing fractional differential operators. 

The diffusion equat ion may be derived by considering a continuous t ime random walk, governed 

by a j ump  probabil i ty  density function whose first and second moments  in space and t ime exist and 

are finite. However, the diffusion which occurs in complex systems may violate the assumption 
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that  the mean waiting time between two successive jump events is finite and/or the assumption 
that  the variance of the jump length probability density is finite [2-5]. In this case, a fractional 
order diffusion equation results, i.e., 

0 ~ 1 ¢  0 ~ 2 ¢  
- -  - K (2)  

w h e r e 0 < v l _ < l  a n d l < v 2 < _ 2 .  
To date, all the analysis of fractional differential equations has been for the infinite domain, 

using the Fourier transform [1,6]. The inclusion of boundary conditions in fractional differen- 
tial equations introduces additional difficulties. In this paper, we study the approximation of 
fractional differential equations on finite domains using variational methods. In [7,8], several 
definitions are given for a fractional differential operator on a finite domain. Herein, we con- 
sider the Riemann-Liouville fractional differential operator. Summarized in the Appendix are 
the definitions of the Riemann-Liouville operators, as well as several results used in this analysis. 

The paper is organized as follows. First, we provide a derivation of the fractional advection- 
dispersion equation. Second, a fractional derivative space is introduced, and results are proven 
which aid in our analysis. Third, a least squares variational form for (1) is derived, and existence 
and uniqueness results are proven. Fourth, optimal error estimates are derived for the variational 
form for piecewise linear trial elements. Finally, numerical results are given which support the 
theoretical optimal error estimates. 

2. P H Y S I C A L  M O D E L  

Let ¢(x, t) represent the concentration of a solute at a point x at t ime t in an arbitrary bounded 
connected set ~ C ~d. The conservation of mass equation may be defined as 

0¢  = - V .  F + / ,  in ~, (3) 
Ot 

where F is the mass flux and f denotes a source term. The mass flux term can be decomposed 

into 

F ---- Fa q- Fd, (4) 

where Fa denotes the flux from advection, Fd from dispersion. An equation for advective flux is 

given by 
Fa = Cv, (5) 

where v is the (known) velocity of the fluid. 
The advection-dispersion equation results when Fick's first law of diffusion is used to model 

the dispersive term, i.e., 
F~ = - k V ¢ .  (6) 

However, in the application of solute transport  in highly heterogeneous porous media, dispersive 
flux does not appear to follow Fick's first law [1]. The argument for a fractional dispersive flux 
was given in [2] and interpreted in terms of a nonlocal superposition principle in [9], and in terms 
of a probabilistic argument in [10]. Similar to equation (20) in [2], the jth component of the 

dispersive flux can be written as 

This equation may be interpreted as stating that  the mass flux of a particle is related to the 
negative gradient via a combination of the left and right fractional integrals, where p + q = 1, 
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and k is the diffusion coefficient. Equat ion (7) is physically interpreted as a Fick's  law for 
concentrat ions of particles with a strong nonlocal interaction. 

Combining (3) and (7), the d-dimensional fractional advection-dispersion equat ion (FADE) 
may  be s ta ted as 

0¢ V~ O--{ = - V .  (v¢)  + . (kV¢)  + f ,  in fl, (8) 

where the components  of V ~ are a linear combinat ion of the left and right Riemann-Liouvil le 
fractional differential operators ,  and 0 < a _< 1, 

( w ) j  D "  - = P - ~  xj qzjD¢~. (9) 

In the case ~ = 1, (8) reduces to the t radi t ional  advection dispersion equation. In a more general 
version of (8), k is replaced by a symmetr ic  positive definite matr ix .  

The  derivation of (8) in te rms of a continuous t ime random walk results when representing the 
jump length probabil i ty  density function as a product  of d univariate L6vy densities. Another  
version of the FADE as presented in [11] relies on viewing the j u m p  length p.d.f, as a mult ivar ia te  
L~vy density. The  FADE has been studied in one dimension [1], and in three dimensions [6], over 
infinite domains using Fourier t ransform techniques. 

3.  F R A C T I O N A L  D E R I V A T I V E  S P A C E S  

In order to perform a finite-element analysis for fractional differential equations,  it is necessary 
to construct  appropr ia te  function spaces. In this section, we construct  and analyze a set of spaces 
J~ (t2), which depend on the square integrabili ty of the Riemann-Liouvil le  fractional derivative of 
a function. For the remainder  of this paper,  we let ~ = [0, b] and denote for ~ positive, negative, 
or zero, 

~ : = o D L  
79 ~* := =D~, (10) 

where oD~ and xD ~b represent  the left and right fractional differential opera tors  defined in (78) 
and (79), respectively. 

DEFINITION 1. For s = m + c~, where m is a nonnegative integer and 0 <_ a < 1, define 

Js(t2) := {u e :D u, Z) *u Hm(t2)}. (11) 

We associate with J ' ( f l )  the norm I1" II,, and seminorm 1. Is, given by 

~\ 1/2 

II {l  := ({l lI  + II ' llo) , lul. := IIZ)%ilo. (12) 

For s a nonnegative integer, the js([~) spaces coincide with the Sobolev spaces H~(f/)  [12,13]. 
However, for s noninteger, the spaces JS(fl)  and the fractional order Sobolev spaces HS(f~) are 
not equivalent. For example,  for t2 = [0, b], constant  functions are in HS(9 )  for all s, yet constant  
functions are not in Y*(fl) for 1/2 < s < 1. We will prove equivalence of J~(t2) and H~(f~) for 
the case tha t  9 = JR. 

DEFINITION 2. Define the space J~(~)  as the closure o f  C ~ ( Q )  under the  ys  norm. 

LEMMA 1. For s >_ O, the  spaces H~(R)  and JS(R) are equivalent. 

PROOF. Let  u E L2(R), and £ denote the Fourier t ransform ofu .  For s = m+c~ as in Definition 1, 
note tha t  for u E H~(R) then u E Hm(R) .  Similarly, for u E J~(]R), then  u E H '~(N) .  From [13], 

u C HS(R) ¢* (1 + ]wl2)S/2 ~ C L2(R). 
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Since u E L 2 (•) we have 

(1 + iwl2)~/2~ e L2(R) ~ (iw)~5, (-iw)~£t e Lz(R) 

_~D~u,  x D L u  e L2(R), 

using (88). From these observations, and the fact tha t  u E Hm(~) ,  we have the equivalence of 
H~(R) and J~(~) .  

Also, we have tha t  the norms I1" ]IHs(R) and If" IIJS(R) are equivalent since 

]1~11.8(, / = (1 + I~l~)~/~a L~(,) ~ I1(1 + I~ l~ )a l lL~(~ /~  li~lb~(~). 

We apply a variational formulation over the J~ (~t) spaces, which are not in general equivalent 
to the H~(~t) spaces. Therefore, we develop properties of the J~ (12) spaces which will be useful 
in the later analysis in Sections 4 and 5. 

LEMMA 2. Let s > O. Then u C LP(~) satisfies 

b ~ 
II:D-~'~II,~*(,~) -< r(~ + 1 - - - - ~  II'~IIL'(~) (13) 

PP~OOF. Recall tha t  for convolution integrals of functions in the L p spaces [1], we have that  

IIw * vllL,, _< ]I'-"IIL~ II'-'IIL,'. (14) 
Noting tha t  any fractional order integral operator  can be wri t ten as 

xS--1 
~ - ~  = ~ , u(x), (15) 

substituting (15) into (14) yields (13). i 

LEMMA 3. Let s > O. The following mapping properties hold: 

(i) /:)~: J~(f~) -* L2(Ft) is a bounded//near operator; 
(ii) /9-~ : L2(~) --* J~(~)  is a bounded linear operator. 

PROOF. Let  s = m + c~ as in Definition 1. Proper ty  (i) follows directly from the definition 
of J~(gt), as 

_< + 

(ii) From the definition of J~(£t), 

From (81) and the semigroup proper ty  (80), we have that ,  for u E L2(gt), I 1 ~ - ~ 1 1 0 ~  = II~ll0 2, 
and 

l lD-'ull~ -- E IIDkZ '-~',11~ 
k=0 

= ~ IIDk:D-'~Z'k-~'~II~ (17) 
k=O 

-- EII :Dk-~'-'ll~ • 
k=0 

Using (13), there exist constants Ck, k : 0 , . . . ,  m, such tha t  

II:D,~-,,~II~ ___ e,~U,~tlo ~. (18) 
Therefore, combining (18), (17), and (16) we obtain the bound 

II~,-~ull~ < 1 + c~j I1~11o. a 
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LEMMA 4. For u E J~(~t),  we  have 
D-SDSu = u. (19) 

PaOOF. By definition of Y~(~), there exists a sequence {¢n}n~_--i C C ~ ( ~ )  such that 

l i r a  ] l u  - ¢,-,11., = o. (20) 

Applying the triangle inequality, we have 

I I~ - -S~Su - -U l I s  < II~--s~)s(u--~)n) l ls-~-[ l~)--s~S~)n--(~nl ls~-11~gn--Ulls  . (21) 

Since ¢~ C C ~ ( ~ ) ,  Cn satisfies the hypotheses of A.7. Therefore, from (84),(82) we have 
tl~-s©sCn - ¢~110 = 0. By the mapping properties in Lemma 3, 

u -  -< e l l l ' ~ -  ¢,~11.,. 

Thus, 

IJ -< Culls 
Taking the limit as n --* c¢, (22) implies 

I I ~ - ~ V ~ u  - ul] ~ = 0. (22) | 

COROLLARY 1. (Fract ional  Version o f  Poincare'-Friedrichs.)  For ali u ~ J~(~2), 

b ~ 
II'~IIL=(~) < r(~ + 1-------~ I IZ '~I IL"<~) • (23) 

PROOF. Combining Lemmas 2 and 4, we have 

b ~ 
II llL (a) = ___ + I I ~ l l L ~ ( a )  | 

We can now establish a semigroup property for fractional differential operators. 

LEMMA 5. For s, t > 0 and u E j~+t(f~), we have 

DS+tu = DSDtu .  (24) 

PROOF. Let u C j~)+t(~) .  Then by Lemma 4, and the semigroup property for fractional inte- 

grals (80), 
U = ~)-s-t~:)s+t~t -~ ~)- t~)-s~)s+t~t .  

Applying :D~D t to both sides and using (81), 

~ s ~ t ~ ) - t ~ ) - s ~ ) s + t  u = ~)s~)t u,  

D 8+tu = D s D  tu. ! 

COROLLARY 2. For u C y~+t (~ ) ,  

b t 

I1~11~(~) -< r(t + 1----U IID~+~II'(~) (25) 

PROOF. Replacing u in (23) with ~Su and using (24) and Lemma 4, the stated result follows. | 

REMARK. All of the results in Lemmas 2-5, Corollaries 1 and 2 hold also for the right fractional 
differential operator D s*. 

We will now provide a result which shows adjoint properties of the left and right Riemann- 
Liouville differential operators to be used later in the analysis. We begin by showing properties 
for the fractional order integral operators as defined in (76) and (77). First, we note the adjoin| 
property of the left and right Riemann-Liouville fractional integral operator [8], which is 

(T~-~u,v)L2(a)  = (u ,D-S*V)L2(a)  , V u ,  v • L2(~t). (26) 

An important property of the ya (~) spaces which generalizes from the fractional order Sobolev 
spaces H~(~)  is that a function in Y~ is continuous provided that  c~ > 1/2. 
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LEMMA 6. Let  1/2 < a < 1, u E Ja(f~).  Then u is continuous on ~.  

PROOF. From Theorem 3.6 in [8], we have tha t  for all f e L2(~) ,  

[ D - ' > f ( x )  - : D - " f ( y )  I _< clx - yl"-~1211fllL~(r~). (27) 

As 79au E L2(fl), we apply (27) to obtain the continuity of the function D-aTPau on (L Anal- 
ogously, as :Da*u E L2(f~), we obtain tha t  the function D-~*D=*u is also a continuous function 
Oil ~=~. 

We complete the argument  using the following properties of the Riemann-Liouvil le  fractional 
order operators  [7] 

~)- -c~)"U(X)  = IZ(X) - -  C1 xc~- l ,  (28) 

~)--c~*~)c~*~/,(X) : ~(X) -- c2(b --  X) c~-1. (29) 

Combining (28) and (29) 

~-"~%(~) - v - " * ~ * ~ ( ~ )  = e ~ ( b  - x )  ~ - 1  - ~:"-~. 

As D-~Z)~u  and D-~*lg~*u are bo th  continuous on ~,  then  cl = c2 = 0. i 

LEMMA 7. Let  0 < a < 1, u C J~(f~). Then 

= o. 

PROOF. We consider two cases for a .  

CASE I.  0 < oz _< 1/2. 

Set f ( x )  = ~ a - l u ( x ) .  Note tha t  f e Hl(f~),  as f C L2(f~) by L e m m a  2 and D f  e L2(fl) by 
the assumption tha t  u E j a ( f l ) .  Therefore, f is continuous on ~.  

As u E L2(f~), there exists a sequence {¢n},~°°__ 1 C C~(f~)  such tha t  

lim l iu  - ¢ . [ I L 2 ( a )  ---- O. n--+o~ 
(30) 

Let t > 0. As f ( x )  is continuous, applying the mean value theorem, we have tha t  there exists ~2, 
0 < U _< t such tha t  

f (~ ) t  = f(x) dx. 

From the definition of f and ¢~, we obtain 

/o /0 < f ( ~ ) t  = ~D(a-1)¢n(X ) dx + 7:)("-l)(u(x) - ¢~(x))  dx. 

Using the Cauchy-Schwarz inequality, we bound the third t e rm in (31) as 

L t D ( " - a ) ( u ( x )  - Cn(x ) )dx  <_ []lNL~[O,t] 7%"-1)(u - ¢~) 5210:1 

= t 1/2 D(a- -1) (  u -- (~n) L2[0, t] 

< C l t (3 /2 - a )  ilU -- CnIIL2(~), from (13). 

(31) 

( 3 2 )  
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To bound the first term in (31), we use the mean value theorem and the continuity of ¢~, to 

obtain 

/o = ~ ( ~ ( ~ ) ) ~  (~ < d ~ ,  

o t x (1-~1 
= ¢~(~(~)r-TgT-4_~) dx 

t2--a 

= ¢ ~ ( ~ ) r ( a  - ~)' 

0 _< ~ ( z )  < x, 

O < T < t .  

(33) 

Combining (32) and (33), we obtain the bound 

t2--ot 
f(rl)t < 

¢ ~ ( r ) r (  3 _ ~) (34) 

Therefore, dividing through by t and taking the limit as t --+ 0, we obtain tha t  

If(O)l ~ elll~ - ¢~IIL~(~)- (35) 

[n view of (30), it follows that  f (0)  = D~=l~(~)ix=0 = 0 

CASE II .  1/2 < a < 1. 

By Lemma 6, u is continuous on ~. Therefore, we may apply a generalized mean value theorem 

to the integral 7)~-1u to obtain 

z l - - ~  _ ~ l - - a  

xl--~ 

~(xo)~r(2 _ ~ )  

0 _ < x 0 _ < x ,  

Therefore, taking the limit as x -~ O, we obtain the stated result. 

LEMMA 8. LetO<(~< I, ¢C HI(~), anduE ja(~). Then 

= (36) 

PROOF. From the definition of the Riemann-Liouville fractional differential operators,  (78),(79), 

('~)(1-°t)*~,'~°<u,) = (-DxObO~a, DoD(1-a),,tt). 

As ¢ E H~(~) ,  we can commute the differential operator  and the fractional integral operator  on 
the ¢ term. To see this, note tha t  under the change of variable w = { - x, we obtain 

- D ~ D ~ " ¢ ( x )  = - D  F(--~) ¢(~) d~ 

- -  D fb-x O3a--I 
- -  - -  ~0 r ( a )  ¢ ( x  + w )  dw.  

(37) 
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Using Leibniz's rule in (37), we obtain 

b - x  ¢Ma--I 
- D ~ D [ ~ ¢ ( x )  = F(a) ( -D¢(x  + w)) dw + 

= ~ D [ ~ ( - D ) ¢ ( z ) .  

Therefore, this result and (26) yields 

(b - x ) ~ - i  ¢(b) r(~) 

DCa - ua = 0, in [0, 1], 

lY*Ua = f ,  in [0, 1], 

¢~(0) = 0, Ca(l) = 0. 

PROBLEM lB.  For 0 < a < 1, find (¢b, ub) satisfying 

DCb -- ub = O, in [0, 1], 

7)~ub = O, in [0, 1], 

Cb(0) = ¢0, ¢b(1) = ¢1. 

The solution to Problem 1 is given by ¢ = Ca + Cb where 

Cb = ¢0 + (¢1 - ¢0)x". 

Therefore, we restrict our attention to the solution of Problem la. 
finite-element anMysis similar to that in [14,15]. 

(39) 

(40) 

We apply a least-squares 

Similarly, commuting the operators 0D~ -~ and D on the u term, we obtain 

( J (~D(1-~)*¢,/)~u) = ( - D ¢ , D o D ; l u )  + De, [oD~-lu(x)]x=o 

Finally, using Lemma 7 and (81), we obtain (36). | 

4 .  P R O B L E M  F O R M U L A T I O N  

We now apply the function spaces and operator properties developed in Section 3 to the solution 
of the following model problem. 

PROBLEM 1. For 0 < a < 1, f e L2[0, 1], find (¢,u) satisfying 

D e  - u = 0, in [0,  1] ,  

~D~u = f,  in [0, 1], (38) 

¢(0) = ¢0, ¢(1) = ¢1. 

Note that this formulation corresponds to the steady-state FADE with no advection terms, and 
p = l .  

Separating out the nonhomogeneous boundary conditions, the solution (¢, u) satisfying Prob- 
lem 1 can be decomposed into (Ca, ua) and (¢b, Ub) satisfying Problems la  and lb, respectively. 

PROBLEM 1A. For 0 < a < 1, f E L2[0, 1], find (¢a,Ua) satisfying 
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Let £ and ]2 denote 

Define the functional 

c := { ¢ 1 ¢  • gol(a)}, 
V := {v Iv • J~ (a )} .  

(41) 
(42) 

1 L L(¢,v)  := ~ {ID ¢ _  v12 ÷ tD~v_  f[2} dx, (43) 

which is to be minimized over all ¢ • E, v • ~;. Define the bilinear form B([., .], [., .]): [£ x ~;] x 
[£ × V] ~ 1¢ as 

[~b, v]) := L {(De - u) (D¢ - v) + (D"uD%)}  dx, B([¢, u], 

and the linear functional F(., .) : £ × V + ~ as 

F(¢ ,  v) := f a  f:D~v dx. 

Taking the first variation of L(¢, v), we have that the least squares solution (¢, u) of (43) satisfies 
the variational form 

B([¢, u], [¢, v]) = F (¢ ,  v), V (¢, v) • ~ × V. (44) 

Next we show that there exists a unique solution to (44). 

THEOREM 1. There exists a unique solution to (44) in the space £ x Y. 

PROOF. We verify that the bilinear form B([.,-], [-,-]) is continuous and coercive on (£ x V) x 
(E x V) with respect to the norm 

II¢,ullLxv = (llCll~ + Ilull~) 1/2. (45) 

Continuity follows from an application of Cauchy-Schwarz and the triangle inequality. 

B([¢, u], [~b, v]) = (DO - u, DO - v) + (D~u, 7)%) 

___ (HD¢llo + IMIo)(llD¢llo + [Ivllo) + IIZ~"ullo IIZ~vllo (46) 

<_ 3[I¢, ~llLxvll¢, vll~xv. 

In order to prove coercivity, we first note that from the definition of the bilinear form B, 

B([C,u], [¢,u])_> I ID¢-  u]l~, (47) 
B([¢, u], [¢, u]) _> [Iv%llo ~. (4s) 

Using the definition of the adjoint (79) and Lemmas 3 and 5, 

- D e  = D~*D(1-~)*¢ 

IID¢[Io _ cl ~ (1-~) ,¢  o' using (25). 

Thus, 
I I D ¢ -  ullo 2 = IIDOjlo 2 + 2 ( - D e ,  u) + Ilul# 

C 2 V (l-a)* : -~ 2 ( - D ¢ ,  u) + It.ll0 ~ (49) 

: C12 ~(1--a)*(~ : -~-2 (T)(1--(~)*¢, ~a~/,) jr_ [l~t][2 
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by Lemma 8. Combining (47)-(49), we obtain 

: 1 
1 + B([¢, u], [¢, u]) ___ c~ D(1-~)*¢ + 2 (7)(l-~)*¢,D~u) + c--~l ]lD~ull2o + [lull 2 

C1~)(1_a).4 1 2 
= + - D ~ u  +t lul lo  2 (50) 

Cl 0 

_> Ilull02. 
, ,  B([¢,u], [¢, u]) _> c~ll~ll0 ~ 

Then, from (47),(50), and the triangle inequality 

(1) 
1 + ~ v/B([4,u], [¢,u]) _> lID4 -u l lo  + Ilull0 _> IID411o, 

which, together with the Poincar6-Priedriehs lemma, implies 

B([4,u], [¢,u]) >_ e3ll4lll. (51) 

Combining (48), (50), (51) we obtain 

B([4, ~1, [4, u]) > c4114, ~llLxv. (52) 

Finally, by (46) and (52), B satisfies the hypotheses for the Lax-Milgram theorem from which 
existence and uniqueness of a solution to (44) immediately follow. | 

Note that B([., .], [., .]) defines an inner product on the space Z; x V. Thus, we can define an 
energy norm with respect to this inner product as 

Ill¢,~lll = (B([¢ ,  ~1, [4, ~])) 1/2. (ha) 

To compute an approximation (4h, Uh) to (4, u) satisfying (44), we introduce finite dimensional 
subspaces j~h C £, ~h C ~,~, and then seek 4h E /~h and Uh E ~h which satisfy the variational 
form 

B([4h,Ud, [~h,Vd) = F(¢h, Vh),  V(¢h,Vh) ~ Lh X Vh. (54) 

COROLLARY 3. There exists a unique solution (¢h, Uh) E f h X yh  satisfying (54). 

PROOF. As ~h N V h are subspaces of Z: x 12 then the argument used to prove Theorem 1 can 
similarly be applied directly to £h X "~h. 1 

5. E R R O R  A N A L Y S I S  

5.1. Approximation Properties 

For this exposition, we consider piecewise polynomial approximations of 4 and u. We shall 
first prove approximation properties for the spaces j8 (f/) and Y~ (f~). 

THEOREM 2. Let  {Sh} denote a family of  partitions of f~, with grid parameter h. Associated 

with Sh we let Xh(f~) represent the finite dimensionM vector space of continuous piecewise//near 
polynomials. We denote by Zh¢  the continuous piecewise linear approximation to 4. Then the 
following approximation properties hold. 

(i) For 4 E Ys(t2), there is a constant CA such that  for all s - 1 < t < s, 

1¢ - z %  < C A b  1¢ - z h 4 l s  • (55) 

(ii) For ¢ E yk(f~), k integer, there is a constant C A such that  for all k - 1 < t < k, 

(iii) For ¢ E H*(f l) ,  there is a constant C A such that  for all s - 1 < t < s, 

14- zhClt <- CAhS-tI¢ls - (57) 
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PROOF. To prove Part  (i), note tha t  for each subinterval Ij := [xj_l ,xj]  of S h, ¢--2-h4, E H~(Ij) .  
(For functions 4, E J~(f~) which are not continuous, we interpret g-h as the C16ment interpolation 
operator [16].) Thus, from (23) 

IIv~ (4,-  z~4,) I1.(~, - ~(x;  - Xj_l) s-t IIz" (4,-  z~¢) I1.(,,) 
_ c ~ h  ~ - ~  II ~ (4, - z~4,)I1.(,~) - 

Summing over the intervals Ij yields the result. 
To prove Part  (ii), apply Part  (i) together with the fact tha t  for k integer [17], 

114, -- :2h4,11k __ c2 inf II¢--Vllk. 
vEXh 

The result follows when we substitute v = 0. 
The proof of Part  (iii) is found in [17]. II 

5.2,. E r r o r  E s t i m a t e s  in t h e  E n e r g y  N o r m  

In this section we present an optimal error bound for the error in the energy norm I[[' [[[. 
Denote 

e = ¢ - C h ,  e = u - u h ,  ( 5 8 )  

where (4,, u) solves (44) and (¢h, Uh) solves (54) with £:h = ];h = Xh. 

LEMMA 9. Let e, e, 4,, u be defined as in (58), then 

II1¢, elll < 21114,- g o , ~ -  viii, v g o e x h ,  U E X h .  (59) 

PROOF. Note tha t  from (44) and (54), we have 

B([4,h -- go, ~h -- UI, [¢, vl) = B([4, -- go, ~ -- UI, [¢, v]), V [¢, ~J, [go, U] e X h  × X ~  

Substituting ¢ = 4,h -- go, v = Uh -- U, we obtain 

II 14,h - go, ~ h  - Vl  II 5 = B([4 ,  - g o ,  u - V ] ,  [ 4 , h  - -  gO, Uh - -  U]) 
(60) 

-< II1¢ - go, u - UIIII l l4,h - go,~h - Ull l .  

Now, using (60), 

THEOREM 3. 

IIl¢,elll = I I 1 ¢ -  ¢ h , ~ -  ~hlll  

_< 1114, - go, u - u I I I  + 1114,h - go,~h - Ul[ I  

_< 21114, - go,~ - u I I I .  

(61) 
I 

Let e, e, ¢, u be defined as in (58). Then there exists a constant C1 such that 

I lk,  ~111-< Clh(1¢1~ + I~11+~). (62) 

PROOF. From (53) and (46), we have 

II1¢ - go, u - uIII _< ~ ( 1 ¢  - goll  + lu - U l ~ ) ,  

Since (go, U) is arbitrary, applying Lemma 9 yields 

IIk,~lll-<2vb(\~xhinf 1 ¢ -  gol l+  uExhinf I~-- g l ~ )  • 

From (56), we then obtain 

Ilk, elll ___ 2V'-g(CAhI¢I2 + CAhlUll+~). 

V go E Xh, U E Xh. 

(63) 

(64) ! 
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5.3. E r r o r  E s t i m a t e s  for  ¢, u in L 2 

Now tha t  we have an error estimate in the energy norm, we apply a form of the Aubin-Nitsche 
lemma in order to pull the energy error estimate down to an estimate in the L 2 sense. 

LEMMA 10. Let e, e be defined as in (58). Then there exists a constant C2 such that 

ilZ~%lt_, _< C2hllle, ell I. (65) 

PROOF. We introduce the boundary  value problem 

Dw - z = 0, in f~, (66) 

Z)~z = 7, in f~, (67) 

w = 0, on Oft, 

e H01(f~), with I[rll[m _< 1. 

Note tha t  as r 1 is continuous, equations (66) and (67) hold pointwise. First, we have the a pmori 
bound 

Iw12+,~ = Izll+,~ _< ca  Ilv'+ozllo = CEt1'7111 -< CE. (68) 

Multiplying (67) through by 79~e and integrating over ~t yields 

f ~]D%dx= f D ~ z D % d x  

= B([w, z], [e, el) (using (66)) 

= B([w - Wh, z -- Zh], [e, e]) (using Galerkin orthogonality) 

-< II Iw - Wh, z -- zhl II II I~, el II 

_< V'5(Iw - -whl l  + Iz -- zhl,~)lll~, elll 

< V - g ( C A h i w l 2  + CAhlz l l+~, ) I I1~,  elll 

_< v'hCAh (1~12+,~ + Izll+,~)II1~, elll 

<_ 2vhCACEhlII~,elII. 

Finally, taking the supremum over all such 77 as defined in (67), we obtain (65). | 

LEMMA 11. Let e, e be defined as in (58). Then there exist constants Ca, 64 SUCh that 

IlEll0 _< Cahllle, elll + c4  I]Z~"ell_, • (69) 

PROOF. Introduce the boundary  value problem 

- D 2 w  = e, in ft, (70) 

w = 0, on Oft. 

Again, as e C Hl(f~), (70) holds pointwise. First, note the a priori bound 

II,o11~ _< CEll~llo. (7 , )  

Multiplying both sides of (70) by e and integrating over ~/, we obtain 

I1~11o ~ = f -D2we  dx 

f DwDe dx. 
J 
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Now, adding and subtracting, 

11ell2o = / Dw(De-e)dx + / Dwedx 

= B([w,  0], [c, e]) - /-Owe dx 

= B([~  - ~ . ,  o], % 4)  - /  ~)(1-a)*w~)a e dx, 

where we have used Galerkin orthogonality in the first term and (36) in the second. Applying a 
form of the Cauchy-Schwarz inequality to each term, we have 

- -  D ( 1 - - a ) * W  II~llg < Illw - w h ,  Ollllll~,elll + ~ liZ?ell_l 

_< ,,Sc ht< llt , ltt + (,>,,ilo + IID wll:) 
_< ~C~hll~ll~lll~,elll  + I1~11~ I1~%11-~ 
_< V"SCAGEAII~IIolII~, elll + G~llello I1~)%11_~ • 

Finally, dividing through by llello we obtain (69). I 

THEOREM 4. Let  e, e, ¢, u be defined as in (58). Then there exists a constant  C5 such that  

II~llo _< C~h ~ (11¢11= + l lull>~,),  ~nd (72) 
tlello _< Clh(11¢[12 + Ilult~+~). (73) 

PROOF. The estimate in (72) follows from a combination of Lemmas 10, 11, and Theorem 3 with 
C5 = C~(C3 + C2C4). Estimate (73) follows from Theorem 3, as 

Ilello ___ lll~,ellI. (74) I 
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(a) P lo t s  of  T~'5¢~, for i = 1, 2, 3 and n = 1 / h  = 4 on  th e  interval  [0, 1]. 

F igure  1. 
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corresponding to the line above. 
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(b) Plots of  "D'~¢1 :[or o~ = O, 0.25, 0.5, 0.75, 1 on the in terval  [0, 1]. 

Figure 1. (cont.) 

Table 1. Exper imenta l  convergence results  for Example  1. 

h ¢ - - ¢ h  0 It u - u h l l 0  

1 
1.347085.10 -2  

_i 3.292250.10 -3  
8 

1 8.070548 10 -4  
16 

1 
1.988848. 10 -4  

32 

1 
4.922038. 10 -5  

64 

1 
1.221814. 10 -5  

128 

Cvgce. Cvgce. 

Ra te  Ra te  

1.451860.10 -1  

2.03 7 .225961.10 - 2  1.01 

2.03 3 .609218.10 - 2  1.00 

2.02 1.804189.10 -2  1.00 

2.01 9 .020557.10 -3  1.00 

2.01 4.510428 • 10 -3  1.00 

0.9 1 

6. N U M E R I C A L  R E S U L T S  

In this section, we present numerical results for the least squares approximations which support  
the analysis in Section 5. 

Let S h denote a uniform partit ion on [0, 1], and X h the space of continuous piecewise linear 
functions on S h. We associate with X h the s tandard basis of hat  functions on the uniform grid 
of size h := 1/n.  For this choice of X h the approximation proper ty  holds, and thus our error 

analysis is applicable. 
For the "hat functions" ¢i(x), i = 0 . . . n ,  there exists a closed form expression for :D~¢i(x). 

In the left panel of Figure 1 are the left fractional derivatives of order one half for the hat  
functions ¢1, ¢2, ¢3, on the interval [0, 1] for n = 4. Note tha t  the fractional derivatives are 
nonlocal, with the support  of Cj being the unbounded interval ((j - 1)/n,  oo). Il lustrated in the 
right panel of Figure 1 are different order fractional derivatives for ¢1. 
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Table 2. Exper imenta l  convergence results  for Example  2. 

h ¢ -- ~h 0 Cvgce. I] u - -  ~ 1 1 0  Cvgce. 

Ra te  Ra te  

6 .682513.10 -3  7 .397892.10 -2  
4 

1.306160.10 -3  2.36 3 .713726.10 -2  0.99 
8 

1 2 .648486.10_ 4 2.30 1.841490. 10 -2  1.01 
16 

1 6 .361133.10_ 5 2.06 8 .9909481.10 -3  1.03 
32 
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EXAMPLE 1. We consider ¢(x) = x 2 as the exact solution of the equation D1'5¢ = f .  From the 
definition of the fractional derivative we compute 

f ( x )  = l)1'5¢(x) - 2 v ~  
r(1.5) 

The associated boundary conditions are ¢(0) -- 0, ¢(1) -- 1. Because of the nonlocal supports 
of :D~¢j, the stiffness matrix is not sparse, but, as in [18], contains a fully occupied submatrix. 
Table 1 summarizes the numerical results for this example. Observe that experimental rates of 
convergence agree with the theoretical rates of 2 for ¢ and 1 for u as presented in Section 5. 

E X A M P L E  2. For the second example, we set 

1 (2v/-x - v~  cos(Trx)FresnelC ( v ~ )  - x/2 sin(Trx)FresnelS ( x / ~ ) )  , (75) ¢(x) := 

where FresnelC(x) denotes the Fresnel cosine integral, and FresnelS(x) denotes the Fresnel sine 
integral. We then see that  

 15¢(x) = sin( x), 

subject to the boundary conditions provided by (75). Presented in Table 2 are the numerical 
results for this example. 

A P P E N D I X  A 

D E F I N I T I O N S  A N D  P R O P E R T I E S  O F  

T H E  R I E M A N N - L I O U V I L L E  O P E R A T O R S  

We define the fractional integral and differential operators in terms of the Riemann-Liouville 
definition given in [7,8,19]. 

DEFINITION A. 1. (Left Riemann-Liouville Fractional Integral.) Let  u be a function defined on 
[a, b], and a > O. Then the left Riemann-Liouville fractional integral of order cr is defined to be 

~D;¢u (x )  := ~(a)  (x - s )~ - lu ( s )  ds. (76) 

DEFINITION A.2. (Right Riemann-Liouville Fractional IntegraL) Let  u be a function defined on 
[a, b], and ~ > O. Then the right Riemann-Liouville fractional integral of order ~ is defined to be 

xDb~U(X) := ~ (s - x ) ~ - l u ( s )  ds. (77) 
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DEFINITION A.3. (Left Riemann-Liouvil le Fractional Derivative.) Le t  u be a function defined on 
the interval [a, b], # > O, n be the smallest integer greater than # (n - 1 <_ # < n), and cr = n - #. 
Then the left Riemann-Liouvil le  fractional derivative of  order # is defined to be 

__d ~ 1 (x - -  s)cr--lu(s) ds 
~ D ~ u ( x )  = n ~ D S u ( x )  = d x  ~ (78) 

DEFINITION A.4. (Right Riemann-Liouvil le Fractional Derivative.) Let  u be a function defined 
on the interval [a, b], # > 0, n be the smallest integer greater than # (n - 1 ~_ # < n), and 
a -= n - #. Then the right Riemann-Liouvil le  fractional derivative of  order # is defined to be 

x D 2 u ( x  ) = ( - D ) ~ D b % ( x )  = (-1)'~d--- ~ ~ ( s -  x ) ° - l u ( s )  ds . (79) 

With  these definitions, we note some of the properties of the Riemann-Liouville fraction~l 
differential operators, as outlined in [7,8]. 

PROPERTY A.5. (Semigroup Property.)  The  left and right Riemann-Liouvi l le  fractional integral 
operators follow the properties of  a semigroup, i.e., for u C LP[a, b] for p ~ 1, 

~D;'~D;" u(x) = ~D;'-" u(x), g x E [ a , b ] ,  V # , v > O ,  
(80) 

V x E [ a , b ] ,  V # , y  > O. 

PROPERTY A.6. (Fractional Fundamental  Theorem of  Calculus Part  I.) The  left (right) fractional 
derivative acts as a left inverse of  the corresponding fractional integral, i.e., for u C LP[a,b] for 
p>_ l ,  

a D ~ a D ; " u ( x ) = u ( x ) ,  V x e  [a,b], V # > O ,  
(81) 

, D ~ D b ~ U ( X )  = u(x) ,  Vx e [a,b], Vt~ > O. 

PROPERTY A.7. (Initial Conditions.) Let  # > O, and n - 1 ~ # < n, then the following 
s ta tements  are equivalent for u E C °O [a, b]: 

~D-~"aD~u(x) = u(x),  V x e [a, b], (82) 

[~D~-Ju( x)] x = a  = O, j = 1, 2 , . . . ,  n, (83) 

u (j)(a) = 0, j = 0 , 1 , . . . , n -  1. (84) 

PROPERTY A.8. (Terminal Conditions.) Let  # > O, and n - 1 < # < n, then the following 
s ta tements  are equivalent for u E C °o [a, b]: 

=Db~=D~u(x)  = u(x) ,  Yx e [a, b], (85) 

[xD~-Ju(x)]  = 0 ,  j = 1 , 2 , . . . , n ,  (86) 
L v j x=b  

u g)(b) = 0, j = 0 , 1 , . . . , n -  1. (87) 

PROPERTY A.9. (Fourier Transform.) The  Fourier transform of  a Riemann-Liouvi l le  operator 
satisfies the following: 

j z  G D ~  u(x)  ) = ( - i w ) " ~ ( w ) ,  (88) 

for all # positive, negative, or zero, where ~(w) denotes the Fourier transform of  u. 
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