
Discrete Applied Mathematics 154 (2006) 2247–2262
www.elsevier.com/locate/dam

How to collect balls moving in the Euclidean plane�

Yuichi Asahiroa, Takashi Horiyamab, Kazuhisa Makinoc, Hirotaka Onod,
Toshinori Sakumae, Masafumi Yamashitad

aDepartment of Social Information Systems, Faculty of Information Science, Kyushu Sangyo University. 2-3-1 Matsukadai,
Higashi-ku, Fukuoka 813-8503, Japan

bDepartment of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
cDepartment of Mathematical Informatics, Graduate School of Information and Technology, University of Tokyo, Tokyo 113-8656, Japan

dDepartment of Computer Science and Communication Engineering, Graduate School of Information Science and Electrical Engineering, Kyushu
University, Fukuoka 812-8581, Japan

eToshiba Solutions Corporation, Toshiba Building 1-1, Shibaura 1-chome, Minato-ku, Tokyo 105-6691, Japan

Received 4 June 2004; received in revised form 2 November 2004; accepted 21 September 2005
Available online 25 July 2006

Abstract

In this paper, we study how to collect n balls moving with a fixed constant velocity in the Euclidean plane by k robots moving
on straight track-lines through the origin. Since all the balls might not be caught by robots, differently from Moving-target TSP, we
consider the following 3 problems in various situations: (i) deciding if k robots can collect all n balls; (ii) maximizing the number
of the balls collected by k robots; (iii) minimizing the number of the robots to collect all n balls. The situations considered in this
paper contain the cases in which track-lines are given (or not), and track-lines are identical (or not). For all problems and situations,
we provide polynomial time algorithms or proofs of intractability, which clarify the tractability–intractability frontier in the ball
collecting problems in the Euclidean plane.
© 2006 Published by Elsevier B.V.

Keywords: Moving-target TSP; Vehicle routing problem; Partially ordered set; Combinatorial optimization

1. Introduction

Let us consider a general setting for the problem of scheduling n jobs J1, J2, . . . , Jn for k identical machines
M1, M2, . . . , Mk . Each job Ji is nonpreemptive and requires pi time to process. A most popular setting assumes the
parameters pi to be constants [14]. Other recent works considered deteriorating jobs, where pi may vary depending on
the actual start time t, which is typically given by a linear function pi(t) = ai − tbi . Here ai models a basic processing
time, while bi a learning effect [4,15].

Another effect of the job execution history H of a machine is captured as a setup time di(H), which defines the
processing time of the job processed next on the machine [19]; that is, pi(H) = ai + di(H) for job Ji , provided that
it is executed on a machine with history H. The setup time di can depend on the whole history, but may be natural to

� This work was partially supported by the Scientific Grant-in-Aid by the Ministry of Education, Science, Sports and Culture of Japan.A preliminary
version appeared in [2].

E-mail addresses: asahiro@is.kyusan-u.ac.jp (Y.Asahiro), horiyama@i.kyoto-u.ac.jp (T. Horiyama), makino@mist.i.u-tokyo.ac.jp (K. Makino),
ono@csce.kyushu-u.ac.jp, mak@csce.kyushu-u.ac.jp (H. Ono), Sakuma.Toshinori@toshiba-sol.co.jp (T. Sakuma).

0166-218X/$ - see front matter © 2006 Published by Elsevier B.V.
doi:10.1016/j.dam.2006.04.020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82771592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:asahiro@is.kyusan-u.ac.jp
mailto:horiyama@i.kyoto-u.ac.jp
mailto:makino@mist.i.u-tokyo.ac.jp
mailto:ono@csce.kyushu-u.ac.jp
mailto:mak@csce.kyushu-u.ac.jp
mailto:Sakuma.Toshinori@toshiba-sol.co.jp

2248 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

assume to depend only on the previous job Jh. Let dhi be the setup time necessary to start job Ji after Jh. When dhi

is a constant for any pair of jobs Jh and Ji , the problem is essentially equivalent to the classical travelling salesman
problem (TSP) for a single machine, and to the vehicle scheduling problem (VSP) for multiple machines, where
we associate the jobs Ji and the processing time ai + dhi with the cities and the distances between a pair of cities,
respectively.

If di depends more on the history and does not only on the previous job but also on the actual start time t, we need to
consider a TSP or a VSP variant where the locations of cities may dynamically change. This kinetic variation of TSP
has been studied under the names of moving-target TSP [10] and kinetic TSP [9], which motivates our work.

We consider the problem of collecting n balls (or objects) moving around by using k robots. We often encounter
this kind of situation as real-world applications. For example, manipulators gather a set of components flowing on
belt-conveyers in an assemble line, fishing boats pursuit to catch schools of fishes in the sea, and supply aircrafts
resupply patrolling aircrafts in the sky.

The problem can however also be seen as a natural extension of moving-target TSP and kinetic TSP. In the classical
TSP, we are given a set of stationary balls (or cities) associated with the distances between each pair of balls. The
objective is to compute a shortest tour that collects all the balls by a robot (or visits all the cities by a salesman). In
the Moving-Target TSP, the balls collected by a robot are not stationary but moving around. Clearly, Moving-Target
TSP is NP-hard, since classical TSP is a special case of Moving-Target TSP in which the velocities of all objects are
permanently 0.

Helvig et al. [10] investigated this problem when each ball bi moves at a given constant velocity vi from an initial
position pi ∈ Rd , and a robot starts at the origin with the maximum speed v > |vi |. They showed that the problem can
be solved in O(n2) time if d = 1 (i.e., the robot and all balls are confined to a single line), and can be approximated
in polynomial time with ratio (1 + �), where � is an approximation ratio of an arbitrary classical TSP heuristic, if
O(log n/ log log n) balls are moving. They also considered the case in which multi-robots can be used. Hammar and
Nilsson [9] studied the two-dimensional Euclidean case. For example, it can be shown that, if all the balls move with
the same velocity, the problem has a PTAS, but in general, it cannot be approximated better than by a factor of 2�(

√
n)

in polynomial time, unless P = NP.
In the moving target TSP (or kinetic TSP), it is assumed that any robot can move faster than any ball, and hence

robots can always collect all balls. However, in some scenarios (e.g., fishing boats) it is natural to consider the case in
which robots cannot collect all balls. This situation results from the fact that robots cannot move faster than balls and/or
robots can move only in the restricted spaces such as lines. In this situation, the following fundamental problems have
to be studied:

(i) Deciding if given k robots can collect given n balls, and if yes, computing such a robot schedule.
(ii) Computing a robot schedule that maximizes the number of the balls collected by given k robots.

(iii) Computing a robot schedule that minimizes the number of the robots collecting given n balls.

It is clear that (ii) and (iii) are natural extensions of (i). We generically call these kinds of problems the ball collecting
problems (BCPs).

Each of the problems can be easily seen to be NP-hard when arbitrary moves are allowed both for balls and robots.
(Indeed, Euclidean Hamiltonian path problems, for example, can be reduced to problem (i) under a certain assumption.)
Thus, we identify the goal of this paper to give a complete picture of the tractability–intractability frontier in the BCP.
This paper investigates the BCPs in the Euclidean plane, under the assumption that each of the balls and the robots can
move only on a straight line (and show the results given in Table 1). More formally, our problems can be defined as
follows.

Given a set B = {b1, b2, . . . , bn} of balls in the Euclidean plane (with x- and y-axes), each bi moving at a constant
velocity vi = (vi cos �i , vi sin �i) from an initial point p

(0)
i = (x

(0)
i , y

(0)
i) ∈ R2, and a set R = {r1, r2, . . . , rk} of

(homogeneous) robots, each rj starting from the origin (or depot) o = (0, 0) and moving with maximum speed v > 0
on a line �j through the origin o, compute robot schedules described in (i), (ii) and (iii).

Fig. 1 illustrates our problems, when 2 robots move on 2 different lines. We also consider the case in which lines �j

are not predetermined (i.e., we can decide an angle �j of line �j as a part of the scheduling).
Here we emphasize that our most restrictive problems when n robots all move on a given single line � still also have

practical applications: they can be regarded as new models of the VSP on line-shaped network (e.g., [11,16,3,18]).

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2249

Table 1
Summary of results

Lines �j (i) (ii) (iii)

k = 1 k = 2 k�3 k = 1 k�2

Input single O(n log n) O(n log n) O(n log n) O(n log n) O(n3) O(n log n)

multiple O(n log n) O(n2) NP-complete O(n log n) NP-hard NP-hard

Output single O(n2 log n) O(n3 log n) O(n3 log n) O(n3 log n) O(n5) O(n3 log n)

multiple O(n2 log n) O(n6) NP-complete O(n3 log n) NP-hard NP-hard

Input and Output mean that lines �j are chosen as a part of input and output, respectively.

O

y

x

r2 r1

track-line 2

track-line 1

θ2

θ1

b3

b1

b2
v1

v2

v3

Fig. 1. BCP with 2 robots on 2 track-lines.

VSPs are classified by the conditions on release times, handling times, due times (or deadlines), and the objectives
such as minimizing the completion time and minimizing the maximum lateness. Robots and catching balls in our case
are regarded as vehicles and jobs, respectively. We consider only the balls which crosses line � exactly once (see the
discussion in Section 2.1). The handling time of each job is defined as 0, and the release time and the due time of job bi

are defined as the time when it crosses line �. Each job bi is located at the position where it crosses line �. Then we can
see that problem (i) is to decide whether the maximum lateness of this VSP is 0. This kind of setting is well studied.
However, the objectives corresponding to problems (ii) and (iii) (for example, to compute a schedule of vehicles that
maximizes the number of the jobs done by their due times) are not investigated as the VSPs.

We extensively study the BCPs defined above mainly from computational points of view. For all problems, polynomial
time algorithms or proofs of intractability are provided (although it remains important to improve efficiency of the
algorithms for polynomially solvable cases and to develop polynomial approximation algorithms for NP-hard cases).
Thus, our work gives a complete picture of the tractability–intractability frontier in the two-dimensional Euclidean
BCP when balls bi move with fixed constant velocities vi and homogeneous robots rj move lines �j through the depot
o. A summary of the results in this paper is given in Table 1.

We first consider the case in which n robots all move on a given single line �, i.e., �j = � for all j. In this case, we
present an O(n log n) time algorithm for the problem (iii) (and hence (i) is solvable in O(n log n) time). This is optimal
in the sense that the problem contains the sorting problem as a special case, where the sorting problem is known to need
�(n log n) time for the comparison-based algorithms. Moreover, we show that the problem (ii) is solvable in O(n log n)

time, if k = 1, and O(n3) time if k�2. The result when k = 1 is also optimal in the sense above.
On the other hand, if given lines �j are not identical, most problems seems to be intractable. Note that the case of

k = 1 is studied in the single line case. We show that the problem (i) can be solved in O(n2) time when k = 2, however,
it is NP-complete when k�3. The problems (ii) and (iii) are both NP-hard.

2250 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

We finally study the case in which lines �j are not given (i.e., we can decide an angle �j of line �j as a part of the
scheduling). We show that �(n2) lines are essentially different for our problems, although there exist infinitely many
lines through the origin. By combining this with the previous positive results, we provide polynomial time algorithms.
For example, if we choose a single line � for all robots, then the problem (iii) is solvable in O(n log n) × O(n2) =
O(n3 log n) time, and if we can choose distinct lines for each robot, the problem (i) when k = 2 can be solved in

O(n2) ×
(

O(n2)
2

)
= O(n6) time. We show that the problem (i) when k = 1 can be solved in O(n2 log n) time, which

improves upon the simple combined algorithm. Furthermore, we show the intractability of the problems does not
depend on the fact that lines are given or not.

The rest of the paper is organized as follows. In Sections 2 and 3, we investigate the BCPs when the track-lines �j

are given in advance. Section 2 deals with the case in which all �j are identical, and Section 3 deals with the general
case. Section 4 considers the BCPs when �j are not given. Section 5 concludes this paper and discusses some possible
extensions of the BCPs.

2. BCPs with a given single track-line

In this section, we consider the BCPs when all k robots move on the identical line �.

2.1. Single robot BCP

We start with the most fundamental situation that a single robot tries to collect all n balls. We first exclude two kinds
of balls: (1) the balls which do not cross the track-line � and (2) the balls which move on �. Note that the robot never
catches the balls of type (1). Let bi be a ball of type (2). If bi goes away from the origin with the speed vi > v, then the
robot cannot catch up with it; otherwise, it is always caught by the robot. Hence we assume without loss of generality
that all balls cross � exactly once.

Let ti denote the time when ball bi crosses the line �, and let pi = (xi, yi) denote the point where bi crosses �. Define
di = dist(o, pi) if xi �0, and di = −dist(o, pi), otherwise, where dist(o, pi) denotes the Euclidean distance between
the origin o and pi .1 It is clear that if the robot can catch all balls, then the balls have to be caught in the order of ti .
Therefore, problem (i) can be solved by first sorting ti (i = 1, . . . , n) and then checking if

v(tpk+1 − tpk
)� |dpk+1 − dpk

|, k = 1, 2, . . . , n − 1,

where tp1 � tp2 � · · · � tpn . This immediately implies the following result.

Theorem 1. It can be checked in O(n log n) time if all balls can be collected by a robot moving on a given track-line.
Furthermore, if so, such a robot schedule can be computed in O(n log n) time.

In the following sections, we show that problem (ii), which is a generalization of problem (i), is also solvable in
O(n log n) time. This is optimal in the sense discussed in the introduction.

Before describing an optimal algorithm, we first present a simple O(n2) time algorithm for the problem (ii) in order
to understand the optimal one easily. The algorithm makes use of a directed acyclic graph (DAG) constructed from di

and ti above.

2.1.1. DAG based algorithm
Let � denote the angle of a track-line �. A directed graph G(�) = (V = {0, 1, 2, . . . , n}, A =⋃n

i=0 Ai) is defined by

A0 = {(0, i) | The robot starting at the origin o can catch ball bi},
Ai = {(i, j) | The robot can catch ball bj after catching bi}, i = 1, 2, . . . , n.

It is easy to see that (0, i) ∈ A0 if and only if v · ti � |di |, and (i, j) ∈ Ai for i�1 if and only if v · (tj − ti)� |dj − di |.
For example, Fig. 2 shows the situation that all balls can be caught directly by the robot starting at the origin o (since

1 If � coincides with y-axis, di = dist(o, pi) if yi �0, and di = −dist(o, pi) otherwise.

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2251

1

32

0 4

Fig. 2. An example of a directed graph G(�).

G(�) contains arcs (0, 1), (0, 2),(0, 3) and (0, 4)), ball b1 can be caught after catching b2 (since G(�) contains arc
(2, 1)), but b3 cannot be caught after catching b1 (since G(�) does not contain arc (1, 3)), and so on.

Note that G(�) is transitive, i.e., if (i1, i2), (i2, i3) ∈ A then (i1, i3) ∈ A. If G(�) contains a cycle C, then C does not
contain node 0, since no arc enters node 0, and all nodes in C have the same di and ti (i.e., d =di and t = ti for all i ∈ C),
since i, j ∈ C implies (i, j), (j, i) ∈ A by the transitivity of A, which further implies tj − ti , ti − tj � |dj −di |/v (�0).
Moreover, we can see the following proposition.

Proposition 1. Any directed path from node 0 in G(�) represents feasible robot schedules. Conversely, any feasible
robot schedule can be represented by a directed path from node 0. Furthermore, the length of the path in G(�) represents
the number of the balls collected under the corresponding schedules.

We now construct the DAG G∗(�) = (V ∗, A∗) from G(�) by contracting every strongly connected component in it.
Here node 0∗ in V ∗ corresponding to 0 in V has a weight w(0∗) = 0, and each node i∗(�= 0∗) in V ∗ has a weight w(i∗)
representing the number of the nodes in V contracted into i∗. Then the problem (ii) (i.e., maximizing the number of
the collected balls) can be solved by finding a longest (or critical) path starting from 0∗ (corresponding to 0 in G(�))
in this DAG G∗(�), where the length of a path P is the weighted sum of the nodes in P. This problem is also studied in
PERT as one of the scheduling problems, and is solvable in O(|V ∗| + |A∗|) time (e.g., [12]). Since |V |�n, |A∗|�n2,
and G∗(�) can be constructed in O(n2) time, the problem (ii) is solvable in O(n2) time.

Theorem 2. We can compute in O(n2) time a robot schedule that maximizes the number of the balls collected by a
robot moving on a given track-line.

One might see that the size of G∗(�) is small if it is constructed from a problem instance of the BCP. Unfortunately,
this is not the case. We have a problem instance such that |A∗| = �(n2). More precisely, even if we remove from
A∗ all transitive arcs a (i.e., a = (i1, i3) if (i1, i2), (i2, i3) ∈ A∗), the size of arcs is still �(n2). This means that all
the algorithms constructing G∗ explicitly require �(n2) time. Therefore, we need a method to represent G∗ (or G)
implicitly, in order to construct a faster algorithm.

2.1.2. Chart based algorithm
This section introduces a chart H(�) to represent G(�) implicitly, and based on this chart, we present an O(n log n)

time algorithm for the problem (ii) when a single robot moves on a given track-line. We first consider a two-dimensional
chart F(�) with t- and d-axes. F(�) has n + 1 points (ti , di), i = 0, 1, . . . , n, associated with the region Ri defined by
the following 2 inequalities:

d �v(t − ti) + di ,

d � − v(t − ti) + di .

Here (t0, d0) = (0, 0), representing the origin o in the (original) Euclidean plane R2. Fig. 3 shows an example of F(�).
In this chart, a point (t, d) represents a state that a robot is located at point d at time t. Therefore, a point (t, d) is
contained in Ri if and only if a robot starting at state (ti , di) can reach the state (t, d). For example, (t1, d1) ∈ R2 ⊆ R0
in Fig. 3 means that robot can catch ball b1 after moving from the origin at time 0 and even after catching ball b2.

2252 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

t

d

O t2 t1 t3 t4

b2

b1
b3

b4

d1

d2

d3

d4

Fig. 3. A chart F(�) corresponding to the directed graph G(�) in Fig. 2.

O α

β

b1

b3

b2

b4

Fig. 4. A chart H(�) corresponding to F(�) in Fig. 3.

We now define a chart H(�) with �- and �-axes to understand this relations easily. For each i, we define �i and �i

by �i = (vt i − di)/(2v) and �i = (vt i + di)/(2v); t values of the points at which lines d = −vt (resp., d = vt) and
d = v(t − ti) + di (resp., d = −v(t − ti) + di). Chart H(�) has n + 1 points (�i , �i), i = 0, 1, . . . , n. Here, we identify
the points (�i , �i) (i = 1, 2, . . . , n) with balls bi . Fig. 4 shows an example of H(�) (corresponding to F(�) in Fig. 3).

For two points (�i , �i) and (�j , �j), we write (�i , �i)�(�j , �j) if �i ��j and �i ��j , and (�i , �i) < (�j , �j) if
(�i , �i)�(�j , �j) and (�i , �i) �= (�j , �j).

Lemma 1. Let �i and �i be defined as above. Then we have the following necessary and sufficient conditions.

(i) Ball bi can be caught by a robot starting at origin o if and only if (0, 0)�(�i , �i) holds.
(ii) Ball bj can be caught by a robot after catching ball bi if and only if (�i , �i)�(�j , �j) holds.

Corollary 1. Given a chart H(�), we can construct G(�) (and hence G∗(�)) by connecting arcs from i to j if
(�i , �i)�(�j , �j).

For example, we can see that Fig. 2 can be constructed from Fig. 4. Our algorithm uses H(�) instead of G∗(�).
Before showing how to use this H, let us consider the dual of the problem (ii).

Note that a transitive DAG G∗(�)=(V ∗, A∗) can be regarded as a partially ordered set (poset, in short) P(�)=(V ∗, �),
where i∗�j∗ if either i∗ = j∗ or (i∗, j∗) ∈ A∗. Let us recall that a chain (resp., antichain) in a poset is a set of pairwise
comparable (resp., incomparable) elements. Then the following theorem is well-known, called a weighted version of
the polar (or dual) Dilworth theorem [13].

Theorem 3. Let P be a finite poset with a nonnegative integer weight w(e) of each element e. Then the maximum
weight of a chain is equal to the minimum number of antichains covering all elements e in P by w(e) times.

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2253

O

β

S1S2S3

α

Fig. 5. Algorithm ANTICHAIN-PARTITION.

It follows from Proposition 1 and the subsequent discussion that the problem (ii) is to compute a maximum weighted
chain of P. Therefore, by Theorem 3, the dual of the problem (ii) is to compute a minimum w-multiple antichain
covering of P. We construct an optimal algorithm for the problem (ii) by solving this dual problem with the help of
chart H.

Given a set of balls (or points) S in chart H(�), bi in S is called pareto-optimal if no bj ∈ S satisfies (�j , �j) > (�i , �i),
and S′ ⊆ S is called a pareto-optimal set of S if all balls in S′ are pareto-optimal and no two balls bi and bj in S′ satisfy
(�i , �i) = (�j , �j). Note that a maximal pareto-optimal set is always maximum, and pareto-optimal sets correspond to
antichains of P(�). Moreover, a minimum w-multiple antichain covering of P(�) can be computed by the following
algorithm which finds (and removes) maximum pareto-optimal sets of B repeatedly.

Algorithm ANTICHAIN-PARTITION

Input: A set of balls B = {b1, b2, . . . , bn}.
Output: A minimum antichain partition (S1, S2, . . . , Sr) of B (corresponding to a minimum w-multiple
antichain covering of P(�))

Step 0: Compute (�i , �i) for all bi ∈ S. Set S := {bi |(�i , �i)�(0, 0)} and r := 1.
Step 1: Compute a maximal pareto-optimal set Sr in S and remove Sr from S.
Step 2: If S := ∅, then halt. Otherwise, let r := r + 1 and return to Step 1.

Fig. 5 illustrates Algorithm ANTICHAIN-PARTITION. Let (S1, S2, . . . , Sr) be an antichain partition obtained by Al-
gorithm ANTICHAIN-PARTITION. A maximum weighted chain of P(�) can be constructed from Si , i = 1, . . . , r , as
follows. Choose a ball bi1 from Sr arbitrarily, and then find a ball bi2 in Sr−1 such that (�i2 , �i2

)�(�i1 , �i1
). By the

maximality of Sr−1, such a bi2 always exits. We then find a ball bi3 in Sr−2 such that (�i3 , �i3
)�(�i2 , �i2

). By repeating
this argument, we finally have a path i0 = 0, i1, . . . , ir in G(�). This path clearly corresponds to a weighted chain C of
P(�). Since the weight of chain C is r, it follows from Theorem 3 that (S1, S2, . . . , Sr) corresponding to a minimum
w-multiple antichain covering of P(�) and C is a maximum weighted chain of P(�).

Although we skip the details how to compute a maximal pareto-optimal set Si in chart H(�), due to the space
limitation, it is not difficult to see that Si can be computed (and deleted) in O(|Si | log n) time by using a balanced binary
search tree such as AVL- and splay trees to store H(�). Therefore, we have the following result which improves upon
the one in the previous section.

Theorem 4. We can compute in O(n log n) time a robot schedule that maximizes the number of the balls collected by
a robot moving on a given track-line.

Note that the problem contains the sorting problem, since a robot schedule decides the ordering of balls caught, i.e.,
sorts the balls caught in the order of ti . Since any (comparison-based) sorting algorithm needs �(n log n) time, our
algorithm is optimal. We finally remark that our algorithm is based on the fact that each ball crosses at most once, but
not the one that balls and robots move on lines, respectively. This means that our method may be applicable in some
other situations.

2254 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

2.2. k-Robot BCP with a given single track-line

This section considers the case when more than 1 robot can be used. Let us first consider the problem (iii), i.e.,
minimizing the number of robots to catch all the balls. We show that the problem can be solved in O(n log n) time by
using the technique shown in the previous section.

Note that the problem (iii) can be reduced to compute a minimum chain covering of the poset P(�). We solve the
problem by applying the algorithm similar to ANTICHAIN-PARTITION to the chart H ∗(�) defined below.

Let t ′ = maxi ti , d ′ = mini,j :di �=dj
|di − dj |, and v′ = v + � where 0 < � < d ′/t ′. Let H ′(�) be a two-dimensional

chart with t- and d-axes. H(�) has n + 1 points (ti , di), i = 0, 1, . . . , n, associated with the region R′
i defined by

d �v′(t − ti) + di and d � − v′(t − ti) + di . In other words H ′ is obtained from H by enlarging each region Ri by
a small �. By this modification, no point (ti , di) is on the boundary of Rj , if (ti , di) �= (tj , dj), and since � is small,
H ′ still has a good property of H, i.e., a point (t, d) is contained in Ri if and only if a robot starting at state (ti , di) can
reach the state (t, d).

Let �∗
i = −ti + di/v

′ and �∗
i = ti + di/v

′. Let H ∗(�) denote the chart of the n + 1 points (�∗
i , �

∗
i), i = 0, 1, . . . , n.

Similarly to H(�), the points (�∗
i , �

∗
i) (i =1, 2, . . . , n) are identified with balls bi . We can see that H ∗ is a dual chart of

H in the following sense. Let bi and bj be balls such that (ti , di) �= (tj , dj). Then (�i , �i) and (�j , �j) are comparable
(i.e., (�i , �i)�(�j , �j) or (�i , �i)�(�j , �j)) if and only if (�∗

i , �
∗
i) and (�∗

j , �
∗
j) are incomparable.

Since the problem (iii) is to compute a minimum chain covering of the poset P(�) (corresponding to H(�)), the
problem (iii) can be solved by computing a minimum antichain covering of the poset P ∗(�) corresponding to H ∗(�).
Thus, we can use the algorithm similar to ANTICHAIN-PARTITION for the problem. The difference of the algorithms are
the following 2 points: Step 0 initializes S as S = {bi |�∗

i �0, �∗
i �0} and Step 1 computes the set of all pareto-optimal

points instead of a maximal pareto-optimal set. The second difference follows from the one between a minimum
antichain covering and a minimum w-multiple antichain covering. Similarly to Theorem 4, we have the following
theorem.

Theorem 5. We can compute in O(n log n) time a robot schedule minimizing the number of the robots on a given single
track-line that collect all balls.

We finally consider the problem (ii) when k�2. When k is not enough to collect all balls, we can formulate the
problem as a minimum cost network flow problem [1,6] of the following network N = (V ′, A′) associated with the
capacity, cost and demand functions. The network N can be constructed from G(�) = (V , A) as follows

V ′ = {1+, . . . , n+} ∪ {1−, . . . , n−} ∪ {0, n + 1},
A′ = {(i+, j−) | (i, j) ∈ A} ∪ {(i−, i+) | i = 1, . . . , n} ∪ {(0, i−), (i+, n + 1) | i = 1, . . . , n},
demand(v) = −k if v = 0, k if v = n + 1 and 0 otherwise,

cap(e) = 1 for all e ∈ A′,

cost(e) = −1 if e = (i+, i−) and 0 otherwise.

Note that this N does not contain a negative cycle, since otherwise the original G(�) contains a directed cycle, which
contradicts that G(�) is a DAG. Since the demand function demand is integer, one can compute a minimum cost integral
flow. Although the details are omitted due to the space limitation, we can show that integral feasible flows correspond
to k-robot schedules, and moreover, such minimum cost flows correspond to optimal k-robot schedules. Minimum
cost flow problem has been extensively studied [1,6]. Here we make use of primal-dual algorithm with least-cost
augmenting paths to the network N. Since |V ′| = O(n), |A′| = O(n2) and k�n, the problem can be solved in O(n3)

time.

Theorem 6. We can compute in O(n3) time a k-robot schedule that maximizes the number of the balls collected by k
robots moving on a given track-line.

Before concluding this section, we note that, differently from Theorems 4 and 5, Theorem 6 does not use the property
(or structure) of G(�), and hence more efficient algorithms may be possible.

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2255

3. BCPs with given multiple track-lines

In this section, we address the case that k(�2) robots move on their own track-line given.
Let �j be an angle for the track-line �j which robot rj moves on. We first study the problem (i) when k = 2.

Theorem 7. It can be checked in O(n2) time if all balls can be collected by two robots moving on two given track-lines.
Furthermore, if so, such a robot schedule can be computed in O(n2) time.

Proof. We reduce the problem to the problem 2-SAT whose size is O(n2). Since 2-SAT is solvable in linear time [7],
our problem is solvable in O(n2) time.

We define a Boolean variable ui for each ball bi . Here ui = 1 means that bi is caught by robot r1 and ui = 0 means
that bi is caught by robot r2. A 2-CNF � contains the following 4 types of clauses.

1. ūi , if G(�1) contains no arc (0, i).
2. (ūi ∨ ūi′), if G(�1) contains neither arc (i, i′) nor arc (i′, i).
3. ui , if G(�2) contains no arc (0, i).
4. (ui ∨ ui′), if G(�2) contains neither arc (i, i′) nor arc (i′, i).

It is easy to see that the size of � is O(n2). Note that 3 and 4 are dual of 1 and 2, respectively. By the definitions of
G(�1) and G(�2), if all balls can be collected by two robots, � is satisfiable. On the other hand, if � is satisfiable, we
shall show below that all balls can be collected. Let u∗ be an assignment such that �(u∗) = 1, and let S1 = {i | u∗

i = 1}
and S2 = {i | u∗

i = 0}. For any pair of i and i′ in S1, G(�1) contains arc (i, i′) or (i′, i). It follows from the transitivity
of G(�1) that it must contain a directed path through all the nodes in S1. This implies that S1 can be caught by robot r1.
Similarly, S2 can be caught by robot r2. Since S1 ∪ S2 = {1, 2, . . . , n}, two robots can collect all balls. This completes
the proof. �

Unfortunately, the problem becomes intractable if we generalize the problem slightly.

Theorem 8. (i) It is NP-hard to maximize the number of the balls collected by 2 robots with 2 given track-lines.
(ii) It is NP-complete to decide if all balls can be collected by k robots with given track-lines, if k�3.

Proof. We only show the proof of Theorem 8(i), since (ii) can also be proved by the similar way.
Since the decision version of this BCP obviously belongs to NP, we concentrate the reduction. Here, we reduce a

wellknown NP-complete problem MAX 2SAT [8] to this BCP, which proves this theorem. MAX 2SAT is described as
follows:

Problem MAX 2SAT (decision problem)
Input: A 2CNF Boolean Formula �, i.e., a set U of variables and a conjunction � of disjunctive clauses of at most 2

literals, where a literal is a variable or a negated variable in U, and a positive integer p.
Question: Is there an assignment of variables in which the number of satisfied clauses is at least p?
Let U = {u1, u2, . . . , um} denote a set of variables, where m is the number of variables. A MAX 2SAT instance is

defined as � =∧n
j cj =∧n

j (l
(1)
j ∨ l

(2)
j), where cj = l

(1)
j ∨ l

(2)
j , j = 1, 2, . . . , n, are clauses, and literals l

(1)
j and l

(2)
j

are a variable or a negated variable. First, we construct a new CNF �′ from a given Max 2SAT instance �. For clause
cj = l

(1)
j ∨ l

(2)
j , we define two new clauses as follows:

c
(1)
j = l

(1)
j ∨ rj ,

c
(2)
j = l

(2)
j ∨ r̄j .

By these new clauses c
(1)
j and c

(2)
j for j = 1, 2, . . . , n, the new MAX 2SAT instance is defined as

�′ =
⎛
⎝∧

j

c
(1)
j

⎞
⎠ ∧

⎛
⎝∧

j

c
(2)
j

⎞
⎠ .

2256 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

O
r1

r2

1 2

2

1

ua v rj

ub v rj

b(2)

b(1)

Fig. 6. Balls corresponding to original clause cj = (ūb ∨ ua) (clauses ūb ∨ rj and ua ∨ r̄j).

Note that the answer of the original MAX 2SAT instance (�, p) is yes if and only if at least p + n clauses of �′ are
satisfiable; we can see the answer of the original instance by solving the new instance (�′, p + n). Therefore, we
consider the reduction from the new MAX 2SAT instance �′, instead of the original MAX 2SAT instance �.

Now we suppose that in 2-robot BCP the given lines �1 and �2 are x-axis (i.e., the track-angle equals to 0) and y-axis
(i.e., the track-angle equals to �/2), respectively (Fig. 6), and that the max speeds of the robots are sufficiently large.
Then, suppose balls b

(1)
j and b

(2)
j corresponding to clauses c

(1)
j = (l

(1)
j ∨ rj) and c

(2)
j = (l

(2)
j ∨ r̄j), respectively (i.e., in

total 2n balls). The balls cross x-axis (robot 1’s track-line) and y-axis (robot 2’s track-line) as follows: (see Fig. 6)

• For clause c(1) = (l
(1)
j ∨ rj): if l

(1)
j = ui (resp., l

(1)
j = ūi), then ball b

(1)
j crosses x-axis at (1, 0) (resp., (2,0)) at time i

and y-axis at (0, 1) at time n + j .
• For clause c(2) = (l

(2)
j ∨ r̄j): if l

(2)
j = ui (resp., l

(2)
j = ūi), then ball b

(2)
j crosses x-axis at (1, 0) (resp., (2,0)) at time i

and y-axis at (0, 2) at time n + j .

We then show that p + n clauses in �′ are satisfiable if and only if robots can collect p + n balls in this BCP; i.e.,
the number of satisfiable clauses is equal to the number of collectable balls. First, we show the if-part. Robot 1 can be
either at (1, 0) or at (2, 0) at time i. We decide an assignment of variable set U according to the position of the robots.
That is, if robot 1 is located at (1, 0) (resp., (2, 0)) at time i, then let ui = 1 (resp., 0). Similarly, we assign rj = 1
(resp., 0) if robot 2 is at (0, 1) (resp., (0, 2)). In this assignment, clauses corresponding to the balls caught by robots
are satisfied. Therefore, this assignment gives a solution of the new MAX 2SAT instance �′, in which the number of
satisfied clauses is equal to the number of collected balls, which proves the if-part. Next, we show the only-if part.
According to a solution of MAX 2SAT instance �′ (i.e., an assignment of ui for i = 1, . . . , m and rj for j = 1, . . . , n),
we schedule the location of robot 1 (resp., 2) at time i (resp., n + j) according to the assignment of ui (resp., rj). Since
the speeds of the robots are sufficiently large, they can move as the schedule. The number of balls caught by the robots
in the schedule is equal to the number of the satisfied clauses. These complete the proof. �

The next corollary follows from Theorem 8(ii).

Corollary 2. It is NP-hard to minimize the number of the robots with given track-lines that collect all balls.

4. BCPs with arbitrary track-lines

In Sections 2 and 3, we consider the BCPs under the assumption that track-lines �j are given in advance. In this
section, we consider the case in which a track-line of each robot can be chosen as a part of the robot scheduling.

4.1. Selecting track-lines

This section shows that the number of the track-lines that have to be considered for the BCPs is polynomial, although
there exist infinitely many lines through the origin.

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2257

Let � denote the angle of a line � through the origin. For any ordered pair of i and j in V (={0, 1, . . . , n}), let

Iij = {� ∈ [0, �) | G(�) contains arc (i, j)}.

Moreover, let Iij =⋃
p I

p
ij , with interval I

p
ij in [0, �). Note that I

p
ij might not be closed.

Lemma 2. The number of the intervals I
p
ij representing Iij for i, j ∈ V is O(1), and the interval representation of Iij

can be computed in O(1) time.

The proof is omitted, since it is rather complicated (seeAppendixA.2). The lemma immediately implies the following
lemma, since we have n2 ordered pairs (i, j).

Lemma 3. There exists O(n2) different directed graphs G(�), � ∈ [0, �).

One might see that O(n2) is overestimated, since G(�) contains many transitive arcs, in general. However, we can
construct a problem instance having �(n2) directed graphs G(�). By combining Lemma 3 with the results in the
previous sections, we have the following results.

Theorem 9. Assume that a track-line of each robot can be decided as a part of the robot scheduling. Then

(i) We can compute in O(n3 log n) time a robot schedule that maximizes the number of the balls collected by a robot.
(ii) We can compute in O(n3 log n) time a robot schedule minimizing the number of the robots on a single track-line

that collect all balls.
(iii) We can compute in O(n5) time a k-robot schedule that maximizes the number of the balls collected by k robots

moving on a single track-line.
(iv) It can be checked in O(n6) time if all balls can be collected by two robots moving on two track-lines. Furthermore,

if so, such a robot schedule can be computed in O(n6) time.

Theorem 9(i)–(iv) follow from Theorems 4–7, respectively.

4.2. Collecting all balls by a single robot

Theorem 9(i) implies that we can decide whether all balls can be collected by a single robot in O(n3 log n) time.
This section shows that a faster algorithm is possible for the problem.

For the angle � of a line �, let E(�) = {(i, j) | i < j, G(�) contains arc (i, j) or (j, i)}.

Lemma 4. All balls can be collected by a robot on a line � if and only if |E(�)| = n(n + 1)/2.

This lemma implies that it is not necessary to check if G(�) has a directed path from 0 whose length is n, but is
sufficient to check the size of E(�).

Here we only present an outline of the algorithm, due to the space limitation. Recall that Iij can be represented by
the union of O(1) intervals. We first compute such representations of all Iij , which requires O(n2) time. Let I denotes
the family of all such intervals I = 〈L, R〉. Here 〈 is either [or (, and 〉 is either] or). Then we sort all the left and right
elements L and R in I, which is possible in O(n2 log n) time. Let J1, J2, . . . , Jq be such an ordering. We finally check
if |E(�)| = n(n + 1)/2 for all � = 0, J1 + 	, J2 + 	, . . . , Jq + 	 in this order, where 	 is sufficiently small positive. 	
is used for open intervals. It is not difficult to see that these angles are sufficient to check. Since this can be done in
O(n2) time, we have an O(n2 log n) time algorithm.

Theorem 10. It can be checked in O(n2 log n) time if there exists a track-line � such that a robot can collect all
balls by moving on �. Furthermore, if so, such a robot schedule (including �) can be computed in O(n2 log n)

time.

2258 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

4.3. The NP-hardness cases

Similarly to Theorem 8, we have the negative results even if the track-lines can be chosen.

Theorem 11. Even if a track-line of each robot can be chosen as a part of the robot scheduling, the following statements
holds.

(i) It is NP-hard to maximize the number of the balls collected by 2 robots with 2 track-lines.
(ii) It is NP-complete to decide if all balls can be collected by k robots with track-lines, if k�3.

5. Conclusion and discussions

We have studied the problem of collecting balls moving in the Euclidean plane by robots moving on straight lines
through the origin. From the viewpoint of computational complexity, we have investigated the following 3 problems
in various situations: (i) deciding if k robots can collect all n balls; (ii) maximizing the number of the balls collected
by k robots; (iii) minimizing the number of the robots to collect all n balls. The results are summarized in Table 1 in
Section 1.

There are many possible extensions of the problems. For example, we can relax the track shapes of robots and/or
balls. Unfortunately, it is shown that the problems become intractable, if robots and/or balls move on general tracks.

Acknowledgements

The authors would like to thank the anonymous referee for their helpful comments which improved the presentation
of this paper.

Appendix A

A.1. Details of algorithm ANTICHAIN-PARTITION

In Section 2.1.2, we propose an O(n log n) algorithm to maximize the number of the balls collected by 1 robot on
a given track line. Algorithm ANTICHAIN-PARTITION computes a maximal pareto-optimal set Si in S in Step 1. In this
section, we show the details of finding a maximal pareto-optimal set Si , which can be done in O(|Si | log n) by utilizing
a balanced binary search tree.

First, we introduce procedure PARETO(p, S), to find a point bi∗ ∈ S such that yi∗ is maximum among the points in
S whose � value is larger than p. If such bi∗ does not exist, return ∅. (Fig. 7)

By procedure PARETO, the details of Step 1 of algorithm ANTICHAIN-PARTITION is described as follows:

Step 1 of Algorithm ANTICHAIN-PARTITION.
Input: A set of points S,
Output: A maximal pareto-optimal set Sr in S, and S := S\Sr ,

Step 1-0: Set Sr := ∅ and p := 0.
Step 1-1: Call PARETO(p, S), and let its output be bi∗ . If bi∗ = ∅, then let S := S\Sr , return S and halt.
Otherwise, let Sr := Sr ∪ {bi∗} and then return to Step 1-1.

Clearly Step 1 finds a maximal pareto-optimal set in S. In the rest of this section, we consider an efficient implemen-
tation of procedure PARETO by adding some devise to standard balanced binary search tree data structures. The ideas
of the devise are as follows:ce:displayed-quotece:simple-paraEach node of the binary tree corresponds to an element
of S, and keeps three values; the corresponding element’s (�, �) and �̃, the maximum value of � among node bi and its
successor nodes. The binary search tree is constructed by the normal rule according to only key value �. That is, � value
of each node is not smaller than its left child’s � and is smaller than its right child’s �. Fig. 8 shows an example of the
binary search tree, where three values ((a, b), c) at each nodes corresponds to �, � and �̃, respectively. Now, we consider

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2259

p

bi*

Fig. 7. Procedure PARETO.

((50,21),60)

((75,30),60)

((82,20),30)

((60,60),60)

((88,25),25)

((78,30),30)

((25,18),40)

((78,15),15) ((80,19),19)

1

2 3

4 5

6 7

8 9

Fig. 8. An example of the binary search tree.

how to execute procedure PARETO(p, S). For simplicity, in the explanation, we assume that all � values are different,
without loss of generality.

Procedure PARETO(p, S)

Input: A balanced binary tree S, defined as above, p: a value.
Output: bi∗ ∈ S such that yi∗ is maximum among the points in S whose � value is larger than p, if exists.
Otherwise, return ∅.

Step 0: Traverse the binary tree by moving to the right child until finding the node bi such that �i �p.
(We call this node base.) Then, set c∗ := �̃i and goto Step 2-1. If such a node does not exist, then return ∅
and halt.

2260 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

Step 1: If �i �p, then goto Step 2-1, and if �i < p then goto Step 2-2.
Step 2-1: (�i �p)] If � = c∗ holds, then return bi and halt. Otherwise, check if bi has only a right child, or
the left child bi′ satisfies �̃i′ < c∗. If yes, goto Step 3. Otherwise, move to bi′ (i.e., set i := i′)
and goto Step 1.
Step 2-2: (�i < p)] Check if bi is a leaf node, or the right child bi′ satisfies �̃i′ < c∗. If yes, goto Step 4.
Otherwise, move to bi′ (i.e., set i := i′) and goto Step 1.
Step 3: Move to the right child bi′′ , and traverse the subtree by moving to the node satisfying �̃

î
= c∗, until

�
î
= c∗ holds. Return b

î
as bi∗ and halt.

Step 4: If bi is not a leaf node, call PARETO(p, S′), where S′ is the subtree from bi , and let the output be
bi∗∗ . (If bi is not a leaf node, set bi∗∗ := ∅.) Backtrack to the base node as we check the right children of all the
intermediate nodes; find the maximum �̃ value c∗∗. If �i∗∗ is larger than c∗∗, then output bi∗∗ .
Otherwise, move to c∗∗ node and goto Step 3.

For example, PARETO(70, S) in Fig. 8 outputs b6 = (78, 30) as follows: First, node 3 is defined as the base node and
c∗ := 60 (Step 0). Move to node 4 (Step 2-1, Step 1, Step 2-2). Since node 4 is a leaf node, go to Step 4. Backtrack to
node 3 and its right child 5, then node set c∗∗ := 30 and traverse node 5 → 6 (�6 = c∗∗).

All the steps of PARETO(p, S) can be done in linear time of the height of the tree. If all the basic operations, such
as INSERT, BALANCE, DELETE and FIND, can be implemented in the same computational time as standard balanced
binary search trees, the height of the tree is also kept in O(log |S|); i.e., PARETO(p, S) can be done in O(log |S|). In
fact, all the operations can be done in O(log |S|). The reasons are as follows: Our binary search tree is different from
standard balanced binary search trees in the point that only our tree needs to keep the values of �̃. However, since only
the comparison between children’s �̃ and its own � is needed for the update of �̃, all the extra computational steps are
absorbed in the order of original computational steps of INSERT and so on. That is, procedure PARETO(p, S) can be
executed in O(|Si | log n).

Therefore, we have the following lemma, which leads to Theorem 4.

Lemma 5. In Step 1 of algorithm ANTICHAIN-PARTION, Si can be computed in O(|Si | log n).

A.2. The proof of Lemma 2

In this subsection, we show the proof of Lemma 2, which is omitted in Section 4.1.

Lemma 2. The number of the intervals I
p
ij representing Iij for i, j ∈ V is O(1), and the interval representation of Iij

can be computed in O(1) time.

Proof. We consider the condition that a robot who caught ball bi can catch ball bj after catching bi . We consider
the case that � ∈ (−�/2, �/2) instead of [0, �), since they are essentially same and it simplifies the proof. Let i = 1
and j = 1 in this proof without loss of generality. Ball b1 and b2 start at their initial points p

(0)
1 = (x

(0)
1 , y

(0)
1) and

p
(0)
2 = (x

(0)
2 , y

(0)
2) with velocities v1 = (v1 cos �1, v1 sin �1) and v2 = (v2 cos �2, v2 sin �2), respectively. Balls b1 and

b2 cross the track line, so

tan �1 �= tan � and tan �2 �= tan �.

The points at which b1 and b2 cross the track line are

p1(�) =
(

y
(0)
1 − x

(0)
1 tan �1

tan � − tan �1
,
y

(0)
1 − x

(0)
1 tan �1

tan � − tan �1
tan �

)
,

and

p2(�) =
(

y
(0)
2 − x

(0)
2 tan �2

tan � − tan �2
,
y

(0)
2 − x

(0)
2 tan �2

tan � − tan �2
tan �

)
,

Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262 2261

trackline

θ
 ϕ2

p2(θ)

p1(θ)

 ϕ1

(x1 ,y1)(0) (0) (x2 ,y2)(0) (0)

Fig. 9. A robot, balls b1 and b2, and trackline.

respectively (see Fig. 9). The time when b1 touches the track line is

t1(�) = p
(0)
1 p1(�)/v1

= 1

v1

√√√√(y
(0)
1 − x

(0)
1 tan �1

tan � − tan �1
− x

(0)
1

)2

+
(

y
(0)
1 − x

(0)
1 tan �1

tan � − tan �1
tan � − y

(0)
1

)2

= |y(0)
1 − x

(0)
1 tan �|

v1| cos �1|| tan � − tan �1|
,

and the time when b2 touches the track line is

t2(�) = p
(0)
2 p2(�)/v2

= 1

v2

√√√√(y
(0)
2 − x

(0)
2 tan �2

tan � − tan �2
− x

(0)
2

)2

+
(

y
(0)
2 − x

(0)
2 tan �2

tan � − tan �2
tan � − y

(0)
2

)2

= |y(0)
2 − x

(0)
2 tan �|

v2| cos �2|| tan � − tan �2|
,

where the distance between points pa and pb is denoted by papb. Here, the condition that the robot catching b1 can
catch b2 is

p1(�)p2(�)�v(t2(�) − t1(�)), (1)

where

p1(�)p2(�) =
∣∣∣∣∣y

(0)
1 − x

(0)
1 tan �1

tan � − tan �1
− y

(0)
2 − x

(0)
2 tan �2

tan � − tan �2

∣∣∣∣∣
√

1 + tan2 �.

2262 Y. Asahiro et al. / Discrete Applied Mathematics 154 (2006) 2247–2262

By inequality (1), we obtain two inequalities, t2(�)� t1(�) and p1(�)p2(�)
2 �v2(t2(�) − t1(�))2. The former

|y(0)
2 − x

(0)
2 tan �|

v2| cos �2|| tan � − tan �2|
� |y(0)

1 − x
(0)
1 tan �|

v1| cos �1|| tan � − tan �1|
(2)

yields four quadratic inequalities of tan �. The conditions can divide interval I12 into at most 9 parts, since tan � is a
monotonically increasing function. The latter is transformed into

((y
(0)
1 − x

(0)
1 tan �1)(tan � − tan �2) − (y

(0)
2 − x

(0)
2 tan �2)(tan � − tan �1))

2(1 + tan2 �)

� 1

v2

(
|y(0)

2 − x
(0)
2 tan �|| tan � − tan �1|

v2| cos �2|
− |y(0)

1 − x
(0)
1 tan �|| tan � − tan �2|

v1| cos �1|

)2

, (3)

which also yields four quadratic inequalities of tan �, so the interval can be divided into at most 21 parts. Hence, the
condition that a robot who caught ball b1 can catch ball b2 after catching b1 divides interval I12 into O(1) intervals.
Moreover, these conditions can be computed in O(1), since the degrees of polynomial inequalities (2) and (3) are both
at most 4; the formulae of computing the roots are known. �

References

[1] R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[2] Y. Asahiro, T. Horiyama, K. Makino, H. Ono, T. Sakuma, M. Yamashita, How to Collect Balls Moving in the Euclidean Plane, Electronic Notes

in Theoretical Computer Science, vol. 91, 2004, pp. 229–245.
[3] M.Atallarh, S. Kosaraju, Efficient solutions to some transportation problems with applications to minimizing robot arm travel, SIAM J. Comput.

17 (1988) 849–869.
[4] S. Browne, U. Yechiali, Scheduling deteriorating jobs on a single processor, Oper. Res. 38 (1990) 495–498.
[6] W.J. Cook, W.H. Cunningham, W.R. Pulleyblank, A. Schrijver, Combinatorial Optimization, Wiley, New York, 1998.
[7] S. Evan, A. Itai, A. Shamir, On the complexity of timetabling and multicommodity flow problems, SIAM J. Comput. 5 (4) (1976) 691–703.
[8] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman, New York, 1979.
[9] M. Hammar, B.J. Nilsson, Approximation results for kinetic variants of TSP, 26th International Colloquium, Automata, Languages and

Programming, ICALP’99, Lecture Notes in Computer Science, vol. 1644, 1999, pp. 392–401.
[10] C.S. Helvig, G. Robins, A. Zelikovsky, Moving target TSP and related problems, Sixth Annual European Symposium, Algorithms—ESA ’98,

Lecture Notes in Computer Science, vol. 1461, 1998, pp. 453–464.
[11] Y. Karuno, H. Nagamochi, T. Ibaraki, Better approximation ratios for the single-vehicle scheduling problems on line-shaped networks, Networks

39 (4) (2002) 203–209.
[12] D.E. Knuth, Fundamental Algorithms, Addison-Wesley, Reading, MA, 1997.
[13] L. Lovász, M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, vol. 29, North-Holland, Amsterdam, 1986.
[14] C.L. Monma, C.N. Potts, On the complexity of scheduling with batch setup times, Oper. Res. 37 (1989) 798–814.
[15] G. Mosheiov, V-shaped policies for scheduling deteriorating jobs, Oper. Res. 39 (6) (1991) 979–991.
[16] H.N. Psaraftis, M.M. Solomon, T.L. Magnanti, T. Kim, Routing and scheduling on a shoreline with release times, Management Sci. 36 (2)

(1990) 212–223.
[18] J.N. Tsitsiklis, Special cases of traveling salesman and repairman problems with time windows, Networks 22 (1992) 263–282.
[19] S.T. Webster, K.R. Baker, Scheduling groups of jobs on a single machine, Oper. Res. 43 (1995) 692–703.

	How to collect balls moving in the Euclidean plane62626262
	Introduction
	BCPs with a given single track-line
	Single robot BCP
	DAG based algorithm
	Chart based algorithm

	=k-Robot BCP with a given single track-line

	BCPs with given multiple track-lines
	BCPs with arbitrary track-lines
	Selecting track-lines
	Collecting all balls by a single robot
	The NP-hardness cases

	Conclusion and discussions
	Acknowledgements
	Appendix A
	Details of algorithm ANTICHAIN-PARTITION
	The proof of Lemma 2

	References

