His⁸⁴ rather than His³⁵ is the active site histidine in the corrinoid protein MtrA of the energy conserving methyltransferase complex from *Methanobacterium thermoautotrophicum*

Karin Sauer, Rudolf K. Thauer*

Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie, Fachbereich Biologie der Philipps-Universität Marburg, Karl-von-Frisch-Straße, D-35043 Marburg, Germany

Received 4 September 1998

Abstract The energy conserving corrinoid containing MtrA-H complex from *Methanobacterium thermoautotrophicum* is composed of eight different subunits of which MtrA harbors the corrinoid prosthetic group, the corrinoid being bound in the base-off/His-on configuration. Based on sequence comparisons it was recently proposed that His³⁵ of MtrA is the active site histidine. We report here that His⁸⁴ rather than His³⁵ is the axial ligand to the cobamide in MtrA.

© 1998 Federation of European Biochemical Societies.

Key words: Corrinoid protein; B_{12} binding motif; N^5 -Methyltetrahydromethanopterin:coenzyme M methyltransferase; Methanogenic archaeon

1. Introduction

The energy conserving methyltransferase complex from methanogenic archaea catalyzes the exergonic formation of methyl-coenzyme M and tetrahydromethanopterin from N^5 -methyltetrahydromethanopterin and coenzyme M ($\Delta G^{\circ\prime} = -30$ kJ/mol) and couples this reaction with the electrogenic translocation of sodium ions over the cytoplasmic membrane, in which the complex is integrated [1]. The complex is composed of eight different subunits designated MtrA–H and contains per mol 1 mol 5-hydroxybenzimidazolylcobamide [2]. The 23 kDa subunit MtrA harbors the corrinoid prosthetic group. EPR spectroscopic evidence indicates that the cobamide is bound to MtrA in the base-off/His-on configuration [3].

Corrinoid proteins with the corrinoid bound in the base-off/ His-on configuration generally show the consensus sequence $DxHxxG-x_{41-42}-SxL-x_{24-28}-GG$ (Fig. 1) [4–6]. The histidine in the sequence is the lower ligand to the cobalt of the protein bound corrinoid. The consensus sequence, in a modified form, was recently proposed to be present also in MtrA from *Methanosarcina mazei*, *Methanococcus jannaschii*, *Methanopyrus kandleri*, and *Methanobacterium thermoautotrophicum* [7] (Fig. 1). It was concluded that the conserved histidine in the modified consensus sequence is the histidine to which the cobalt of the cobamide in MtrA is bound. In MtrA of *M. thermoautotrophicum* this conserved histidine is His³⁵.

The conclusion that His³⁵ of MtrA is involved in cobamide

binding conflicts with a recent report that His^{84} of MtrA from *M. thermoautotrophicum* was identified by site-directed mutagenesis to be the active site histidine [11]. We have therefore reinvestigated the problem by analyzing a $His^{35}Lys$ mutant.

2. Materials and methods

The gene *mtrA*, in the truncated form *mtrA* 1, was mutated and heterologously expressed in *Escherichia coli* as described [11]. The His³⁵Lys mutation was confirmed by sequencing. The overproduced MtrA 1 apoprotein was purified and reconstituted to the corrinoid holoprotein with cob(II)alamine [3]. From the holoprotein EPR spectra were recorded at 77 K using a Bruker EMX EPR spectrometer equipped with a Bruker ER 041 XG microwave bridge (X-band) and a Bruker NMR gauss meter EMX 035. The data were analyzed with the EPR software WIN-EPR. The purified MtrA protein was subjected to Edman degradation which was kindly performed by Dr. D. Linder (Biochemisches Institut, Justus-Liebig-Universität, Gießen).

3. Results and discussion

An interaction of a histidine residue via one of its nitrogens with the cobalt in cobalamine can be determined by EPR spectroscopy [12–15]. The corrinoid in the cob(II) oxidation state shows an EPR spectrum with the g_z signal split into eight equally spaced lines due to interaction of the electron with the cobalt(II) nucleus (nucleus spin 7/2). When the cobalt(II) is axially ligated by a histidine the eight lines are further split into triplets signaling the interaction of the electron with the ¹⁴N in the axial ligand (nucleus spin = 1). When the axial ligand is a ¹⁵N-labeled histidine the EPR spectrum will exhibit a doublet hyperfine splitting due to the interaction of the electron with the ¹⁵N in the axial ligand (nucleus spin = 0.5).

MtrA of *M. thermoautotrophicum* contains in its sequence three histidines, His^{35} , His^{84} and His^{95} [2]. To determine whether His^{35} interacts with the cobalt of the protein bound corrinoid the His^{35} was mutated to Lys. The $His^{35}Lys$ mutated MtrA apoprotein was isolated from *E. coli* cells grown on minimal medium containing (A) ($^{14}NH_4$)₂SO₄ (8 mM), (B) ($^{15}NH_4$)₂SO₄ (8 mM) or (C) ($^{15}NH_4$)₂SO₄ (8 mM) and [^{14}N]histidine (5 mM) and the holoprotein was reconstituted from the apoprotein and [^{14}N]cobalamine. The EPR spectra of the holoprotein in the cob(II)alamine oxidation state thus obtained are shown in Fig. 2. The spectrum shows triplet hyperfine splitting in experiments A and C and doublet hyperfine splitting in experiment B, indicating that a nitrogen of histidine interacts with cobalt(II) of the cobalamine in the MtrA holoprotein $His^{35}Lys$ mutant.

It had to be ascertained that His³⁵ was really mutated to Lys in the heterologously produced MtrA 1 protein. The mu-

^{*}Corresponding author. Fax: (49) (6421) 178209. E-mail: thauer@mailer.uni-marburg.de

A. Consensus sequence of the B₁₂ binding motif

--DxH xxG -x₄₁₋₄₂- SxL -x₂₄₋₂₈- GG--

B. Sequence in MtrA proposed to be a modified B₁₂ binding motif

MetH, MtaC, MtmC, MttC,

MtsB, MutS, MutB

Fig. 1. Consensus sequence of the B_{12} binding motif [6] and the sequence in MtrA proposed to be a modified B_{12} binding motif [7]. A: MetH, cobalamine-dependent methionine synthase; MtaC, MtmC, MttC and MtsB, corrinoid proteins involved in methyl transfer from methanol, monomethylamine, trimethylamine and methylthiols, respectively, to coenzyme M; MutS, glutamate mutase; and MutB, methylmalonyl-CoA mutase. For sequences see [4,5,8–10]. In methyltransferases but not in mutases the two amino acids between the active site histidine and the glycine are conserved: HDIG. In some cases serine is replaced by threonine. The aspartate in the B_{12} binding motif has a function in the protonation of the active site histidine in the catalytic cycle [6]. B: MtrA, corrinoid harboring 23 kDa subunit of the N^5 -methyltetrahydromethanopter-in:coenzyme M methyltransferase complex from methanogenic archaea. For sequences see [7].

tated protein was therefore subjected to Edman degradation. The sequence revealed that His³⁵ was indeed replaced by a Lys:

The results show that in MtrA His³⁵ is not the active site histidine as suggested by the alignment shown in Fig. 1. His⁹⁵ had previously been excluded [11]. Thus His⁸⁴ has to be the active site histidine. This is substantiated by the finding that MtrA apoprotein mutated in His⁸⁴ no longer reconstituted with cobalamine to the holoprotein [11].

His⁸⁴ is not part of a sequence with the general corrinoid binding motif indicating that binding of B_{12} in MtrA must be different from that in other corrinoid proteins with B_{12} bound in the base-off/His-on configuration. This may reflect that the MtrA-H complex differs from all other corrinoid proteins in catalyzing a reaction coupled with energy conservation via electrogenic sodium ion translocation [16].[8–11] in figs

Acknowledgements: This work was supported by the Max-Planck-Gesellschaft, by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie.

References

 Deppenmeier, U., Müller, V. and Gottschalk, G. (1996) Arch. Microbiol. 165, 149–163.

Fig. 2. EPR spectrum of mutated MtrA1 (His³⁵Lys). The holoprotein was reconstituted from the MtrA 1 apoprotein and [¹⁴N]cobalamine [11]. A: MtrA1 (His³⁵Lys) apoprotein isolated from *E. coli* cells grown on (¹⁴NH₄)₂SO₄-containing minimal medium. B: MtrA1 (His³⁵Lys) apoprotein isolated from *E. coli* cells grown on (¹⁵NH₄)₂SO₄-containing minimal medium. C: MtrA1 (His³⁵Lys) apoprotein isolated from *E. coli* cells grown on (¹⁵NH₄)₂SO₄-tontaining minimal medium. C: MtrA1 (His³⁵Lys) apoprotein isolated from *E. coli* cells grown on (¹⁵NH₄)₂SO₄+[¹⁴N]histidine-containing minimal medium. The instrument settings were as follows: microwave frequency, 9430 MHz; microwave power, 12.7 mW; modulation frequency, 100 kHz; modulation amplitude, 0.8 mT; temperature, 77 K.

- [2] Harms, U., Weiss, D.S., Gärtner, P., Linder, D. and Thauer, R.K. (1995) Eur. J. Biochem. 228, 640–648.
- [3] Harms, U. and Thauer, R.K. (1996) Eur. J. Biochem. 241, 149– 154.
- [4] Marsh, E.N.G. and Holloway, D.E. (1992) FEBS Lett. 310, 167– 170.
- [5] Drennan, C.L., Huang, S., Drummond, J.T., Matthews, R.G. and Ludwig, M.L. (1994) Science 266, 1669–1674.
- [6] Ludwig, M.L. and Matthews, R.G. (1997) Annu. Rev. Biochem. 66, 269–313.
- [7] Lienard, T. and Gottschalk, G. (1998) FEBS Lett. 425, 204-208.
- [8] Sauer, K., Harms, U. and Thauer, R.K. (1997) Eur. J. Biochem. 243, 670–677.
- [9] Burke, S.A., Sam, L.L. and Krzycki, J.A. (1998) J. Bacteriol. 180, 3432–3440.
- [10] Paul, L. and Krzycki, J.A. (1996) J. Bacteriol. 178, 6599-6607.
- [11] Harms, U. and Thauer, R.K. (1997) Eur. J. Biochem. 250, 783– 788.
- [12] Stupperich, E., Eisinger, H.J. and Albracht, S.P.J. (1990) Eur. J. Biochem. 193, 105–109.
- [13] Zelder, O., Beatrix, B., Kroll, F. and Buckel, W. (1995) FEBS Lett. 369, 252–254.
- [14] Padmakumar, R., Taoka, S., Padmakumar, R. and Banerjee, R. (1995) J. Am. Chem. Soc. 117, 7033–7034.
- [15] Sauer, K. and Thauer, R.K. (1998) Eur. J. Biochem. 253, 698– 705.
- [16] Harms, U. and Thauer, R.K. (1998) in: Vitamin B₁₂ and B₁₂-Proteins (Kräutler, B., Arigoni, D. and Golding, B.T., Eds.), pp. 157–165, Wiley-VCH, Weinheim.