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Abstract

Multiobjective optimization is a challenging task, especially in a changing environment. The study on dynamic multiobjective

optimization is so far very limited. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are

required to further the research in this field. In this paper, a Kalman Filter prediction-based evolutionary algorithm is proposed to

solve dynamic multiobjective optimization problems. This prediction model uses historical information to predict for future gen-

erations and thus, direct the search towards the Pareto optimal solutions. A scoring scheme is then devised to further enhance the

performance by hybridizing the Kalman Filter prediction model with the random re-initialization method. The proposed models

are tested and analysis of the experiment results are presented. It is shown that the proposed models are capable of improving the

performances, as compared to using random re-initialization method alone. The study also suggests that additional features could

be added to the proposed models for improvements and much more research in this field is still needed.
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1. Introduction

In recent years, there has been a growing interest in the field of multiobjective optimization. Multiobjective op-

timization is concerned with the process of simultaneously optimizing two or more conflicting objectives subject to

certain constraints. Evolutionary algorithms have been widely applied to solve MOP. Evolutionary algorithm (EA)

is a population-based stochastic method and comprises genetic steps such as selection, mutation and recombination

[1-2]. Multiobjective evolutionary algorithm (MOEA) works very well in terms of optimization performance [3].
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Despite the widespread victory of the research on multiobjective optimization, there is a growing need to apply

evolutionary algorithm on Dynamic Multiobjective Problems (DMOP). This can be used to optimize objectives in

dynamic environment such as movement tracking [4]. The study on dynamic multiobjective optimization is very

limited. Benchmark problems, appropriate performance metrics, as well as efficient algorithms are needed to further

the research in this field. Some preliminary research includes applying MOEA directly to dynamic problems [5].

However, in a dynamic multiobjective optimization problem, the fitness landscape is changing over time. Due to the

inherent characteristics of evolutionary algorithm, MOEA generally takes a significant amount of time to converge to

Pareto optimal front (POF). To reduce the number of fitness evaluations, prediction is a promising method as reported

in the literature [6]. To direct the search efficiently, historical information should be utilized to predict for future

generations.

One simple way to use the historical information is the random re-initialization (RND) model modified from

the method proposed in [6]. This method randomly re-initializes part of the whole population, which increases the

diversity and the chance of exploration. Since it is assumed that the change in the problem definitions could not be

enormous, which is the case in many real world applications, it makes sense for the RND model to retain some of the

solutions while exploring in the decision space.

Many other methods are proposed and investigated as well. [7] and [8] survey various existing techniques to

solve DMOP. They classify and discuss the uncertainties in general. The main approaches suggested to deal with

these uncertainties are: generating diversity after a change, maintaining diversity throughout the run, memory-based

approach, and multi-population approach. In particular, Kalman Filter is used to track moving optima in [4]. Some

prediction methods have been proposed to solve various problems, which could be transformed into a method that

makes good use of the historical information to solve DMOP. Among them, Kalman Filter prediction has successful

been applied in many real world problems, such as oil price prediction, movement tracking, among others [9-10].

Kalman Filter operates recursively in time series analysis. The fact that Kalman Filter can run in real time makes

it a good candidate for the prediction model in solving DMOP. In our study, Kalman Filter is applied to the whole

population to direct the search for Pareto optimal solutions in the decision space, which has not been investigated

elsewhere to our best knowledge.

To facilitate understanding of the subject, this paper will then briefly explain MOEA/D- DE (MOEA based on

Decomposition with Differential Evolution) and how the Kalman Filter prediction is introduced into this algorithm.

Next, a scoring scheme which combines Kalman Filter prediction and random re-initialization is presented. Experi-

ment results on the modified FDA Problem Set [11] and ZJZ Problem [6] are presented. It is shown that the proposed

methods outperforms random re-initialization method in terms of optimization performance. We interpret and analyze

the results from different perspectives and further possible research direction is discussed.

2. Background

A Multiobjective Optimization Problem (MOP) involves optimizing two or more conflicting objectives subject to

certain constraints. In general in a dynamic multiobjective optimization problem (DMOP), the optimum changes with

time. Mathematically, a DMOP can be described as

minimize
x

f(x, t) = [ f1(x, t) f2(x, t) . . . fm(x, t)]T

subject to x ∈ Ω
(1)

where t represents time index, x ∈ R
n represents the decision vector, n is the number of decision variables and

Ω ⊂ R
n represents the decision space. m is the number of objectives, Rm is the objective space and f (x, t) consists of

m real-valued objective functions, each of which is continuous with respect to x over Ω.

The Pareto Optimal Front (POF) in the objective space and the Pareto Optimal Set (POS) in the decision space may

change over time. The task of a dynamic multiobjective optimization algorithm is to trace the movement of the POF

and POS with reasonable computational costs. Thus, a correct guess of the new location of the changed optimum is

of great interest.
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3. Prediction Model

3.1. Multiobjective Evolutionary Algorithm with Decomposition based on Differential Evolution

The prediction model proposed in this paper is built on the structure of Multiobjective Evolutionary Algorithm with

Decomposition based on Differential Evolution (MOEA/D-DE) algorithm [3]. Recently, MOEA/D-DE has received

significant attention due to its decent optimization performance in continuous multiobjective optimization problem.

It is capable of solving continuous multiobjective optimization problems with relatively fast convergence and diverse

spread. As the name suggests, the algorithm decomposes a problem into several sub-problems and simultaneously

optimizes these sub-problems using neighborhood relations, which are defined on the distances between their weight

vectors. The decomposition is performed using some classical approaches, such as the Tchebycheff approach and the

weighted sum approach, among others. In this paper, Tchebycheff approach is used due to its simplicity and decent

optimization performance. Detailed description and analysis of MOEA/D-DE algorithm could be found in [3].

3.2. Change Detection Function

The relationship of MOEA/D-DE with the Kalman Filter (KF) prediction model is shown in Figure 1.

Figure 1: Relationship diagram for Kalman Filter model.

When there is no change detected, MOEA/D-DE takes control and the population will evolve accordingly. Other-

wise, the Kalman Filter prediction model will direct the search for Pareto optimal solutions in the decision space.

As expected, a change detection function is needed to combine the prediction model with the MOEA/D-DE algo-

rithm. Assuming that there is no noise in the system, some individuals are randomly selected as detectors and their

objective values are stored in the system. At the beginning of each generation, the detectors’ objective values are

calculated again and compared with the previously stored values. A mismatch in the objective values suggests that a

change of the problem has occurred caused by moving POS or POF landscape. Even though either POS or POF of the

problem could remain constant over time, the mapping is done differently for the multiobjective problem. Therefore,

this detection function should be able to deal with all four types of DMOP problems as introduced in [11].

3.3. Kalman Filter Prediction Model

In 1960, R. E. Kalman published a paper describing a method which can process a time series of measurements and

predict unknown variables more precisely than that based on a single measurement alone [12]. This is referred to as

the Kalman Filter. Kalman Filter maintains state vectors, which describe the system state, along with its uncertainties.

The equations for the Kalman filter fall into two groups, time update and measurement update equations, which are

performed recursively for the Kalman Filter to make prediction. Here, the Kalman Filter is used to directly predict for

future generations in the decision space and the two major steps are described below:

1. Measurement Update.

The measurement update equations are responsible for incorporating a new measurement into the a priori es-

timate to obtain an improved a posteriori estimate. The individual solutions just before the change occurs are
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taken as the actual measurements of the previous predictions. This information is used to update the Kalman

Filter prediction model.

2. Time Update.

The time update equations are responsible for projecting forward the current state and error estimate covariance

estimates to obtain the a priori estimates for the next step. New solutions are predicted based on the corrected

Kalman Filter associated with each individual in the decision space. These are a priori estimates of the future

Pareto optimal solutions, which will then be used to update the reference points and subproblems.

The specific equations[15] for the two steps are presented below. (2) gives the equations for the time update step.

x̂−k = Ax̂k−1 + Buk−1

P−k = APk−1AT + Q
(2)

(3) gives the equations for the measurement update step.

Kk = P−k HT (HP−k HT + R)−1

x̂k = x̂−k + Kk(zk − Hx̂−k )

Pk = (I − KkH)P−k

(3)

where x is the state vector to be estimated by the Kalman Filter, A denotes the state transition model, u is the optional

control input to the state x, B is the control input matrix, P is the error covariance estimate. z denotes the measurement

of the state vector, H is the observation matrix and the process and measurement noise covariance matrices are Q and

R respectively. K is the Kalman filter gain.

As shown, the current estimates are made using only the previous predictions and the current observation. There

are two variants of Kalman Filters designed for prediction, a two-dimensional Kalman Filter (2by2KF) and a three-

dimensional Kalman filter (3by3KF). In both the variants, the observation model is identity matrix, since the decision

variables can be directly measured. Further, there are no control inputs in the system. The process and observation

noise are Gaussian noise of N(0,σ) and the corresponding covariance Qk and Rk can be calculated.

(a) 2by2 Kalman Filter (2by2KF).

The state vector is X =
[
x
v

]
, where x is the vector for the decision variables and v is the vector of the first order

change in the decision variables. The state transition model used is A =
[
1 1

1 0

]
, and the covariance of state vectors

is initialized as P0 =

[
1 1

1 1

]
. In this case, the Kalman Filter is a first order linear model perturbed by Gaussian

noise. The initial covariance P0 suggests some uncertainty in the initial state vectors, which is adaptive and will

be updated as time proceeds. Noise cannot be modelled exactly in this context and assumed to be a constant

Gaussian noise.

(b) 3by3 Kalman Filter (3by3KF).

The state vector in this case is X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
x
v
a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, where x, v are the same as in 2by2KF, and A is the vector of the second

order change in the decision variables. The state transition model used is A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 0

0 1 1

0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, and the covariance of state

vectors is initialized as P0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 1 1

1 1 1

1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦. In this case, the Kalman Filter is a second order linear model perturbed by

Gaussian noise. According to the state transition model, the decision variables are updated by previous x and v
only. The second order vector a, is controlled by the Gaussian noise and is only used to estimate the first order
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change term of the state vector, as can be deducted from the state transition model. It is designed in this way to

include more historical information but not greatly rely on it.

Both the variants are discrete and linear Kalman Filters. Higher order change is ignored in trade-off for speed and

computation resources. The various steps of the proposed model to solve DMOP are shown in Figure 2 for clarity.

Initialization of weights, 
population, neighborhoods, 
detectors and Kalman filters 

Change 
detected? 

Mating 
selection 

Differential 
evolution 

Polynomial 
mutation 

Fitness 
evaluation 

Update reference 
points and sub-

problems 

Check 
terminated 
condition 

Time update 
of Kalman 

Filter 

Measurement 
update of 

Kalman Filter  

Figure 2: Flow chart of MOEA/D-DE with Kalman Filter prediction model.

3.4. Scoring Scheme

Since Kalman Filter prediction makes the assumption of linear dynamic model of the system, it may cause some

problems when the system violates the assumption. To circumvent such a situation, random re-initialization method is

introduced into the algorithm. A scoring scheme (SC) is proposed to hybridize Kalman Filter prediction and random

re-initialization method. The diagram illustrating the relationship of the scoring scheme with the proposed model is

shown in Figure 3.

 

Figure 3: Relationship diagram for scoring scheme.
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In order to allocate the resources efficiently, the scoring scheme tries to compute a RND Score, which is the

percentage of choosing RND model to produce future generation. A random number then can be generated and if it

is smaller than this percentage, random re-initialization is used; otherwise, Kalman Filter prediction is used.

To start with, the chance of producing one solution for the next generation is 50-50 between random re-initialization

method and Kalman Filter prediction. The method used to produce each child solution is stored as an attribute of the

individual. After a change is detected, the Euclidean distances from the solutions just before the change to the solutions

after the previous change are computed and the average is taken. A smaller-than-average distance implies that the

improvement made over generations by MOEA/D-DE is not very much. Therefore, the corresponding method in use

is likely to produce solutions closer to the true Pareto-optimal set in the current setting. The scores of both methods

are recorded and normalized by the total number of solutions produced by each method. The overall score of random

re-initialization to Kalman Filter prediction is then calculated by dividing the re-initialization score to the sum of both

scores.

This scoring scheme gives a higher chance of using the method that performs better in the previous prediction. It

includes other features to be able to respond faster to dynamic changes and to prevent from sticking to any one of the

methods fairly well. Note that even if the random re-initialization model is used, the measurement update step of the

Kalman Filter model is still performed. This is to keep track of the changes in the system and update the model, in

case that the Kalman Filter prediction model is used later for the individual.

4. Experiment Results

4.1. Expriment Settings

The parameter settings for the experiments on FDA problem set and ZJZ problem are tabulated in Table 1.

Table 1: Experiment Settings.

Number of decision variables FDA1: 10; FDA2: 11; FDA3: 12;

FDA4: 12; FDA5: 12; and ZJZ: 10.

Population size FDA1, FDA2, FDA3, ZJZ: 100;

FDA4, FDA5: 105.

Number of generations 600

Neighborhood Size: 20.

Probability that parents are selected from

the neighborhood is 0.9.

Differential Evolution CR = 1.0 and F = 0.5.

Polynomial Mutation η = 20, pm = 1/n.

The number of solutions replaced by any

child solution is at most 2.

Number of detectors 10

Percentage for RND model 20%

KF model Process noise: Gaussian of N(0, 0.1).

Observation noise: Gaussian of N(0, 0.1).

Dynamic Setting Frequency of change t: 5 or 10.

Severity of change n: 5 or 10.

Four settings for each test case.

4.2. Performance Metric

The performance metric used in the experiment is the inverted generational distance (IGD) as discussed in [13].

The smaller the IGD value, the better the performance is, in terms of both convergence to the Pareto optimal fronts as

well as maintaining the diversity.
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Table 2: Statistics of optimization performance on FDA and ZJZ test problems

obtained by 30 independent runs.

4.3. Experiment Results

For each dynamic setting (described in section 5.1) of every test problem, the algorithm is run for 30 independent

times. The inverted generational distances are averaged among the 600 generations and then the 30 runs. RND

denotes the method wherein a percentage of the population is randomly reinitialized. 2by2 and 3by3 are the two

variants of the Kalman Filter prediction model proposed in this paper. The Kalman Filter variants (2by2 and 3by3)

when hybridized with random reinitialization using the Scoring Scheme (SC) lead to 2by2SC and 3by3SC. The final

result of the average values and standard deviations of IGD is shown in Table 2, with the best performance highlighted

in bold.

5. Analysis and Discussion

To have a better understanding of the experiment results, we perform the following analysis on the results from

different perspectives.
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5.1. Dynamic Settings

The dynamic settings of the problems have an impact on the performance. The severity of change, n denotes

the number of steps to complete one period. The frequency of change, t denotes the number of generations before a

change occurs. Therefore, a smaller value of n means larger change, whereas a smaller value of t means more frequent

occurrence of changes. n and t can take a value of 5 or 10. The four possible combinations, leads to the dynamic

settings of 5n5t, 5n10t, 10n5t and 10n10t. Looking through one row of Table 2, it is observed that the smaller the

change and the less frequent the change occurs, the better the performance is. This meets our expectation as the

population are nearer to the true solution set and has more time to evolve in this case.

5.2. Evolution over Generations

To show clearly how the IGD values change over the generations for different problems, the case of n = 5, t = 10 is

carefully examined. For each generation, the IGD values are averaged among the 30 independent runs. The evolutions

of IGD values are shown in Figure 4 for comparison.

5.3. Further Discussion

The performance of the scoring scheme proposed is analyzed. During the research, other simple combination

methods are also implemented and tested. One way is to use Kalman Filter to predict for half of the whole population.

The other is to fix the RND score as 0.5 for every generation. They are tested and the results are compared with

that for the scoring scheme. It is shown that these simple combination methods are able to introduce diversity and

flexibility to the Kalman Filter model and improve the performance. The performances achieved are comparable to

the scoring scheme on most of the test cases. This implies that better scoring scheme could be devised to allocate the

resources faster and more accurately.

6. Conclusion

This paper proposes to solve dynamic multiobjective optimization problem by using the Kalman Filter prediction

model with MOEA/D-DE and the scoring scheme. The experiment results show that the proposed methods are able

to improve the performance significantly as compared to the random re-initialization method. Detailed analysis and

discussion are performed from different perspectives. The study suggests that Kalman Filter prediction is a very

promising tool for dynamic multiobjective optimization problems.

Some future research directions are pointed out by the study, which include building more complex Kalman Filter

and finding more efficient resource allocation methods to reduce the response time. In addition, a forward-looking

approach [14] could be introduced into the models proposed. The Kalman Filter prediction model and the scoring

scheme could very likely respond to the change better, if a change could be anticipated beforehand.

Dynamic multiobjective optimization problems are difficult to solve and this field has not been extensively stud-

ied so far. Dynamic multiobjective optimization evolutionary algorithms should have more efficient ways to direct

the search for Pareto optimal solutions when changes are detected. Other prediction methods using the historical

information could be introduced into MOEAs.
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(a) FDA1 (b) FDA2

(c) FDA3 (d) FDA4

(e) FDA5 (f) ZJZ

Figure 4: Evolution of IGD over generations.
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