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ABSTRACT

We first find inequalities between the Stirling numbers S(n, #) for fixed n, then
introduce functions L and U such that L(n, r) < S(n, r) << U(n, r), and finally obtain the
asymptotic value n/log n for the value of r for which S(r, r) is maximal.

The Stirling number of the second kind S(n,r) is the number of
partitions of # things into r non-empty sets; it is positive if 1 < r < n
and zero for other values of r. It satisfies the recurrence relation

Sn+ L, r)y=8Snr — 1)+ S, r). (1)

Other properties are given by Riordan in [1].
It is known [2] that, for fixed n, S(n, r) has a single maximum—more
explicitly, that there is &, such that
S(n, 1) < 8(n, 2) < -+ < S, k,)
and
S, k) = S, k, + 1) > - > S(n, n).
= 1,S80n, 1) = S, n =1,

S(n, 2) = 21 — 1

Lemma 1. Foralln

and
S, n — 1) = tn(n — 1).

The first few Stirling numbers are given in the table below; S(n, r) being
the r-th element in row n:

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
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Proor: Each of the identities may be proved by induction on n
using (1).

LemMA 2. Ifm >2and(m — 2)S2m — 3, m — 1) > mS(2m — 3, m)
then
SC2m — 2, m — 1) > S@m — 2, m).
Proor: By the recursion (1),
SCm —2,m— 1) — SCm — 2, m)
=8Cm —3,m—2) 4+ (m —2)SCm — 3,m — 1) — mSQ2m — 3, m);
since the first term is positive, this is
>m—2)S2m — 3, m — 1) — mSQm — 3, m)
>0 by hypothesis.

THEOREM 1. Ifn =4 and 3(n + 1) <r < n — 1 then
(n—r)S@,r) >+ 1)Shr+1) @
and if n = 2 then
SQ2n, n) > S2n, n + 1).

Proor: The inequality (2) holds when »n = 4. Also, for n > 4
(2) holds when r = n — 1 since by Lemma 1

S(n, n — 1) — nS(n, n) = tn(n — 3) > 0.

B

Now we use induction on n, taking as our induction hypothesis:
mn—1—rNSr—1,r>C+DSE—1,r+1)
if tn <{r << n — 2. Thus
Smh—Lr—1)>8n—1,r)

for tn + 1 << r < n — 1. By the recurrence relation (1) and the induction
hypothesis:

Sn,ry Sn—Lr—1D+rS(z—1,r)
S, r-+1) Sh—1,r)FF+DSE—1,r+1)

Sn—1,r— 1) +rS(r— 1,r)
= =S —1,n g

%n<r<n~2

r+1

n-—r

>

for %n+1<r<n——2.
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If nis even,
{r;

so that (2) has been established when 4(n + 1) << r << n — 2.
If n is odd we still have to consider the case r = i(n + 1). Let
n = 2m — 1, then r = m. By the induction hypothesis

(m—2)8SCm — 3, m — 1) > mS2m — 3, m)

s

in -1 <r<n—-2={rnin+H <r<n-—-2},

[

so that by Lemma 2 SQ2m — 2, m — 1) > SQm — 2, m), that is,
Sn—1,r—1)>8Sn—1,r).

Thus whether # is even or odd the inequality (2) has been established
for{(n + 1) < r < n — 2 but we also know that it holds whenr = n — [;
therefore the proof of (2) by induction is complete.

The second part of the theorem follows from Lemma 2.
COROLLARY. Kk, < i(n + 1).

THEOREM 2. [Ifn = 2andl < r < dn, then
S, r) = Sm,n—r+1). 3)
In fact if n = 4 and 2 < r << §n, the following stronger result is true:
S, r) > S, n—r -+ 1). (4)
PrOOF: We begin by establishing (4) by induction on #. From the
values given in Lemma 1 the result is clear when #» = 4. Let us suppose
that S(n — 1,r) > S(n — 1, n — r) whenever 2 <C r <C $(n — 1). Using (1)
we obtain
Sy r)y=8n—1,r—1)+rSn —1,r)
> rS(n — 1, r)
>rS(n — l,n — r) if 2<r<in-— 1.

In Theorem 1 it was shown that
r—=0DS—ln—r)>m—r+ 1S —1,n—r+41)
ifin <n—r << n— 2, thatis, if2 < r << 3n. By (1)

S,n—r+1)=8#n—-1,n—r)+mn—r+1)SH—1,n—r-+1
<Smn—Ln—r)y+ ¢ —0DSH—-1,n—r)

if 2<r<in
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Thus if 2 < r =< 3(n — 1) we have

S, ry = rS(n— 1, n—r) > S, n—r-+ 1)
For r = in, the inequality (4) is established in Theorem 1. Therefore
if 2 =2 r <C4n we have deduced that S(n,r) > S(n,n — r -+ 1) so that

the proof by induction of the stronger result is complete.
The inequality (3) follows from (4) and the results of Lemma 1.

Forl <{r «<{n—1,let

Lin,r) = ;(r’ - p e 2) el ]
and
Loy o,
U@, r) = _2‘(r)r .

THEOREM 3. [Ifn =2and 1 << r < n — 1, then
L(n, r) << S(n, r) =2 Un, r).
ProOE: The inequalities are proved by induction on s#. From Lemma 1

it can be seen that they are valid for » = 2 and valid for any » when
r =1 or when r = n — 1. In fact, there is equality when r == n — 1.

First, suppose that L(w — 1,r) <2 St — 1,r) if 1 =0r <in—2,
Using (1) we have, if 2 <" r <C n — 2,
S, r)y=Sn—1,r—1) +rSn—1,r)
M D Dt — L Y b 2)
G e A ()
and since the inequality also holds for r == 1 and » — 1 it holds for
1 < r << n— 1, which completes the proof by induction.
Second, suppose that S(n — 1, r) = Un — L,r)y if | < r ln— 2.
Again using (1) we find if 2 =7 » <{ n — 2 that

2
Ly ]
(sirn—r ((2_ 1 - (‘17 . ))
1
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by the recurrence relation for binomial coefficients. Thus this inequality
holds for 1 <Cr << n — 1, because for the cases r = 1 and r = n — 1
it is already proved. This completes the proof by induction, so that we have
established the theorem.

Finally we derive an asymptotic value for k,, .
THEOREM 4. When n is large

. 1/2 —3/2
kn Togn O(n(log log n)1/% (log n)=3/%).

Proor: For all sufficiently large » define integers r,, r,, and r; as
follows:
n

ry = Tog (1 — ¢+ 0(1),

n
ry = m + 0(1),

and
n

r = qop (1 9+ 00),

where ¢ = 2(log log n)!/2 (log n)~1/% and the 0O(1) terms are included to
ensure that r; , ry, and r; are integers.
log L(n, ry) = (n — ry) log ry + 0(log n)

nloglogn

Tog + O(log n).

= nlogn —nloglogn —n -+

Stirling’s formula for factorials gives
log Un,r) = nlogn + (n — 2r)logr — (n — r) log(n — r) + O(log n)

so that both log U(n, ry) and log U(n, r3) are

loglogn 1 ( n

_ _ 2
Tog 1 5 ne + 0 fog ”) < log L(n, r,)

nlogn -nloglogn—n - 2n

Therefore by Theorem 3, for all sufficiently large n,
S(”) r2) 2 L(”7 rz) > U(") rl) > S(”, rl)

and
S(l’l, "2) 2 L(”: r2) > U(/’l, r3) > S(I’I, r3)'

Since ry, << ry, << ryit follows that r; <k, <r,.
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COROLLARY.

B log log n
, max_ log S(n,r) = nlogn — nloglogn —n -+ 0 (n “Togn )
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