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1. Introduction and main results

In this paper we investigate an extension of Deligne’s product of abelian categories [3] to the cat-
egory C-bimodule categories. This new product is denoted by X. Here C refers to a tensor category
over field k which we take, in general, to be of characteristic 0. This new tensor product reduces to
Deligne’s product when C = Vec, the fusion category of finite dimensional k-vector spaces.

First steps in defining this extended product involve defining balanced functors from the Deligne
product of a pair of module categories. This approach mimics classical definitions of tensor product
of modules as universal object for balanced morphisms. Tensor product of module categories is then
defined in terms of a universal functor factoring balanced functors. In Section 5 we prove

Theorem 1.1. For any tensor category C, the associated 2-category B(C) of C-bimodule categories equipped
with the tensor product X becomes a (non-semistrict) monoidal 2-category in the sense of [1].

In [4] constructions similar to these were defined for k-linear categories as part of a program
to study the representation categories of Hopf algebras and their duals. Balanced functors appeared
under the name bilinear functors, and the tensor product there is given in terms of generators and
relations instead of the universal properties used here. The tensor product was defined and applied
extensively by [2] in the study of semisimple module categories over fusion C.

In order to apply the tensor product of module categories we provide results in Section 3.3 giving
2-category analogues to classical formulas relating tensor product and hom functor. In this setting
the classical hom functor is replaced by the 2-functor Fune giving categories of right exact C-module
functors.

As an immediate application we prove in Section 6 a result relating de-equivariantization of tensor
category C to tensor product over Rep(G), the category of finite dimensional representations of finite
group G in Vec. Let A be the regular algebra in Rep(G). Recall [5] that for tensor category C over
Rep(G) (see Definition 6.1) the de-equivariantization C; is defined to be the tensor category of A-
modules in C. We prove

Theorem 1.2. There is a canonical tensor equivalence Cg ~ C Mrep(c) Vec such that the canonical functor
C — C XRep(c) Vec is identified with the canonical (free module) functor C — Cg.

After introducing the notion of center of bimodule category (Section 7) we are able to prove a
monoidal-structure preserving 2-equivalence between the 2-category of C-bimodule categories and
Z(C)-Mod, module categories over the center Z(C):

Theorem 1.3. There is a canonical monoidal equivalence between 2-categories 3(C) and Z(C)-Mod.

In Section 8 we show that, for arbitrary finite group G, fusion rules for Rep(G)-module categories
over XMgep(g) correspond to products in the twisted Burnside ring over G (see e.g. [6] and [7]). As a
side effect we show that the group of indecomposable invertible Rep(G)-module categories is isomor-
phic to H2(G, k*) thus generalizing results in [2] given for finite abelian groups.

2. Preliminaries

Very little in this section is new. Where it seemed necessary to do so we have indicated sources.
In most cases what is included here has become standard and so we have omitted references (as
general references we suggest [8,9]).

2.1. Braiding, module categories

In this paper all categories are assumed to be abelian and k-linear, have finite dimensional hom
spaces, and all functors are assumed to be additive. Even though most of what we do here is valid
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over fields of positive characteristic we assume at the outset that k is of characteristic 0. All tensor
categories are rigid and so they are finite tensor categories in the sense of [10].

Definition 2.1. A tensor category C is said to be braided if it is equipped with a class of natural
isomorphisms

cvw: VoW -weV (1)

for objects V, W € C satisfying the pair of hexagons which can be found in [9] among many other
places.

When C is strict these reduce to commuting triangles

cu,vew = (dv @ cy,w)(cy,v ®idw), (2)
cugv.w = (cu,w ®idy)(idy ® cy w). (3)

In Section 7 we show how braiding gives module categories bimodule structure.
In the next two examples G is a finite group.

Example 2.2. Rep(G), the category of finite dimensional representations of G, is a braided tensor cat-
egory with the usual tensor product. For 2-cocycle u € Z2(G,k*) the category Rep, (G) of projective
representations of G corresponding to Schur multiplier i constitutes a tensor category though is in
general not braided.

Example 2.3. The category Vec? of finite dimensional G-graded vector spaces twisted by w €
H3(G,k*) is a rigid monoidal category. Simple objects are given by kg (gth component k, O else-
where) with unit object kq. Associativity is given by w and tensor product is defined by

(VW)= P Vh® W, (4)
hk=g

and (V¥)g=(*V)g = Vg-1.1n general Vecy is not braided.

Definition 2.4. The center Z(C) of a monoidal category C is the category having as objects pairs (X, c)
where X € C and for every Y €C,cy : Y ® X - X ®Y is a family of natural isomorphisms satisfying
the hexagon

cxv,z
XQRY)®Z —— Z®(X®Y)

-1 -1
Uxy.z az.xy

XR(Y®2Z) ZeX)®Y

X®ZRY) —— X®2)Y

Uy zy

for all Y,Z € C. Here a is the associativity constraint for the monoidal structure in C. A morphism
(X,0) = (X', c) is a morphism f € Home (X, X') satisfying the equation ¢y (f ® idy) = (idy ® f)cy
for every Y € C.
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The center Z(C) has the structure of a monoidal category as follows. Define the tensor product
X,0)® (X', c')=(X® X’,¢) where ¢ is defined by the composition

a—l

YOXDX) 5 (Y @X)®X —— XQY)® X'

EyJ/ lax,y,x’

X®X)NQY +— X@(X'®Y) ¢+—— X® (Y ®X)
O X'y ¥

If r and ¢ are the right and left unit constraints for the monoidal structure in C then the unit object
for the monoidal structure in Z(C) is given by (1,r71¢) as one may easily check. Suppose now that
C is rigid and X € C has right dual X*. Then (X, c) € Z(C) has right dual (X*, ) where cy := (CI)})*
and *Y is the left dual of Y. One may also check that Z(C) is braided by c(x ¢)o(x',cy := C.

There is a canonical inclusion of monoidal category C into its center given by X > (X, cx). It is
well known that the center Z(C) is in some sense “larger” than C. This differs from the classical
analogue in which a ring contains its center. We generalize the notion of center in Section 7.

The next definition is essential for this paper.

Definition 2.5. A left module category (M, i) over tensor category C is a category M together with a
bifunctor @ : C x M — M and a family of natural isomorphisms px y m: (XQY)®M — X® (Y @ M),
Iy:1®@M— M for X,Y € C and M € M subject to certain natural coherence axioms (see [11], for
example). Similarly one defines the structure of right module category on M. If the structure maps
are identity we say M is strict as a module category over C.

Note 2.6. It is possible to prove an extended version of MacLane’s strictness theorem for module
categories which reduces to the monoidal strictness theorem in the regular module case. The proof
given in [12] mimics the proof of the monoidal strictness theorem found in [13].

Example 2.7. Let G be a finite group with subgroup H. The category Rep,(H) of projective repre-
sentations of H (Example 2.2) constitutes a Rep(G)-module category with module category structure
defined by W ® V :=res(W) ® V whenever W € Rep(G), V € Rep, (H) and res : Rep(G) — Rep(H) is
the restriction functor.

Definition 2.8. For M, A left C-module categories a functor F : M — A is said to be a C-module
functor if F comes equipped with a family of natural isomorphisms fx py: F(X® M) - X ® F(M)
satisfying coherence diagrams (again see [11]). We will write (F, f) when referring to such a functor.
A natural transformation 7 : F = G for bimodule functors (F, f), (G,g) : M — N is said to be a
module natural transformation whenever the diagram

TX®M
FX@QM) ———  G(X® M)

fx.Ml lgx,m

XQ®FM) ———— X G(M)

idx®TxeN
commutes for all X e C and M € M.

Denote by Func (M, N) the category of left C-module functors having morphisms module natural
transformations. It is known that this category is abelian and it is semisimple if both M, N are
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semisimple (see [14] for details). We will have occasion to deal with categories of right exact module
functors and therefore fix notation now.

Definition 2.9. Functor F : A — B is said to be right exact if F takes short exact sequences 0 — A —
B — C— 0in A to sequences F(A) — F(B) — F(C) — 0 exact in . Similarly one defines left exact
functors. Denote by Fun(A, B) the category of right exact functors A — B. If A, B are left C-module
categories Func (A, B) is the category of right exact C-module functors.

2.1.1. Bimodule categories

In much of this paper we will be concerned with categories for which there are left and right
module structures which interact in a consistent and predictable way. In what follows X denotes the
product of abelian categories introduced in [3].

Definition 2.10. M is a (C, D)-bimodule category if M is a C X D°’-module category. If M and N
are (C, D)-bimodule categories call F : M — N a (C, D)-bimodule functor if it is a C X D°?-module
functor.

Note 2.11 (Notation). For C and D finite tensor categories we can define a new category whose
objects are (C, D)-bimodule categories with morphisms (C, D)-bimodule functors. Denote this cat-
egory by B(C, D). When C = D this is the category of bimodule categories over C, which we denote
by B(C). For M and N in B(C, D) denote by Func p(M,N) the category of (C, D)-bimodule func-
tors from M to .

Proposition 2.12. Let C, D be strict monoidal categories. Suppose M has both left C-module and right
D-module category structures u', " and a natural family of isomorphisms yxmy XM Y —
X®(M®Y) for X inC, Y in D making the pentagons

(XYM)Z — s (XY)(MZ)  (XM)(YZ) —— X(M(YZ)) (M) 2 10m1)

weid J /ﬂl tn J

(X(YM))Z ! (XM)Y)Z ideoy” M1 ™
yl y®idl fMl
X(YMZ) —— X(Y(MZ))  (X(MY)Z —— X(MY)2) M — 1M
id®y

commute. Then M has canonical (C, D)-bimodule category structure.
Proof. Straightforward ([12] contains details). O

Remark 2.13. For bimodule structure (M, ), y is given by yx My = Uxx1,1xy M over the inherent
left and right module category structures. In this way we get the converse of Proposition 2.12: every
bimodule structure gives separate left and right module category structures and the special constraints
described therein in a predictable way.

Remark 2.14. We saw in Proposition 2.12 that bimodule category structure can be described separately
as left and right structures which interact in a predictable fashion. We make an analogous observation
for bimodule functors. Let F : (M, y) — (N, ) be a functor with left C-module structure f* and right
D-module structure f, where (M, y) and (N, $) are (C, D)-bimodule categories with bimodule
consistency isomorphisms y, § as above. Then F is a (C, D)-bimodule functor iff the hexagon
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Fyx.m.y fremy
FXQM®Y)) +—— F(XM)QY) —— FXQM)®Y

f}%.M@YJ/ lf)[(,m‘gy

XQ@FMQY) — = XQ(FM)®Y) «— X®FM) QY
X®fyy )

X.F(M),Y

commutes for all X in C, Y in D, M in M. The proof is straightforward and so we do not include it.

For right C-module category M having module associativity p define fix y m = tm vy =x. Then
MP°P has left C-module category structure given by (X, M) — M ® *X with module associativity s 1.
Similarly, if M has left C-module structure with associativity o, then M° has right C-module cat-
egory structure (M, Y) — Y* ® M with associativity 6! for OM. X,y := Oy* x+ M. Lemma 2.18 simply
describes the bimodule structure in the opposite category of functors. This is a special case of the
following proposition.

Proposition 2.15. These actions determine a (D, C)-bimodule structure

YRX, M)~ X*®@M®*Y (5)

on M°P whenever M has (C, D)-bimodule structure. If y are the bimodule coherence isomorphisms for the
left/right module structures in M (see Proposition 2.12), then Yy m x = Yx*.m vy are those for M°P.

In the sequel whenever M is a bimodule category M will always refer to M with the bimodule
structure described in Proposition 2.15. In the following definition assume that module category M
is semisimple over semisimple C with finite number of isomorphism classes of simple objects.

Definition 2.16. For M, N € M their internal hom Hom (M, N) is defined to be the object in C repre-
senting the functor Homa(_ ® M, N) : C — Vec. That is, for any object X € C we have

Hom (X ® M, N) >~ Home (X, Hom (M, N)) (6)

naturally in Vec. It follows from Yoneda’s Lemma that Hom(M, N) is well defined up to a unique
isomorphism and is a bifunctor.

2.1.2. Exact module categories

It is desirable to restrict the general study of module categories in order to render questions of
classification tractable. In their beautiful paper [10] Etingof and Ostrik suggest the class of exact
module categories as an appropriate restriction intermediary between the semisimple and general
(non-semisimple, possibly non-finite) cases. Let P be an object in any abelian category. Recall that an
object P is called projective if the functor Hom(P, —) is exact.

Definition 2.17. A module category M over C is called exact if for any projective object P € C and
any M € M, the object P ® M is projective.

It turns out that exactness is equivalent to exactness of certain functors. We will not require the
general formulation here, but formulate the next lemma for exact module categories because exact-
ness ensures adjoints for module functors [10].
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Lemma 2.18. For M, N exact left C-module categories the association

Fune (M, N') 4 Fune (N, M)%P (7)

sending F to its left adjoint is an equivalence of abelian categories. If M, N are bimodule categories then this
equivalence is bimodule.

Proof. Clear. O
2.2. 2-categories and monoidal 2-categories

Recall that a 2-category is a generalized version of an ordinary category where we have cells of
various degrees and rules dictating how cells of different degrees interact. There are two ways to

compose 2-cells «, B: vertical composition S« and horizontal composition S x « as described by the
diagrams below.

f !
A 5B = A uaﬂB, A ﬂa B Uﬂ C = A ﬂﬁ*ac
N A A

o N A N A
\U/\ h h n h'h
h

It is required that a * 8 = (Beh)(f ea) = (W ex)(B e f) Where e signifies composition between 1-cells
and 2-cells giving 2-cells (see [15] for a thorough treatment of higher category theory and [16,17] for
theory of enriched categories). For fixed monoidal category C we have an evident 2-category with
0-cells C-module categories, 1-cells C-module functors and 2-cells monoidal natural transformations.

Example 2.19. The category of rings defines a 2-category with O-cells rings, 1-cells bimodules and
2-cells tensor products.

A monoidal 2-category is essentially a 2-category equipped with a monoidal structure that acts
on pairs of cells of various types. For convenience we reproduce, in part, the definition of monoidal
2-category as it appears in [1].

Definition 2.20. Let A be a strict 2-category. A (lax) monoidal structure on A consists of the following
data:

M1. An object 1 =14 called the unit object.

M2. For any two objects A, B in A a new object A ® B, also denoted by AB.

M3. For any 1-morphism u: A — A’ and any object B a pair of 1-morphisms u® B:A® B— A’® B
and BU:BRA—>BRA.

M4. For any 2-morphism
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and object B there exist 2-morphisms

U®B B®u
A®B ﬂm"’ AoB B®A BT BRA

N

V' QB Beu’

M5. For any three objects A, B, C an isomorphism aapc:A® (BQC) - (A® B)®C.
M®6. For any object A isomorphisms [4:1® A— Aandrg:A®1— A.
M7. For any two morphisms u:A — A/, v: B — B’ a 2-isomorphism

ARV
ARB — AQ B’

Vi
uéﬁl/&,u‘v lu@B’

A®B—— A QB

MS8. For any pair of composable morphisms A Lol A” and object B 2-isomorphisms

(u U)®B B® (u u)
A®B A"®B B®A B® A
A ® B B ® A
M9. For any four objects A, B, C, D a 2-morphism
A®ap c.p
ARBR®(C®D) —— A®((B®()®D)
aA.B.C®D®DJ
(A®B)®(C®D) aA,B,C,[/ aA,BRC.D
0A®B.C,DJ Y
(A®B)®CO)®D +—— (A®(BR®(C)®D
ap.B.c®D
M10. For any morphism u: A— A’,v:B— B, w:C — C’ 2-isomorphisms
dA,B.C aa,B,c
AR(B®C) —— (A®B)®C A®RBR®(C) —— (A®B)®C

u®(3®c)l%_c l(u@B)@C A®(v®C)L/M_C l(/\@v)@c

A®BRC)—— (A®B)R®C A® (B Q®C) —— (A®B)®C
aur g.c apB'c
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aa,B,c
ARBR(C) —— (A®B)®C

A®(B®W)J/%.w J/(A®B)®w

ARB®C) —— (A®B)®C
aa,B.c/

M11. For any two objects A, B 2-isomorphism

A®rp lags
ARB®1l) ——— A®B 1®(A®B) ——— AQ®B
PA,B AaB
ClA,B,lJ/ // al_A_BJ //
TA®B In®B
(A®B)®1 1®A)®B
AQlp
AR(1®B) ——— AQ®B
MA,B
aA,l.BJ/
rA®B
A®1)®B

M12. For any morphism u: A — A’ 2-isomorphisms

1Qu u®1
1A — 1A ARl — A'®1
1 5:/ Lar T, 5 Tar
I
A%A/ A%A/

M13. A 2-isomorphism € : 11 = [j.

These data are further required to satisfy a series of axioms given in the form of commutative
polytopes listed by Kapranov and Voevodsky. As well as describing the sort of naturality we should
expect (extending that appearing in the definition of 2-cells for categories of functors) these polytopes
provide constraints on the various cells at different levels and dictates how they are to interact. For
the sake of brevity we do not list them here but will refer to the diagrams in the original paper when
needed. In [1] these polytopes are indicated using hieroglyphic notation. The Stasheff polytope, for
example, (which they signify by (e @ e ® e ® @ ® ), p. 217) describes how associativity 2-cells and
their related morphisms on pentuples of 0-cells interact. In the sequel we will adapt their hieroglyphic
notation without explanation.

We digress briefly to explain what is meant by “commuting polytope.” This notion will be needed
for the proof of Theorem 1.1 Our discussion is taken from [1]. In a strict 2-category A algebraic
expressions may take the form of 2-dimensional cells subdivided into smaller cells indicating the way
in which the larger 2-cells are to be composed. This procedure is referred to as pasting. Consider the
diagram below left.



J. Greenough / Journal of Algebra 324 (2010) 1818-1859 1827

Edges are 1-cells and faces (double arrows) are 2-cells in A; T : gh=dk, V :ek = bc, U: fd = ae.
The diagram represents a 2-cell fgh = abc in A as follows. It is possible to compose 1-cell F and
2-cell « obtaining new 2-cells F x o, x F whenever these compositions make sense. If « : G = H,
these are new 2-cells FG = FH and GF = HF, respectively. Pasting of diagram above left represents
the composition

Feh L2 fdie 2% qek 2% abe. (8)

For 2-composition abbreviated by juxtaposition the pasting is then (a* V)(U % k)(f % T). In case the
same external diagram is subdivided in different ways a new 3-dimensional polytope may be formed
by gluing along the common edges. Thus the two 2-dimension diagrams can be combined along the
edges fgh and abc to form the new 3-dimensional polytope

We have labeled only those edges common to the two original figures. As an aid to deciphering
polytope commutativity we will denote the boundary with bold arrows as above. To say that the
polytope commutes is to say that the results of the pastings of the two sections of its boundary
agree. In such a case we say that the pair of diagrams composing the figure are equal: the 2-cells
they denote in A coincide.

3. Balanced functors and tensor products

In the remaining sections of this paper we will describe data giving the 2-category of C-bimodule
categories for a fixed tensor C the structure of a monoidal 2-category.

3.1. Preliminary definitions and first properties

In what follows all module categories are taken over finite tensor categories. Recall definition of
tensor functor (Definition 2.8) and of right exactness (Definition 2.9).

Definition 3.1. Suppose (M, u) right, (N, n) left C-module categories. A functor F: M XN — A is
said to be C-balanced if there are natural isomorphisms by x.y : F((M @ X) X N) ~ F(M X (X ® N))
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satisfying the pentagon

bm,xev.N

F(IM® (X®Y))XN) FIMR(X®Y)®N))
J/H«M,X,Y J/WX,Y,N
F(M®X)®Y)XN) FIMX(X® (Y ®N)))
F(IM® X)X (Y ® N))

whenever X, Y are objects of C and M € M.

Remark 3.2. The above occurred in [4] as the definition of “k-bilinear functor” on module categories
over k-linear tensor categories. The relative tensor product is studied and applied in [2] where many
properties are derived in the case that module categories in question are semisimple.

Of course Definition 3.1 can be extended to functors from the Deligne product of more than two
categories.

Definition 3.3. Let F : M{ X M, X ... X M, — N be a functor of abelian categories and suppose
that, for some i, 1 <i<n—1, M; is a right C-module category and M, a left C-module category.
Then F is said to be balanced in the ith position if there are natural isomorphisms biX,ML...,Mn cF(M1 X
KM X)) XM K- -XMp) >~ F(IM 1 X-- - XM; K(X®M;+1)X---XM;) whenever M; are in M;
and X is in C. The b are required to satisfy a diagram analogous to that described in Definition 3.1.

One may also define multibalanced functors F balanced at multiple positions simultaneously. We
will need, and so define, only the simplest non-trivial case.

Definition 3.4. Let M be right C-module, M; (C, D)-bimodule, and M3 a left D-module category.
The functor F : M1 X My K M3 — N is said to be completely balanced (or 2-balanced) if for X € C,
Y eD, Ne My, M e M and P € M3 there are natural isomorphisms

byxnp: F(M®X)INRP)~F(ME(X®N)XP),
bIZW’NVY’P:F(M®(N®Y)®P) ~F(MRNK (Y ® P))

satisfying the balancing diagrams in Definition 3.1 and the consistency pentagon

FIMX)KINQY)XP) —————  F(IM®X)XNKX (Y ® P))
| b%/l@X,N.Y,P

bl
M,X,N®Y,P

FIMR(X® (N®Y))XP) b x.nyer

—1
wa.yl

FIMR (X®N)®Y)KP) ————— FIMR(X®N)K (Y @ P))

bM.X,Y®N
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Here y is the family of natural isomorphisms associated to the bimodule structure in M; (see
Remark 2.12). Whenever F from M X M, X ---X M, is balanced in “all” positions call F (n — 1)-
balanced or completely balanced. In this case the consistency axioms take the form of commuting
polytopes. For example the consistency axiom for 4-balanced functors is equivalent to the commuta-
tivity of a polytope having eight faces (four pentagons and four squares) which reduces to a cube on
elision of y-labeled edges. With this labeling scheme the 1-balanced functors are the original ones
given in Definition 3.1.

Definition 3.5. The tensor product of right C-module category M and left C-module category N
consists of an abelian category M X N and a right exact C-balanced functor By n: M KN —
MXe N universal for right exact C-balanced functors from M X N,

Remark 3.6. Universality here means that for any right exact C-balanced functor F : M XN — A
there exists a unique right exact functor F such that the diagram on the left commutes.

F 0]
MERN — A M@Nﬁu

P

M N MR N
The category M K¢ N and the functor B as are defined up to a unique equivalence. This means
that if U: M XN — U is a second right exact balanced functor with F = F’U for unique right exact
functor F’, there is a unique equivalence of abelian categories « : Uf — M K¢ N making the diagram
on the right commute.

Remark 3.7. The definition of balanced functor may be easily adapted to bifunctors from M x N
instead of M XN In this case the definition of tensor product becomes object universal for balanced
functors right exact in both variables from M x N This is the approach taken by Deligne in [3]. One
easily checks that our definition reduces to Deligne’s for C = Vec. This provides some justification for
defining the relative tensor product in terms of right-exact functors as opposed to functors of some
other sort.

The following lemma is a straightforward application of tensor product universality from Defini-
tion 3.5. We list it here for later reference.

Lemma 3.8. Let F, G be right exact functors M K¢ N — A such that FBaq nr = GB apq ar. Then F = G.

Proof. In the diagram

BmN
MERN —— MR N

=

L,.,'
MIECNQA

T
G

for T = FBap A = GBaq A the unique equivalence « is idpx. . O
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Definition 3.9. For M a right C-module category and A a left C-module category denote by
Fun®®(M XN, A) the category of right exact C-balanced functors. Morphisms are natural transforma-
tions 7 : (F, f) — (G, g) where f and g are balancing isomorphisms for F and G satisfying, whenever
Me M and N e N,

TM®X.N

F(M®X)®N) ————— G(M® X) K N)

fM,X.NJ/ JgM,X.N

FME(X®N)) —— G(ME (X ® N))
™, X®N

for X in C. Call morphisms in a category of balanced functors balanced natural transformations. Simi-
larly we can define Fu_n?”’(/\/ll X-.-X My, A) to be the category of right exact functors “balanced in
the ith position” requiring of morphisms a diagram similar to that above.

It is not obvious at this point that such a universal category exists. The proof of Proposition 3.8
in [2] shows that, in the semisimple case, M K¢ A is equivalent to the center Z¢(M K N) (see
Section 7.1 for definitions and discussion). We include the statement here without proof. Functor I is
right adjoint to forgetful functor from the center.

Proposition 3.10. There is a canonical equivalence

MR N >~ Ze(MRN) (9)

such that I : MXN — Z¢(M K N) is identified with the universal balanced functor Bag nr: M RN —
MK N.

3.2. Module category theoretic structure of tensor product

In this section we examine functoriality of X and discuss module structure of the tensor product.
For M a right C-module category, N a left C-module category, universality of B as implies an
equivalence between categories of functors

Y :Fun”® (M XN, A) S Fun(M Ke N, A) (10)

sending F — F (here overline is as in Definition 3.5). Quasi-inverse W sends G — GBq s with
balancing G % b, b is the balancing of Baq a/. On natural transformations t, W is defined by
W(t) =T * Bpq v where x is the product of 2-morphism and 1-morphism: components are given
by W(T)umiN = T, o (MxIN)- One easily checks that YW =id so that W is a strict right quasi-
inverse for ). Let | : WY — id be any natural isomorphism. Then components of J are balanced
isomorphisms J gy : (F, F % b) — (F, f) where f is balancing for functor F. Being balanced means
commutativity of the diagram

F(bm,x.n)

FM®XKN) — " 3 FIMX X ® N)

]Mx&NJ/ l]m&lxw

FIM@XKN) ——  FIMXXQ®N)

fMx.N
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for any M € M, X € C, N e N. Hence any balancing structure f on the functor F is conjugate to F b
in the sense that

fux.n = Jumxn o FOmx.N) © Jyjxmn- (11)

Remark 3.11. Let F,G : M X N — A be right exact C-balanced functors. To understand how ) acts
on balanced natural transformation 7 : F — G recall that to any functor E : S — 7 we associate
the comma category, denoted by (E, 7)), having objects triples (X,Y,q) € S x 7 x Hom7(E(X),Y).
A morphism (X,Y,q) — (X', Y’,q’) is a pair of morphisms (h, k) with the property that koq=¢ o
E(h). For E right exact and S, 7 abelian (E, 7)) is abelian [18].

Let F be the unique right exact functor having FBaq os = F and consider the comma cate-
gory (F,.A). Natural balanced transformation t determines a functor S; : M XN — (F, A), X —
(BmN(X),G(X),tx) and f — (F(f),G(f)). It is evident that S; is right exact and inherits C-
balancing from that in Baq ar, G and t. Thus we have a unique functor S; i MRe N — (F, A

with §BM,N = S¢. Write S¢ = (S1, S2,0). Using Lemma 3.8 one shows that Sy = idyx. A and
S;=G. Then o(Y): F(Y) — G(Y) for Y € M K. N. This is precisely T : F — G.

Given right exact right C-module functor F : M — M’ and right exact left C-module functor
G: N — N note that Byy pv(FRG): MRN — M’ B¢ N is C-balanced. Thus the universality
of B implies the existence of a unique right exact functor F ¢ G := By av(F X G) making the
diagram

FRG
MRN —— M KN

BM’NJ/ J/BM/’N/

MR e N —— M R N/
FXeG

commute. One uses Lemma 3.8 to show that X is functorial on 1-cells: (F' K¢ E')(F K¢ E) =
F'F X E'E. We leave the relevant diagrams for the reader. Thus the 2-cells in M7 of Definition 2.20
are identity. If we define F ® N := F K¢ ids (Definition 4.5) then the 2-cells in M8 are identity as
well.

Remark 3.12. Next consider how X can be applied to pairs of module natural transformations. Apply
B nv to the right of the diagram for the Deligne product of T and o

FXE
SN By n
ME M ﬂr&m/w// N N RN

NS

GXH
giving natural transformation
(tXo) :=Byn*(TX0o): By a(FRE) = By a7 (GXH) (12)

having components By a7 * (T W o0)amp = Bar A7 (Ta W op). Here * indicates composition between
cells of different index (in this case a 1-cell and a 2-cell with the usual 2-category structure in Cat).

It is easy to see that this is a balanced natural transformation, i.e. a morphism in the category of
balanced right exact functors Fun®®(M XN, M’ K¢ N7). Using comma category (F K¢ F/, M’ Ke N7)
we get
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tReo:=(tRo) :FRc F =GR G. (13)

Note also that X is functorial over vertical composition of 2-cells: (7' X¢ o')(tKe o) =1t Xc 0’0
whenever the compositions make sense. Though we do not prove it here observe also that X pre-
serves horizontal composition e of 2-cells:

(T"e7)Xc (0" 00)=(1"He0’) o (t K 0). (14)

For the following proposition recall that, for left C-module category M, the functor Ly : M — M
sending M — X ® M for X € C fixed is right exact. This follows from the fact that Hom(X*® N, ) is
left exact for any N € M.

Proposition 3.13. Let M be a (C, £)-bimodule category and N an (£, D)-bimodule category. Then M Xg N
is a (C, D)-bimodule category and B a4, nr is a (C, D)-bimodule functor.

Proof. For X in C define functor Lx : M KN — MKN: MK N+ (X ® M) K N. Then there is a
unique right exact Lx making the diagram on the left commute; bimodule consistency isomorphisms
in M make Ly balanced.

Bam.nLx Bam N Ry
MRN — MEp N MEN —— MRp N
BM.Nl - BM.NJ/ -
Lx RY
MRp N MRp N

Similarly, for Y in D define endofunctor Ry : M XN — M X (N ® Y). Then there is unique right
exact Ry making the diagram on the right commute; bimodule consistency isomorphisms in A/ make
Ry balanced. Ly and Ry define left/right module category structures on M K¢ A. Indeed for u
the left module associativity in M note that B (ix,y,m Xidy) : LXLyBM N LX®yBM A IS an
isomorphism in Fun®®(M KN, M Rg N) and thus corresponds to an isomorphism LxLy ~ Lxgy
in End(M Xg N) which therefore satisfies the diagram for left module associativity in M Kg N.
Composing diagonal arrows we obtain the following commuting diagram.

BmNLx Ry
MRN —— MEpN —— MKRp N

Lx
BmN
RyLx

MRp N

Note then that

LxRyBamn = RyLxBamon (15)

and since RyLxB g is balanced Lemma 3.8 implies RyLx = LxRy. Suppose Q € M K¢ N. Then
(X®Y)®Q :=LxRyQ =RyLxQ defines (C, D)-bimodule category structure on M Kg N. Note also
that since the bimodule consistency isomorphisms in M XA are trivial the same holds in M Xg N/,
As a result Baq n is a (C, D)-bimodule functor. O

In the sequel we will use Lx to denote left action of X € C in M XN and for the induced action
on M X N. Similarly for Ry.
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Remark 3.14. The above construction is equivalent to defining left and right module category struc-
tures as follows. For the right module structure

1 .
®: (MAN)EC 2N v Ee) 98 pmn (16)

where o! is defined in Lemma 4.1 and where tensor product of module categories has been written as
juxtaposition. The left action is similarly defined using o? and left module structure of M in second
arrow.

Proposition 3.15. Let M be a (C, D)-bimodule category. Then there are canonical (C, D)-bimodule equiva-
lences M Xp D>~ M ~C K¢ M.

Proof. Observing that the D-module action ® in M is balanced let [x; : M Xp D — M denote the
unique exact functor factoring ® through B¢ p. Define U: M — M XD by M+— MX 1 and write
U’ =B pU. We wish to show that [, and U’ are inverses.

Note first that IxqU" =id 4. Now define natural isomorphism 7 : By p = U'Q by Ty x = b,j,,f)“
where b is balancing isomorphism for B p. As a balanced natural isomorphism 7 corresponds to
an isomorphism 7 : By, p = idpm,p = U'® in the category End(M Xp D). Commutativity of the
diagram

®
MXD M

Im
BM,DJ/ JU’

MHEpD —— MXpD
Ue

implies U'lpq = U'® so that id yqx,,p =~ U'lpq via T. In proving C X M =~ M one lifts the left action

of C for an equivalence rq : C K¢ M = M. Strict associativity of the module action on M implies
that both rxq and I are trivially balanced. O

Corollary 3.16. Let (F, f) : M — N be a morphism in B(C) where f is left C-module linearity for F. Then
there is a natural isomorphism Fr a4 Sr ' (ide K F) satisfying a polytope version of the diagram for module

functors in Definition 2.8. A similar result holds for the equivalence I.

Proof. Consider the diagram

ide XF
CHM CRN
Bx ideXcF %
CM —— CN
12 |
M - N

The top rectangle is definition of idc X F, right triangle definition of functor rar, and left trian-
gle definition of raq. The outer edge commutes up to f. We therefore have natural isomorphism
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f:FrpmBe pm — rar(ide W F)Be a. Now observe that, using the regular module structure in C we
have the following isomorphisms.

FraBe m(XY ®M) = F((XY)M)
=F(X(YM)) = FrpBe (XK YM),
rar(ide ®e F)Be ar(XY K M) = (XY)F(M) = XF(YM)

=rpr(ide e F)Bea (X R YM).

Here X,Y eC, M e M and ~ is idx ® fY_}VI Using the relations required of the module structure f
described in Definition 2.8 one sees that the second isomorphism constitutes a C-balancing for the
functor rar(id¢c W F)Bc ar. Thus both functors are balanced. Using the relations for f from Defi-
nition 2.8 a second time shows that f is actually a balanced natural isomorphism Fra B¢ af —
ra/(ide ®c F)Bc, ar. Hence we may descend to a natural isomorphism rr := f: Fraq — ras(ide Xe F).
The associated polytopes are given in Polytope 5.1 below. The result for I is similar. O

Corollary 3.16 shows, predictably, that functoriality of I, r depends on module linearity of the
underlying functors. In particular, if F is a strict module functor Ir and rr are both identity. As an
example note that the associativity is strict as a module functor (this follows from Proposition 4.6)
and so rq,, » » = id for the relevant module categories. Similarly for I. Thus polytopes of the form
(1R eR®e®e) (p. 222 in [1]) describing interaction between @, | and r commute trivially.

Remark 3.17. rp : C K¢ M — M is itself a strict left C-module functor as follows. Let X € C and let
Lx be left C-module action in C X M. Replacing Ly with id X F in the diagram given in the proof
of Corollary 3.16 and chasing around the resulting diagram allows us to write the equation

LyrmBe,m =1mLxBe,m (17)

where L) is left X-multiplication in M and Ly the induced left X-multiplication in C X M. Thus
Lyrpm=1m Ly, which is precisely the statement that r is strict as a C-module functor. Thus Corol-
lary 3.16 implies that r,,, =id for any C-module category M. If M is a bimodule category it is
evident that r 4 is also a strict right module functor and hence strict as a bimodule functor.

Proposition 3.18. For (C, D)-bimodule category M and (C, £)-bimodule category N the category of right
exact C-module functors Func (M, N') has canonical structure of a (D, £)-bimodule category.

Proof. (XX Y)® F)(M)=F(M ® X) ® Y defines D X £™-action on Func (M, N). Right exactness
of (XX Y)® F comes from right exactness of F and of module action in M, N. DX E™ acts on the
module part f of F by

(XRY)® f) ;= V2ruax.y fz.mexF(r7.x)- (18)

The required diagrams commute since they do for f.

Next let T : F = G be a natural left C-module transformation for right exact left C-module functors
(F, f),(G,g) : M — N. Define action of XX Y on 7 by (XK Y)® T)y = Tuex Qidy : (XKY)®
FY(M) > (XX Y)® G)(M). Then (XX Y)® t is a natural left C-module transformation as can be
easily checked. O
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Remark 3.19. ) in Eq. (10) at the beginning of this section is an equivalence of (D, F)-bimodule
categories

Fun’ (M XN, 8) — Func(MRg N, S) (19)

whenever M € B(C,&), N € B(E,D), S € B(C,F). If balanced right exact bimodule functor
u: MXN — U is universal for such functors from M XA then M K¢ N ~U as bimodule cate-
gories. We leave details to the reader.

3.3. Relative tensor product as category of functors

The purpose of this section is to prove an existence theorem for the relative tensor product by
providing a canonical equivalence with a certain category of module functors. Let M, N be exact
right, left module categories over tensor category C, and define I : M XN — Func (M, N') by

[:MXN > Hom ,,(—, M) ® N (20)

where Hom ,, means internal hom for right C-module structure in M (Definition 2.16). Using the
formulas satisfied by internal hom for right module category structure we see that images under I
are indeed C-module functors:

I(MXN)(X ®M’) =Hom (X ® M, M) ® N =Hom ,,(M',*X ® M) ® N
=X ®Hom (M, M) @ N=X® (MK N)(M').

Using similar relations one easily shows that I is C-balanced. Hence I descends to a unique right-
exact functor I: M Xe N — Fune (MO, N) satistying 1B ar = I.

In the opposite direction define J : Func(M%P ,N) - M K N as follows. For F a C-module
functor M% — N let J(F) be the object representing the functor M X N — Hom(N, F(M)), that
is Hom g ar(M X N, J(F)) = Homp/ (N, F(M)). Now denote by J': Func(M%, N) - M K¢ N the
composition Bag nJ.

Theorem 3.20. Let C be a rigid monoidal category. For M a right C-module category and N a left C-module
category there is a canonical equivalence

MK N =~ Fune(MP, N). (21)
If M, N are bimodule categories this equivalence is bimodule.

Proof. In order to prove the theorem we simply show that I and J’ defined above are quasi-inverses.
This will follow easily if we can first show that I, | are quasi-inverses, and so we dedicate a separate
lemma to proving this.

Lemma 3.21. I, | are quasi-inverses.

Proof. Let us first discuss internal homs for the C-module structure in M X N induced by X ®
(MXN):=(X®M)X N. Let X be any simple object in C. Then one shows, using the relations for
internal hom in M and N separately, that the internal hom in M X N is given by

Hom , g o-(M ® N, S® T) = Hom , (M, S) ® Hom (N, T) (22)
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where the ® is of course that in C. Using this and the definitions of I and | we have

Hom iz n (MXN, JI(SXT)) =Homy (N, Hom (M, S) ® T)
= Homc¢ (1, Hom (N, Hom , (M, S) ® T))
= Homc (1, Hom g \(M X N, SK T))
=Hom v (MXN,SKT).

The third line is an application of (22). The first and the last lines imply that the functor M X N
Homas(N,Hom (M, S) ® T) is represented by both SX T and JI(SXT), and these objects must
therefore be equal up to a unique isomorphism, hence JI ~id.
Next we show that 1] ~id. Let F be any functor M — A, From the first part of this proof we
may write the following equation (up to unique linear isomorphism):
Hom (N, IJ(F)(M)) =Hom v (M XN, J1](F))

=Hom (M RN, J(F)) =Homy (N, F(M)).

Thus both I J(F)(M) and F(M) are representing objects for the functor N — Hom g (M XN, J(F))
for each fixed M € M. Thus I J(F)(M) = F(M) up to a unique isomorphism. The collection of all such
isomorphisms gives a natural isomorphism I J(F) >~ F, and therefore I ] ~ id. This, with the first part
of this proof, is equivalent to the statement that ] is a quasi-inverse for I, proving the lemma. 0O

_Now we are ready to complete the proof of Theorem 3.20. Using the definition of J and T write
JIBp N = BamnJI = Bag . By uniqueness (Lemma 3.8) it therefore follows that J'I ~id. Also
1]'’=I1BpmnJ]=1]~id, and we are done. O

3.3.1. Adjunction with category of functors

As an immediate corollary to Theorem 3.20 and associativity of relative tensor product (Eq. (27),
given below) we are able to prove a module category theoretic version of a theorem which appears
in many connections in the classical module-theory literature.

Corollary 3.22 (Frobenius reciprocity). Let M be a (C, D)-bimodule category, N" a (D, F)-module category,
and A a (C, F)-module category. Then there is a canonical equivalence

Func (M Bp N, A) ~ Funp (N, Func (M, A)) (23)
as (&€, F)-bimodule categories.

Proof. To see this we will first use Lemma 2.18 to describe the behavior of the tensor product un-
der op. Observe that

(M Bp N)P =~ Funp (M, N)* ~ Funp (N, MP) ~ N ®p MP (24)
applying Theorem 3.20 twice (first and third) and Lemma 2.18 for the second step. Now we may write
Fune(M Bp N, A) = (M Bp )P Ke A= (N Bp MP) Ke A
~ NP Xp (MOP Xe .A)
~ Fune (N, Funp(M, A)). O
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Theorem 3.22 states that functor M Xp — : B(D,£) — B(C,£) is left adjoint to functor
Func(M, —) : B(C, &) — B(D, &).

4. Associativity and unit constraints for B3(C)
4.1. Tensor product associativity

In this section we discuss associativity of tensor product. Let C,D, £ be tensor categories. Let
A be a right C-module category, M a C-D-bimodule category, N’ a D-E-bimodule category and
P a left £-module category. In an effort to save space we will at times abbreviate tensor product by
juxtaposition.

Lemma 41. AX (M Xp N) =~ (AKX M)Rp N and M Kp N) XK A~ M Xp (N K A) as abelian
categories.

Proof. Let F: AKX M XN — S be totally balanced (Definition 3.4). For A in A define functor
FA:MXN —- S by MXN+— F(AKMKX N) on simple tensors and f +— F(id4 X f) on morphisms.
Note that functors F4 are balanced since F is totally balanced. Thus for any object A there is a
unique functor Fa : M Xp N — S satisfying the diagram below left. The F, allow us to define func-
tor F: ARMRpN)—> S:AX Q — Fa(Q) whenever Q is an object of M Kp A giving the
commutative upper right triangle in the diagram on the right.

Bm.N
MEN ARMRN ——— AR (M Xp N)
F B
BM.Nl \ BA&MNJ ) F’J
L
M@DN?S (AX M) Xp N — S
A F

Since the functors B agam A BMA F and F’ are unique by the various universal properties by
which they are defined, both A X (M Xp N) and (A X M) Kp N are universal factorizations of F
and must therefore be connected by a unique equivalence

@4 pn AR (MBp N) S (AR M) Bp N (25)

(perforated arrow in diagram). One obtains natural equivalence o} MN.A: CMEp NYRAS MRp
(N R A) by giving the same argument “on the other side,” i.e. by first defining Fy : AR M — S for
fixed N € ' and proceeding analogously. O

Remark 4.2. For bimodule category A Remark 3.19 implies that ' are bimodule equivalences.

Lemma 4.3. For o' in Lemma 4.1 (ARc Bp )Y pq nr i (AR M)RN — AR (M Rp N) is bal-
anced.

Proof. Treat M as having right C-module structure coming from its bimodule structure, and similarly
give N its left C-module structure. Recall, as above, we define Rx : M — M and Lx : N — N right
and left action of X € C on M, N respectively. We will use superscripts to keep track of where
C-action is taking place, e.g. R{,\" means right action of X in M. Recall also X € D induces right
D-action id 4 K¢ Ry : AXe M — AKXe M which we denote also by Rx. Consider the following
diagram:
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BXid id=Ly
AMNRN —— AMNXN

AXMXN
- BXid
Sz A KM EN o
BXid R)/(V‘ 1d|X|B x
AX MN MXEN)
o
AMK AXMERN idX, B
Rx@id / \
BXid B
AMXN AWM K N) AMN)

idX,.B

Leftmost rectangle is (definition of Rx) X idxs, top rectangle is tautologically B X Ly, upper right and
lower left triangles are definition of «!, lower right rectangles definition of id 4 X B MmN and b is
id 4 X (balancing isomorphism for B r¢ n7). An application of Lemma 3.8 then gives

. . b . .
(id 4 K¢ BM,N)UL,M,N(RX Nidy) = (id 4 Ke BM,N)(XL,M,N(IdAﬁcM X Lx). (26)

Since b satisfies the balancing axiom (Definition 3.1) for Baq s it satisfies it here. This is precisely
the statement that (A X B/\/(,/\/)ocj4 M s balanced. O

Proposition 4.4. If A and N are bimodules we have (A X¢ M) Xp N ~ AX¢ (M Kp N) as bimodule
categories.

Proof. We plan to define the stated equivalence as the image of the functor (A X By, /\/’)O(A MN -

(AR M)XN - ARe (M Kp AN) under Y (Eq. (10)). Lemma 4.3 implies that indeed ) is defined
there. With notation as above define a' and a® using the universality of B by the following diagrams.

al

AMN
AR M)RN —— AR (MK N)
—
BAMN ld.A|ZC\LBM,N

(AXe M) Xp N — AXe (M Kp N)
aAMN

az
AR (M Rp Ny M A8 M)RBp N

BA.MNl

AXe (M Xp N) PR (AXe M) Xp N
Cy MmN

B_A.M%'Did/\/
1

o' are defined in Lemma 4.1. To see that a' and a? are quasi-inverses consider the diagram

id AB (A B 4 MRN
AR (MN) AKX MXN AWM N)
— ™~ )
\ BARM.N B A mXid /
o? g ™~ ol
BAMN (AX MN (AM) XN id A®cB N
l B> Npidpr BAMm.N
MNp .
~ )/
AMN) (AMHON AMN)
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The triangles in upper left and right are those defining o2, ! respectively. The central square is

the definition of B4 aq Xp idar, and the left and right squares those defining a® and a'. Thus the
perimeter commutes, giving

a'a®B 4 pan(id 4 R Bi ) = (ida Re Bata)Ba sy

= a'@®Ba pmn(ida BB n) = Barn(ida BB n)

= d' @B (@?) Basmon = Barw (@) Baman
= a'@®Barwn =Bamn
=

a'a® =id gmw)

where the first implication follows from the square defining id 4 X¢ Baq A, the second by the def-
inition of a2, the third by Lemma 3.8 (for B AxM, N+ Ba, mn, Tesp.). Using a similar diagram one
derives a%al = id amyn hence the a' are equivalences and by Remark 3.19 they are bimodule equiv-
alences. O

In what follows denote

QA MN =0 gt (ARe M) Rp N = ARe (M Bp N). (27)

In order to prove coherence for a (Proposition 4.8) we will need a couple of simple technical lem-
mas together with results about the naturality of a. In the monoidal category setting associativity
of monoidal product is required to be natural in each of its indices, which are taken as objects in
the underlying category. In describing monoidal structure in the 2-category setting we also require
associativity though stipulate that it be natural in its indices up to 2-isomorphism (see M10 in Defi-
nition 2.20). For us this means, in the first index,

ar, MmN A M N (FMIN = F(M Bp N)aa mn (28)

for bimodule functor F : A — B. Similarly we need 2-isomorphisms for F in the remaining positions.
The content of Proposition 4.6 is that all such 2-isomorphisms are actually identity. Before stating the
proposition we give a definition to introduce a notational convenience.

Definition 4.5. For right exact right C-module functor F : A — B define 1-cell FM :=
FXeidag : ARe M — BXe M and note that FM is right exact. Similarly we can act on such
functors on the right.

Proposition 4.6 (Associativity “2-naturality”). We have

ag M N (FM)N = F(MEp N)as mn- (29)
Analogous relations hold for the remaining indexing valencies for a.

Proof. We will prove the stated naturality of a for 1-cells appearing in the first index. A similar proof
with analogous diagrams gives the others. Recall ! defined in Lemma 4.1. Consider the diagram:
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(FM)N
(AMN (BM)N

Bam N Bpm.N

(FM)
AMYRN ——— (BM)KN

TBA,M BB,MT

Y| ARMEN ———— BRMREN B N | @
J/BA,MgN BB.MIXIN’J/

AMBRN) ———— B(MKN)
(MRN)

F
/A BM.N/ \BBMYN\J
AMN) FON B(MN)

Q

The top, bottom and center rectangles follow from Definition 4.5 and definition of tensor product of
functors. Commutativity of all other subdiagrams is given in proof of Proposition 4.4. External contour
is the stated relation. O

Remark 4.7. Observe that the proof of Proposition 4.6 also gives 2-naturality of «!: the center square
with attached arches gives the equation

ai pn (FM)Ridy) = FIMEN)ay - (30)

Lemma 4.8. The hexagon

AMMNBEP MY AN EP

O‘}A,MN.PJ lB(.AM)N.P

AMN X P) ((AMIN)YP

BMN.'/DJ/ J/GAMN

A(MMNMP) +————— (AMN)P
AAMN P

commutes.

Proof. The arrow B g a7, drawn from the upper left most entry in the hexagon to the lower right
most entry divides the diagram into a pair of rectangles. The upper right rectangle is the definition
of aq m N Mg idp and the lower left rectangle is the definition of ag ma,p. O

In the case of monoidal categories the relevant structure isomorphisms are required to satisfy
axioms which take the form of commuting diagrams. In the 2-monoidal case we make similar require-
ments of the structure morphisms but here, because of the presence of higher dimensional structures,
it is necessary to weaken these axioms by requiring only that their diagrams commute up to some
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2-morphisms. Above we have defined a 2-associativity isomorphism aq a7 p : (MAN)P — MNP).
In the definition of monoidal 2-category a is required to satisfy the pentagon which appears in the
lower dimensional monoidal case, but only up to 2-isomorphism. The content of Proposition 4.9 is
that, in the 2-category of bimodule categories, the monoidal structure X is strictly associative just as
it is in the monoidal category setting. For us this means that the 2-isomorphism a 4 a A7 p (See M9
in Definition 2.20) is identity for any bimodule categories A, M, N, P for which the relevant tensor
products make sense.

Proposition 4.9 (2-associativity hexagon). The diagram of functors commutes.

(AMN)YP ————— (AM)NP)
QAMN.P
aA,M,N‘&SPJ/
(AMN)P A MNP

aA,MN,PJ/

A(MMN)P) ————— A(MNP))
AMcam v P

Proof. Consider the diagram below. We first show that the faces peripheral to the embedded hexagon
commute and then show that the extended perimeter commutes.

(AMIN K P *ame (AM)W B P)
BAMmN.P id AmXDBAr, A
QA MN (AMON)P e (AM)(N'P)
aA.M,/\‘f@sfdP
AMN)RP (AMN))P GAMNP aAMNRP
a.A./\/‘(N.P
OU MNP A(MN)P) W AMWNTP))
id A\McB P id Ac (id pm X pBar,p)
AMN R P) PR AMN K P))

The top rectangle is the definition of a4 a7, the rectangle on the right is naturality of a as in
Proposition 4.6, the bottom rectangle the definition of a tensored on the left by A, and the hexagon
is Lemma 4.8. To prove commutativity of the extended perimeter subdivide it as indicated below.
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al N
(AMN R P AMNT (AM)N B P)
BaAm.N BAM NEP
\
Ao M NEP AM) XN X P
1 /
YAMN
id A B p N .
AMMBEP " AMRN)RP ol v a4 MN
™
YA MBN, P
O MNP AMBERN K P)
idAXlC(BM,NXP)/ mCBM‘%m
AMN K P) AMW K P))
idAgCa}\/!NP

The upper and lower triangles are the definitions of O‘jAM,N,P and A X, (definition of a.]/\/l,./\f,P)‘
respectively (Lemma 4.1). Right rectangle is definition of a4 am ap. Upper left rectangle is
(definition of a4 aq A7) X P, and the lower left rectangle is explained in Remark 4.7. The central
triangle is an easy exercise. An application of Lemma 3.8 gives the result. O

Let M; be a (Ci_1,C;j)-bimodule category tensor categories C;, 1 <i < n. Then one extends the
arguments above to completely balanced functors (Definition 3.3) of larger index to show that any
meaningful arrangement of parentheses in the expression M X¢, My --- K¢, | M, results in an
equivalent bimodule category.

Remark 4.10. Proposition 4.9 implies that the 2-morphism described in M9 of Definition 2.20 is ac-
tually identity. The primary polytope associated to associativity in the monoidal 2-category setting is
the Stasheff polytope which commutes in this case. It is obvious that the modified tensor product &
with associativity [1, Section 4] is identity and that nearly every face commutes strictly. The two non-
trivial remaining faces (one on each hemisphere) agree trivially. We refer the reader to the original
paper for details and notation.

4.2. Unit constraints

Recall from Proposition 3.15 the equivalences [rq : M Xp D~ M and rpq : C X M =~ M. The
first proposition of this section explains how I, r interact with 2-associativity a.

Proposition 4.11. (id p Xp In)am e =Imp N TMERpN (A, M N) =T A Bp idpr. Also the triangle

(MXp D) Xp N

I Rpidar
AM, DN

MEp (DRpN) —— MXp N
id s Xpras

commutes up to a natural isomorphism.
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Proof. The first two statements follow easily from definitions of «! (Lemma 4.1), module structure
in M Xp N and those of [ and r. This means that the 2-isomorphisms p and A in M11 of Defini-
tion 2.20 are both trivial.

The diagram below relating | and r commutes only up to balancing isomorphism b for Baq n
where we write b : By Ar(Q Midpn) = Bag v (ida X ®). All juxtaposition takes place over D.

1
XM D.N

(MR DN MK (DN)
W B,y
MEXDXN
Bm.pRN
®
Bm.D b M(D KX N) Bpm.eN
A/
® Bp A
MN
TN
Im
(MDN ST M(DN)

Top triangle is definition of o, rectangle is definition of id Kp Bp ., lower right triangle is
M Xp (definition of rxr), triangle on left is (definition of Ix4) Xp N, and central weakly commuting
rectangle is definition of balancing b for B a4 as. The perimeter is a diagram occurring in the proof of
Proposition 4.4 (we have been sloppy with the labeling of the arrow across the top). Since all other
non-labeled faces commute we may write, after chasing paths around the diagram,

Iam Bp idar (B, p Rp ida) B,
b, .
>~ (idp Mp ran)ar, o (Bag,p Bp ida) Bpp a- (31)

Applying Lemma 3.8 twice we obtain a unique natural isomorphism

N I R iy = (idpat Rp Ta)a oy (32)
having the property that puaq n * ((Baq,p Rp ida) Bomp A7) =D, the balancing in By n. O
5. Proof of Theorem 1.1

In this section we finish verifying that the list of requirements given in the definition of monoidal
2-category [1], Definition 2.20 of this paper, are substantiated by the scenario where we take as un-
derlying 2-category B(C). Recall that for a fixed monoidal category C the 2-category B(C) is defined
as having 0-cells C-bimodule categories, 1-cells C-bimodule functors and 2-cells monoidal natural
transformations. M1-M11 are evident given what we have discussed so far; explicitly, and in order,
these are given in Proposition 3.15, Proposition 3.13, Definition 4.5, Remark 3.12 (take one of the
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2-cells to be identity transformation on identity functor), Eq. (27), proof of Proposition 3.15, Defini-
tion 4.5 (trivial, composition with id commutes), Polytope 5.2, Proposition 4.9 (trivial), Proposition 4.6
(ap, m. A =id for bimodule functor F), proof of Proposition 4.11. Commutativity of the Stasheff poly-
tope follows from Proposition 4.9 (see Remark 4.10).

The data introduced throughout are required to satisfy several commuting polytopes describing
how they are to interact. Fortunately for us only a few of these require checking since many of the
structural morphisms above are identity. Because of this we prove below only those verifications
which are not immediately evident. Recall (Definition 4.5) that we define action MF of bimodule
category M on module functor F.

Polytope 5.1. For F : M — M’ a morphism in B(C) and any C-bimodule category N the polytopes

(MCON » M(CN) WNCM » N(CM)
NM w / V‘N M /
PN Iy rm NTE
(FON F(CN) (NC)F N(CF)
FN NF
a a
(M'CON M (CN) WwWeym’ N(CM)
J’T“M’v JMN.M’
Iagr N In M
M'N NM

commute. Similarly there are commuting prisms for upper left vertex corresponding to the remaining four
permutations of M, C, N with upper and lower faces commuting up to either X or p.

In [1] these triangular prisms are labeled (— ®1 ® o), (1 — Re), etc.

Proof of Polytope 5.1. We verify commutativity of the second polytope. Commutativity of the other
prisms is proved similarly. Denote by * mixed composition of cells. Commutativity of polytope on the
right is equivalent to the equation

(idy Re f)((da Be F) * piar, m) = s * (idys, e Me F) (33)

where f is module structure of F and f =rf (recall Corollary 3.16). Let LHS and RHS denote the left
and right sides of (33). Then one easily shows that both LHS * ((B/ ¢x.idam)Bx,c, m)Mxxxny and
RHS * ((BAr,c idA) By c MIMmxwn, for N e N, X e C,M € M, are equal to by y y, where b’ is
the balancing for Bar, aq. Two applications of Lemma 3.8 now imply that LHS =RHS. O

The next polytope concerns functoriality of the 2-cells Ig, .
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Polytope 5.2. Let M £ N L ‘P be composable 1-morphisms in B(C). Then the prisms

commute.

Proof. We prove commutativity of the first prism. Commutativity of the second follows similarly. It is
obvious that ®¢ r ¢ is trivial (it is just composition of functors). First polytope is the condition rgr =
(G xrg)(rc *CF). Let f be left C-linearity for F, g that for G. Then (G, g)(F, f) := (GF, g e f) where
(g fHx.m=8x,romG(fx,m) is left C-linearity for GF. One checks directly that

(G*rp)(r *CF) % Bepm=(go f)7 ' (34)

rcr is defined as the unique 2-isomorphism for which rgr * Bc g = (g @ )1 so Lemma 3.8 gives
the result. O

Polytope 5.3. For any 2-cell o : F = G in B(C) the cylinders

CF FC
/—-\ /—\
M |ea cN Mc ™ Jec NC
\_/ \_/
\s_// CG :&_// GC
e Ig
A e A | Ip In
y M y
\ F \/7/ F /’/
A A
M o N M a N
\U..._,,/' \U.._,/'
G G

commute.

Proof. Again we sketch commutativity of the first polytope and leave the second to the reader. The
first cylinder is the condition (o % raq)rF =16 (rn * Ca) where Ca is the 2-cell defined by id¢ K¢ o
and id¢; means natural isomorphism id : idc = id¢. One verifies this directly using bimodule condition
onowo. O

This completes verification of the polytopes required for monoidal 2-category structure, and there-
fore completes the proof of Theorem 1.1.
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6. De-equivariantization and tensor product over braided categories
6.1. Tensor product over braided categories

In this section we discuss the tensor structure of C1 Xg C, where C; are tensor categories and & is
a braided tensor category. Recall that we denote by Z(C) the center of tensor category C.

Definition 6.1. (See [5].) Let C be a tensor category. Then we say C is a tensor category over braided
tensor category £ whenever there is a braided tensor functor £ — Z(C). In general we will identify
objects in £ with their images in C and talk about £ as a subcategory of C.

Suppose that o : £ — Z(C) is a braided tensor functor. o gives C the structure of an £-bimodule
category via

X ® M :=Forg(o (X) ® M) (35)
where the tensor product is that in Z(C) and Forg: Z(C) — C is forgetful functor. £ right acts on C
via (M, X) » X ® M giving C the structure of £-bimodule category (see Proposition 7.1). Now let C;
for i =1, 2 be tensor categories over braided tensor £. Since C; are £-bimodules we can form their
tensor product C1 Mg C,.

Theorem 6.2. There is a canonical tensor category structure on C1 Xg Cy such that the universal balanced
functor B¢, ¢, : C1 W Cy; — C1 K¢ C; is tensor.

Proof. Denote by A the composition of functors

3 (®1,82) Beyc,
A=CXRCGORCIKC —— IR XRCGKRC —— C1KCy —— C1 K Ca.
72,3 permutes second and third entries. Let b denote the balancing for functor B¢, c,. Let X € £,

M; € C1, Nj € C,. Then it is not difficult to check that A is £-balanced in positions 1, 3 (Definition 3.3)
with balancing morphisms

b': A((M1 ® X) Ny KM KIN2) — A(Mq X (X ® Np) KM K N3),
b*: A(M1 RN1 R (M2 ® X) KIN2) — A(M; BNy KMo X (X ® N2))
given by
b}v,l,x,ngMngz := b, My, X.Ni@N, © ((idym; ® cx.m,) Re idn,gn, )
Dyt BNy BV XN, = (10 @m, Ke (€x Ny ® idN,)) © Dy @My XNy @,
where c is braiding in Z(C;). The diagram in Definition 3.1 is not difficult to write down for the b’

and this we leave to the reader. It is also evident that A is right exact. Thus we get unique right
exact A:

CIXCXCI X,

A
13
Bclc, l \

(C1 Ke C) K (C1 Re Ca) f C1Xe o
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Here Blc’icz = B¢,,c, X B¢, ¢, is the universal functor for right exact functors balanced in positions 1,

3 from the abelian category at the apex. Associativity of the tensor product A comes from associativity
constraints a' in C;. One shows

a' Mg a®: A(ARide,mye,) — Alide,mzc, K A) (36)

is natural isomorphism using an extended version of Lemma 3.8, evincing A a bona fide tensor struc-
ture on C; K¢ Cp. Observe that unit object for A comes from identity objects of C; in the obvious
way. This completes the first statement in Proposition 6.2. The second statement follows from the
definition of A: indeed B, ¢, is a strict tensor functor:

Be,.c,(XKY)® (X' ®Y')) = A(Be,,c,(XXY)X Be, ¢, (X' KY')) (37)
since both are B¢, ¢, (XQ X)K(YQ®Y')). O

Remark 6.3. Let 8 :Cy K¢ C; — Fung (C?p, C,) be the equivalence whose existence is implied by The-
orem 3.20 (see Remark 3.6). Then tensor structure in C1 K¢ Cy described above induces a tensor
structure on Fu_ng(Cfp, Cy) via B as follows. Let F, G :C?p — (C be right exact functors. Define X to
be the object in C; K¢ C; with 8(Xf) =F, and define X¢ similarly. Then tensor product F © G is the
right exact functor C;¥ — C, defined by

FOG:=B(XF® X¢) (38)
where ® is that in C1 K¢ C;. Thus Xroc = Xr ® X¢. Associativity comes from that in C; Mg C,.
6.2. On de-equivariantization and relative tensor product

The main result of this section is the proof of Theorem 1.2. We begin with the following lemma.

Lemma 6.4. Let C, D be fusion categories and let F : C — D be a surjective tensor functor. Let I be its right
adjoint. Then

(1) I(1) is an algebra in Z (C).
(2) D is tensor equivalent to the category Mod¢ (1(1)) of right I1(1)-modules in C.
(3) The equivalence in (2) identifies F with the free module functor X — X ® I(1).

Proof. To prove (1) observe that D is a Z(C)-module category with action X ® Y := F/(X) ® Y where
F':Z(C) — D is F composed with functor forgetting central structure. Under this action Hom(1, 1) =
1(1) (see Definition 2.16) so by Lemma 5 in [11] I(1) is an algebra in Z(C). Note that since I(1) is an
algebra in Z(C) we have tensor structure on Mod¢ (I1(1)): X®1(1) =1(1)® X so for I(1)-modules X, Y
X ®1) Y makes sense. Theorem 1 in the same paper says that Mod¢ (I(1)) ~ D as module categories
over C via F in (3). Observe that

FX) @11y F(Y)=(X® 1) @1 (Y ® 1) =(XQY) QI =F(X®Y). (39)
Hence F : X — X ® I(1) respects tensor structure. This completes the proof of the lemma. O

In what follows G is a finite group and we write £ := Rep(G), the symmetric fusion category
of finite dimensional representations of G in Vec. Let C be tensor category over £ (Definition 6.1)
which we thereby view as a right £-module category. Let A be the regular representation of G. A has
the structure of an algebra in £ and we therefore have the notion of A-module in C. Denote by Cg
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the category Mod¢(A) of A-modules in C. There is functor Free:C — Cg, X — X ® A left adjoint to
Forg:Cc — C which forgets A-module structure [5, Section 4.1.9]. We are now ready to prove the
theorem.

Proof of Theorem 1.2. Let F := B¢ ye- : C K Vec — C K¢ Vec be the canonical surjective right exact
functor described in Definition 3.5 which is tensor by Theorem 6.2, and let I be its right adjoint.
Lemma 6.4 gives us tensor equivalence Mod¢ (I(1)) >~ C K¢ Vec. Denote by A’ the image of the regular
algebra A in £ under the composition

E—Z(C)—C. (40)

We claim that I(1) is A'.

Let X, Y € C be in distinct indecomposable £-module subcategories of C. Since the indecomposable
£-module subcategories of C are respected by F the images of X, Y under F are in distinct £-module
components of C Xg Vec. Not only does this imply that F(X) and F(Y) are not isomorphic but in fact
Hom(F (X), F(Y)) = 0. Thus if F(X) contains a copy of the unit object 1 € C K¢ Vec then X and 1C
must belong to the same indecomposable £-module subcategory of C. Thus any object whose F-image
contains the unit object must be contained in the image of £ in C under the composition (40).

Note that the restriction of F to the image of £ in C gives a fiber functor & — & K¢ Vec = Vec.
By [5, Section 2.13] the choice of a fiber functor from £ determines a group Gr ~ G having the
property that Fun(Gp) is regular algebra A in Rep(G) and as such is canonically isomorphic to I(1).
Thus we have tensor equivalence Mod¢ (A) = C¢ >~ C K¢ Vec and the proof is complete. O

7. Module categories over braided monoidal categories
7.1. The center of a bimodule category

In this section we describe a construction which associates to a strict C-bimodule category M a
new category having the structure of a Z(C)-bimodule category. Assume C to be braided with braiding
cxyy: X®Y — Y ® X (Definition 2.1). Our first proposition is well known and we provide a proof only
for completeness.

Proposition 7.1. Let M be a left C-module category. Then M has canonical structure of C-bimodule category.
Proof. We begin with the following lemma.
Lemma 7.2. M is right C-module category via (M, X) — X ® M where ® is left C-module structure.

Proof. For left module associativity a define natural isomorphism

ayxy =0y xmidy @cxy) : M@ (X®Y) > (M®X)®Y (41)

for X,Y € C and M € M. In terms of the left module structure by which M ® X is defined a?vz,xy =
ay xm(Cxy ®idy) =(X®Y)®M — Y ® (X ® M). We show that a’ is module associativity for right
module structure. Consider diagram
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(XYZ)M v (YZX)M —L2XN (YZ)(XM) L (ZY)(XM)
Cy,z
CX zY
cxy,z (XZY)M ZYX)M az,y,xm
(ZXY)M ZUXYIM) —— Z(YX)M) —— Z(Y(XM))
aZ.XY,M CX,Y aY,X.M

The upper left rectangle is naturality of ¢, upper right triangle naturality of a, leftmost triangle is
Eq. (3), triangle in lower half of diagram is Eq. (2), central bottom rectangle is naturality of a and
rightmost rectangle is a-pentagon in C. The two directed components of the external contour are
precisely ajy y ,ay x.yz and (@y xy ® Z2)ay xy ;- The diagrams for action of unit in C are even
easier. O

Define action of X XY € C X C™ using left and right actions, i.e. ( XXY)Q@M=Y ® (X ® M).
Define

yxmy =axy.m(Cy x ®idu)ayy 1Y @ (X®M) = X ® (Y @ M). (42)
In order to verify that the candidate action is indeed bimodule we must show that y satisfies the

necessary pentagons (Remark 2.12). Commutativity of the first pentagon follows from an examination
of the diagram below.

Cz, Xy

(ZXY)M (XYZ)M
YXyY,M,zZ
Z((XY)M) (XY)(ZM)
Z(x(ymy) 2% xezeormyy M4 x oy zmy)
ax.z,ym azy.m
/ \

(ZX)(YM) —— (XZ)(YM) +—— (XZY)M —— X((ZY)M) —— X((YZ)M)
Cz X axz.y.m ax.zy .m Czy

Every peripheral rectangle is either the definition of ¢ or the module associativity satisfied by a. Note
that top left vertex can be connected to the lower center vertex by the map cz x ® idygm making
commutative rectangle expressing naturality of a in first index. Lower center vertex can be connected
to uppermost right vertex by the map idx ® ¢z y ® idy making commutative rectangle expressing
naturality of a in the second index. Commutativity of this new external triangle is (Eq. (2)) ® M. Thus
the internal pentagon commutes, and this is precisely the first diagram in Remark 2.12. Commutativity
of second pentagon is similar. O

Next we generalize of the notion of center to module categories.

Definition 7.3. Let M be a C-bimodule category. A central structure on M is a family of isomorphisms
oxm: X®M>=M® X, X eC, one for each object M € M, satisfying the condition
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(XY)M ikl M(XY)
X(YM) (MX)Y
X®‘/’Y,MJ T‘/’X,M@Y
X(MY) —— (XM)Y

whenever Y e C where a‘,a" are left and right module associativity in M and y bimodule consis-

tency (Proposition 2.12). ¢y is called the centralizing isomorphism associated to M.

Note that when M is strict as a bimodule category the hexagon reduces to

ox,.M®idy
XMY MXY
idxé;pk %4
XYM

In what follows assume C is strict.

Definition 7.4. The center Z¢(M) of M over C consists of objects given by pairs (M, ¢p) where
M € M and where ¢y is a family of natural isomorphisms such that for X € C px y: XM >M® X
satisfying Definition 7.3. A morphism from (M, ¢y) to (N, @) in Z¢(M) is a morphism t: M — N
in M satisfying ¢x y(idx ® t) = (t @ idx)@x, M-

Note 7.5. Definition 7.4 appeared in [19] in connection with centers of braided fusion categories.

Example 7.6. For C viewed as a having regular bimodule category structure Z¢(C) = Z(C), the center
of C.

Definition 7.7. Let M, N be bimodule categories central over C. Then C-bimodule functor T : M — N
is called central if the diagram

fx.m
TXOM) ———— 5 X®T(M)

T(QOX,M)J lfﬂx,NM)

TIM®X) —————  T(M) ® X
fm.x

commutes for all X € C, M € M, where ¢ denotes centralizing natural isomorphisms in M and N.
f is linearity isomorphism for T. A central natural transformation t : F = G for central functors
F,G:M — N is a bimodule natural transformation F = G with the additional requirement that,
for X e C, M € M the diagram
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PX,F(M)
XQFM) ———— > F(M)® X

X®fml lw@x

XQ®GM) W GM)® X

commutes.

It is evident that centrality of natural transformations is preserved by vertical (and horizontal)
composition, and we thus have a category (indeed a bicategory) Z(M,N) for central bimodule
categories M, N consisting of central functors M — N having morphisms central natural trans-
formations.

Lemma 7.8. Z¢ (M) is a Z(C)-bimodule category.
Proof. Assume M is strict bimodule category. We have left action of Z(C) on Zs(M) given as fol-

lows: for (X, cx) € Z(C) and (M, ¢pm) € Z¢(M) define (X, cx) @ (M, oum) = (X ® M, pxgm) Where for
YeC

-1
Cx,y®M

X®py.m
Oy xoM =Y @XM —— XYM ——> XQMQ®Y

so that X ® M € Z¢(M). Define right action of Z(C) by (M, om) ® (X,cx) = (M ® X, pmgx) Where

oy M®X M®cy x
Py Mex =YQMX — s MRQYR®X —— MR®XQY

putting M ® X € Z¢(M). It is easy to check that these actions are consistent in the way required of
bimodule action. O

Proposition 7.9. Z (M) has a canonical central structure over Z(C).

Proof. px v : (X ® M, oxem) > (M @ X, oumgx) is @ morphism in Zo(M) as can be seen by the
diagram

Y®px.m
YXM YMX
CY,x®Ml lW.M@X
PYX.M
XYM MY X
PXY.M
X®(py,ml lM®6y,x
XMY MXY
Px.MOY

Triangles are Definition 7.3 for ¢ and the square is C-naturality of ¢. O

Proposition 7.10. For C-bimodule category M we have canonical Z(C)-bimodule equivalence
Funeweor (C, M) = Zc(M).
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Proof. For simplicity assume M is strict as a C-bimodule category. Define functor
A : Funegeor (C, M) >~ Ze(M) by sending F — (F(1), f" o f‘f_l) where f)‘i :F(X)~X® F(1) and
% F(X) ~ F(1) ® X are left/right module linearity isomorphisms for F. The diagram below implies

(FA), fro f*7) € Ze(M):

r Z
F(I)XY % F(XY) —> XYF(])

fx®Y X®fY
fXY fXY

HMY——————%XHDYE——————XHﬁ

Left and right triangles are diagrams expressing module linearity of F and square is bimodularity of F
(Remark 2.14). Inverting all ¢ superscripted isomorphisms gives the diagram required for centrality
of froft™!.

To complete definition of functor Funeweor (C, M) — Zc(M) we must define action on natural
bimodule transformations. For t : F = G a morphism in Funggco (C, M) note that 77 : (F(1), fT o
f‘f_1) — (G(1),g" o g‘f_]) is a morphism in Z¢(M): indeed, diagram required of 7 as central mor-
phism is given by pasting together left/right module diagrams for t along the edge 7x : F(X) — G(X).

We now define quasi-inverse I for functor A. For M € M denote by Fy the functor C - M
defined by Fy(X) := X ® M. Right exactness of Fj; follows from (contravariant) left exactness
of Hom(_, Hom(M, M)). Since M is a strict C-bimodule category F); is strict as a left C-module
functor. For (M, ¢um) € Z¢ (M) we give Fy the structure of a right C-module functor via

Fu(X) = X®M Mo X= Fu1) ® X (43)

and with this Fy is C-bimodule. Define I'(M, ¢u) := Fy with the bimodule structure given in (43).
It is now trivial to verify that AT’ =id and that I"A is naturally equivalent to id via f¢. Finally, it is
easy to see that I" is a strict Z(C)-bimodule functor. O

As a corollary we get a well-known result which appears for example in [10].
Corollary 7.11. (C X C)§ > Z(C) canonically as monoidal categories.

7.2. The 2-categories B(C) and Z(C)-Mod

Recall that B(C) denotes the category of exact C-bimodule categories. The main result of this
section is Theorem 7.14 giving an equivalence B(C) ~ Z(C)-Mod. Before we give the first proposition
of this subsection recall that C has a trivial Z(C)-module category structure given by the forgetful
functor.

Proposition 7.12. The 2-functor B(C) — Z(C)-Mod given by M +> Z¢ (M) = Funegcor (C, M) is an equiv-
alence with inverse given by N+ Funzc)(C°P, ).

Proof. In Proposition 710 we saw that Z¢(M) is a Z(C)-module category whenever M is a C-
bimodule category (here module structure is just composition of functors). The category of Z(C)-
module functors Funz)(C?, ) for Z(C)-module category N has the structure of a C-bimodule
category with actions

F®X)(Z):=FX®Z), (YQF)(Z):=FZQ®Y). (44)
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To see that Funcxcor (C, —) and Funzc)(C°P, —) are quasi-inverses first note that

Funzc)(C*, Funcgcor (C, N)) = Funegcor (C Rz(c) CP, N) ~ Funcweo (Z(C)5. N) - (45)

as C-bimodule categories for any bimodule category A/ where we have used Eq. (23) freely. Theo-
rem 3.27 in [10] gives a canonical equivalence (C} )%, > C for any (exact) C-module category M.
In the case that M = C this and Corollary 7.11 imply Z(C)j = (C X CP)%)5 =~ CKCP. Thus the last
category of functors in (45) is canonically equivalent to Funcgcor (C X CP, N) ~ N.

In the opposite direction we have, for Z(C)-module category M,

Funcco (C, Funzc) (C, M)) = Funzc) (C Remceor C, M). (46)

Note that C% Mo C = (C X CP)E >~ Z(C) (Corollary 7.11) and thus the last category of functors
in (46) is canonically equivalent to Funz)(Z(C), M)~ M. O

Lemma 7.13. As Z(C)-bimodule categories, Z¢ (M°P) >~ Z¢ (M)°P.

Proof. For M, C as above we have the bimodule equivalences

Funcgcor (C, M) = Funcgacor (M, €)” = Funcgcor (C, M)*.

The first equivalence is Lemma 2.18 and the second uses Corollary 3.22. By Proposition 7.10 the first
term is equivalent to Z-(M°P) and the last to Z¢(M)P. O

Theorem 7.14. The 2-equivalence Z¢ : B(C) =~ Z(C)-Mod is monoidal in that Z¢ (M B¢ N) >~ Ze (M)Rzc)
Zc(N) whenever M, N are C-bimodule categories.

Proof. We have seen that Z- (M) is a Z(C)-module category whenever M is a C-bimodule category.
We have canonical Z(C)-bimodule equivalences

Ze(M e N) > Funegeor (C, M Xe N) > Funegeo (MP, N)
~ Funzcy(Ze(M), Ze(N)) =~ Funzc)(Ze (M)P, Ze(N))

>~ Funzc)(Z(C), Ze(M) Rz(cy Ze(N)) = Ze(M) Kizey Ze(N).
The first equivalence is Proposition 7.10, the second and fifth are Corollary 3.22, the third follows from
the fact that the equivalence of 2-categories Z(C)-Mod =~ (C K C°P);-Mod (Corollary 7.11) preserves

categories of 1-cells, and the fourth follows from Lemma 7.13. Example 7.6 shows that Zc preserves
units. 0O

Corollary 7.15. Let M be a C-module category for finite tensor C. There is a canonical 2-equivalence
B(C) ~ B(C}, ) respecting monoidal structure.

Proof. Corollary 3.35 in [10] says that Z(C) >~ Z(C}, ;). The result follows from Theorem 7.14. O
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8. Fusion rules for Rep(G)-module categories
8.1. The burnside ring and monoidal structure in Vecg-Mod

Much in the beginning of this section is basic and can be found for example in [20]. Let G be a
finite group. Recall that the Burnside ring £2(G) is defined to be the commutative ring generated by
isomorphism classes of G-sets with addition and multiplication given by disjoint union and cartesian
product:

(H)+ (K)=G/HUG/K,
(H)(K) =G/H x G/K.

Here (H) denotes the isomorphism class of the G-set G/H for H < G and G acts diagonally over x.
Evidently we have

(H)(G) =(H),  (H)(1)=[G:H|1) (47)

so £2(G) is unital with 1= (G). It is a basic exercise to check that multiplication in §2(G) satisfies the
equation’

(Hy(Ky= > (HN). (48)

HaKeH\G/K

We are interested in a twisted variant of the Burnside ring. Here we take as basis elements (H, o)
where G/H is a G-set and o is a k*-valued 2-cocycle on H. Multiplication of basic elements takes
the form

(H.u)(K.o)= > (HNK,uo") (49)
HaKeH\G/K

where on the right u,o? refer to restriction to the subgroup H N %K from H,?K, respectively. The
cocycle 09 :9K x K — k* is defined by o%(x, y) = o (x4, y%).

Note 8.1. The decomposition for twisted Burnside products described above occurred in [6] in order to
study crossed Burnside rings, and in [7] in connection with the extended Burnside ring of semisimple
Rep(G)-module categories M having exact faithful module functor M — Rep(G).

Recall that indecomposable Vecg-module categories are parametrized by pairs (H, ) where H < G
and p € H2(H, k*). Denote module category associated to such a pair by M(H, ). Explicitly simple
objects of M(H, n) form a G-set with stabilizer H and are thus in bijection with cosets in G/H.
Module associativity is given by scalars (g1, g2)(X), for u € Z2(G, Fun(G/H, k*)), associated to the
natural isomorphisms (g182) ® X — g1 ® (g2 ® X) whenever g; € G and X € G/H. Module structures
are classified by non-cohomologous cocycles so we take as module associativity constraint any repre-
sentative of the cohomology class [u]. Identifying € H2(G, Fun(G/H, k*)) = H?(G, Indgkx) with its
image in H2(H, k*) by Shapiro’s Lemma we may classify such constraints by H2(H, k*).

The categories Vecg and Rep(G) are Morita equivalent via Vec: (Vec)y,. ~ Rep(G) (send represen-
tation (V, p) to the functor Vec — Vec having F(k) = V with Vecg-linearity given by p). Since Rep(G)

1 One uses the fact that there is a bijection between the G-orbits of (xH,yK) € G/H x G/K and double cosets H \ G/K
given by (sH,tK) — Hs~'tK. The orbit corresponding to the coset HaK contains (H,aK) with stabilizer H N %K, thus orbit
O¢(H,aK) of (H,aK) is G/(HN%K) as G-sets giving the formula.



J. Greenough / Journal of Algebra 324 (2010) 1818-1859 1855

is braided the category Rep(G)-Mod has monoidal structure Xgep(g). Although Vecg is not braided
the category Vecg-Mod has monoidal structure as follows. For M, N € Vecg-Mod define new Vecg-
module category structure on M KN by g® (mXn):= (g ®m) X (g ®n) for simple object ky := g
in Vecg, and linearly extend to all of Vecg. Let M © N denote M XN with this module category
structure.

Proposition 8.2 (Vecg-Mod fusion rules). With notation as above

MH. WOMK. o)~ P  M(HNK, uo. (50)
HaKeH\G/K

Proof. Send (H, o) to module category M(H, o). This association is clearly well defined and respects
the action of G. Applying the proof above for decomposition of basic elements in £2(G) to simple
objects in M(H, ) © N(K, o) verifies the stated decomposition on the level of objects. We must
check only the module associativity constraints for the summand categories. To do this we simply
evaluate associativity for a simple object in the summand category having set of objects G/H N “K.
We may choose representative H X aK. For g, h € G we have

gh® (HRaK)~g® (h®H)Kg® (h®akK) (51)

via (g, h)(H)Xo (g, h)(akK). Noting that G/K >~ G /K as G-sets, restricting ¢ : H2(G, Fun(G/K,k*)) >~
H?(®K,k*) to coset aK on the right gives @(o)(ki,k2) = o (ki,kz)(@K) for ki, ky € “K. Thus
(o) k1, k) = (o) (K, K5) € H2(°K,k*), and this we simply denote by ¢?; module associativity
is ;X o® which is identical to uo® since each is a scalar on simple objects. O

Corollary 8.3. The Grothendieck group of invertible irreducible Vecg-module categories is isomorphic
to H2(G, k).

Proof. Without taking twisting into consideration, invertible irreducible Vecg-module categories cor-
respond to invertible basis elements of the Burnside ring £2(G). Suppose (H)(H') = (G) in £2(G). Then
> (HN®H')y = (G) which can happen only if there is a single double coset HH' and if HN?H' =G,
and this occurs only if H=H’ = G. It follows from Proposition 8.2 that

MG, 1) O M(G, 1) = M(G, ). (52)
Sending M(G, i) to p gives the desired isomorphism. O

We have an equivalence of 2-categories Vecg-Mod — Rep(G)-Mod defined by sending M — M
where

M = Funyec, (Vec, M). (53)

Observe that Funyec, (Vec, Vec) acts on Funye, (M, N) on the right by the formula (F ® S)(M) =
F(M) ® S(k) whenever M € M and S : Vec — Vec is a Vecg-module functor. F ® S is trivially a Vecg-
module functor:
(FRS)(g®M)~(g®F(M)) O S(k)
=(g® F(M)) © (g® Sk))
=g® (F(M)®S(k)
=g® (F®S)(M).
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The isomorphism is Vecg-linearity of F and the second line follows from the fact that simple objects
of Vecc (1-dimensional vector spaces) act trivially on Vec. Let T : Vec — Vec over Vecc. Associativity of
the action is also trivial:
(F®ST)(M) = F(M) © ST (k)

=F(M) 0 S(k® Tk))

=F(M)® (Sk) ® T(k))

=(F(M) © S(k)) © T (k)

=(FRS)(M) O TK) = ((F®S)®T)(M).

The second line is tensor product (composition) in Funyec. (Vec, Vec) and the isomorphism is due to
the canonical action of Vec on A given by internal hom.

Proposition 8.4. For H < G and . € H2(H, k™) denote by Rep,, (H) the category of projective representa-
tions of H with Schur multiplier p1. Then Rep,, (H) >~ M(H, u) as Rep(G)-module categories.

Proof. Send functor F:Vec — M(H, u) to F(k). Rep(G)-module structure on Rep, (H) is given by
res®id: for V € Rep(G) and W € Rep,, (H) the action is defined by V @ W := resg(V) ® W where ®
on the right is tensor product in Rep, (G). O

One of the main results of this section is the following theorem.

Theorem 8.5. The 2-equivalence M +— M between (Vecg-Mod, ©) and (Rep(G)-Mod, XMrep(c)) is monoidal
in the sense that

M@NimgkepG-/\_f (54)
as Rep(G)-module categories.

The action of Rep(G) =~ Funye. (Vec, Vec) is given by composition of functors. Since the correspon-
dence is an equivalence of 2-categories we may identify abelian categories of 1-cells:

Funyec, (M, N) 2 Fungep(c) (M, N). (55)

In what follows we provide a few lemmas which show that useful formulas provided earlier for
monoidal 2-categories hold also over the category of Vecg-modules.

Lemma 8.6. The 2-equivalence M > M from Vecg-Mod to Rep(G)-Mod when restricted to 1-cells is an
equivalence of right Rep(G)-module categories.

Proof. The equivalence of 1-cells ¢ : Funyec, (M, N) ~ FunRep(G)(m,./T/ ) takes functor F : M — N
over Vecg to the functor defined by Q — FQ for Rep(G)-module functor Q : Vec — M. We must
check that this correspondence respects Rep(G) action.

Any functor E : Vec — Vec over Vecg determines representation E(k), and any representation V
determines functor EV (k) = V. V € Rep(G) = Vec right-acts on F € Fungepcy(M, N) by (F®V)(Q) =
F(Q) o EV. Writing (¢(F), Q) for the functor in A/ determined by F, Q we have, for W e Vec,
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(¢(F®EY).Q)W)=(F®E")(Q)W)
=FQEY(W)
=(¢(FHQE. Q)W). O

Lemma 8.7. Let M, N be left Vecg-module categories. Then M ® N =~ Fun(M, N) as left Vecg-module
categories.

Proof. Let M := M(H, ) and NV := M(K, o) as above. Define

D :MON - Fun(M®P,N),  &MON)(M'):=Hom(M',M)®N. (56)

Clearly @ is an equivalence of abelian categories (see Lemma 3.21 for example) and it remains to
show that it respects Vecg-module structure. The category Fun(M°, N) carries Vecg-module struc-
ture (g ® F)(M) := g ® F(g~! ® M) for simple objects g in Vecg. Left action on M is given by
X ®% M =X ® M with inverse module associativity. We have
(gh®@ F)(M)=gh®F(h'g~' @ M)
~go(heF(h' (s ©m)
=g®*heF(g'eM)=(g®HheF)M)

where =~ is o (g, )~ 1(h~', g~1) which is cohomologous to o (g, h)iu(g, h), i.e. module associativity
on functors is given by po. For simple objects M, M" in M, N e N/
(g®@@(MON))(M')=g® (Hom(g"'® M',M) ® N)
~Hom(M',g® M) ® (§® N)
=P(g®MON)(M')

where =~ is canonical. @ respects Vecg-module structure. O
Lemma 8.8. Funyec, (M, N) >~ M O N as right Rep(G)-module categories.

Proof. We have an equivalence v : Funye, (M, N) —> MPON, F — yF where ¢ F(V)(M) :=
F(M) ® V whenever V e Vec, M € M and where we have used Lemma 8.7 to express M o N
as category of functors is an equivalence. y has quasi-inverse F — F(k):
(w(F®V), W)M)=(F(M)© V) 0 W
~F(M)o (VW)
=y F(V ®W)(M)
=y F(EY(W))(M)=(yFoEY, W)M). O

Lemma 8.9. M ~ MOP as Rep(G)-module categories.



1858 J. Greenough / Journal of Algebra 324 (2010) 1818-1859

Proof. Funyec. (Vec, M) >~ Funyec. (M, Vec) =~ FunRep(G)(ﬂ, Rep(G)) where first ~ is Lemma 8.7 and
the second comes from the 2-equivalence. The first term is M and the last is M%. O

Proof of Theorem 8.5. With notation as above,

MON = Funyec, (MP, N)
> Fungep(c) (W, ./T/')
2 Fungep(c) (M, N) = M Rgepc) N

First line is Lemma 8.8, second is Lemma 8.6 and third is Lemma 8.9. O

Theorem 8.5, together with the observation in Remark 8.4, immediately gives a formula for
Rep(G)-module fusion rules.

Corollary 8.10 (Rep(G)-Mod fusion rules). The twisted Burnside ring §2(G) is isomorphic to the ring
Ko(Rep(G)-Mod) of equivalence classes of Rep(G)-module categories with multiplication induced by Mrep(c).
That is, for irreducible Rep(G)-module categories Rep,, (H), Reps (K) we have, as Rep(G)-module categories

Rep,, (H) Rrep(c) Repo (K)~ @D Repyqpa(HNK). (57)
HaKeH\G/K

Corollary 8.11. The group of invertible irreducible Rep(G)-module categories is isomorphic to H>(G, k).
Proof. The proof is equivalent to that of Corollary 8.3. O

Note 8.12. Corollary 8.11 generalizes Corollary 3.17(ii) in [2] where it was given for finite abelian
groups. Indeed when A is abelian Vecy = Rep(A*) for A* group homomorphisms Hom(A, k*).
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