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Summary
Introduction: The anterior cruciate ligament (ACL) is composed of an infinite number of fibers
whose individual anatomical and biomechanical features have been well defined. Although
numerous biomechanical studies have shown that reconstruction that is as anatomical as possi-
ble results in better control of rotational laxity, very few studies have investigated the surface
area of tibial and femoral insertion sites in these reconstructions. The aim of this study was
to compare the surface areas of tibial and femoral insertion sites in single and double bundle
reconstructions and correlate these findings with the isometry profile obtained. Our hypothesis
was that double bundle (DB) reconstruction results in better filling of the native ACL footprint
thus increasing the biomechanical value of available graft tissue.
Patients and methods: Forty-six patients underwent computer navigated ACL using hamstring
tendons: 23 underwent single bundle (SB) and 23 DB reconstruction. The Praxim navigation
station equipped with ACL logics software made it possible to digitize insertion site footprints,
register perioperative data for graft position as well as anteroposterior and rotational laxities
and pivot shift.
Results: There was a statistically significant difference between the two groups for tibial and
femoral insertion site surface areas: 71 mm2 ± 17 (SB) versus 99.9 mm2 ± 30 (DB) for the tibia,
67 ± 11 mm2 (SB) versus 96.9 mm2 ± 28 (DB) for the femur. Isometry profiles showed that ani-
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sometry was favorable in all cases: 2.5 mm ± 2 for SB; 2.9 mm ± 2 for the anteromedial bundle

(AMB) with DB and 9.6 mm ± 3.7 for the posterolateral bundle. When both groups were com-
bined, there was a statistically significant correlation between the size of tibial insertion surface
area and anteroposterior and rotational laxity.
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Discussion. — This study confirms that better filling of native ACL footprint surface areas results
in better control of anteroposterior laxity.
Level of evidence. — Level IV.
© 2011 Published by Elsevier Masson SAS.
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Statistical analysis
ntroduction

or many years reconstruction of the anterior cruciate lig-
ment (ACL) was limited to one bundle, either the patellar
r the pes anserine tendon with clinical results that were
atisfactory but whose failures were usually attributed to
oor graft position [1—3]. However, it must be remembered
hat the ACL is not a simple cylinder. Numerous anatom-
cal, biomechanical and histological studies have clearly
hown that this ligament is the sum of an infinite num-
er of fibers each with its own separate tibial and femoral
nsertion and specific mechanical behavioral features that
efine an envelope of anterior and rotational laxity. It is
enerally agreed that the ACL can be described as two bun-
les: the anteromedial and posterolateral bundles [4—10].
he biomechanical role of the posterolateral bundle (PLB)
as been clearly shown to participate in controlling rota-
ional laxity [11—17]. To improve the clinical results of single
undle (SB) ligament reconstruction (failure rates between
0 and 20% [3]), numerous authors have proposed double
undle (DB) reconstruction techniques [18—20]. Neverthe-
ess, very few clinical studies have shown that anatomic ACL
econstruction improves control of anteroposterior laxity or
otational laxity [19—24]. One of the hypotheses supporting
natomic reconstruction could be histological: couldn’t the
ignificant increase in tissue coverage alone be the param-
ter explaining these improved results? Each of the fibers
f the two bundles is organized in relation to its anatomi-
al insertion site to respond to two-dimensional mechanical
tresses.

The aim of this study was to compare the surface
reas of tibial and femoral attachments after SB and DB
econstructions and correlate these results to the biome-
hanical profile by calculating anisometry and perioperative
axity.

We hypothesized that DB reconstruction would provide
etter filling of the surface area of native ACL footprints
nd increase the biomechanical value of available graft
issue.

atients and methods

orty-six patients underwent computer navigated ACL
econstruction: 23 underwent SB (reconstruction with pes
serine tendons) and 23 anatomic DB reconstruction. Knees
ith peripheral and/or meniscal ligament injuries were
xcluded. The time between injury and surgery was a mean
7 days (10—207). Both cohorts of patients were compa-

able and there was no statistically significant difference
n sex, age, side, delay to surgery or laxity between the
roups. This was a continuous prospective non-randomized
tudy with random allocation.

Q
t
p

omputer navigated surgery

e used the Praxim navigation station (Praxim La Tronche,
rance) equipped with ACL logics software, an application
hat uses the so-called bone morphing technology [25]. The
ibial and femoral footprints of both bundles were digitized
ith an optical navigation system, the implantation surface
reas were calculated and isometry profiles were deter-
ined [26]. ACL logics software makes it possible to identify

nteroposterior (AP) and rotational laxity as well as to per-
orm a perioperative pivot shift test (Colombet index) before
nd after reconstruction.

urgical technique

ingle bundle reconstruction
he tibial tunnel was placed in the most anteromedial part
f the native anatomic ACL insertion site while avoiding
otch impingement. The position of the femoral tunnel was
s isometric as possible in the fibers of the anteromedial
undle (AMB) of the native ACL.

ouble bundle reconstruction
he tibial tunnel of the AMB was positioned forward and

nside, near the medial tibial spine while avoiding notch
mpingement. In the femur, the center of the AMB bundle
as positioned in the fibers of the AMB of the native ACL

n an isometric position. The tibial tunnel for the PLB was
ocated inside the triangle which was limited: laterally by
he posterior horn of the lateral meniscus, behind by the
nterior margin of the posterior cruciate footprint, in front
nd inside by the posterolateral margin of the anteromedial
unnel while preserving at least 2 mm of distance between
he two. These two tunnels diverged. The femoral tunnel
or the AMB was placed, starting from the ‘‘over-the-top’’
osition at 11 o’clock for the right knee and 1 o’clock for
he left knee with between 5 and 7 mm of offset depend-
ng on the diameter of the AMB while leaving at least 1 mm
f distance from the posterior femoral cortex. The femoral
unnel of the PLB was positioned in the anatomical footprint
f the ACL below and in front (arthroscopic view) of the AMB
unnel, while preserving a bony bridge of 2 mm between
he two tunnels. The center of the PLB made it possible
o obtain a favorable anisometry curve in all cases (tense
uring extension, relaxed during flexion).
uantitative data were reported as means, standard devia-
ions, minimum and maximum values. The Student t test for
aired series was used to compare pre- and postoperative
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Table 1 Laxity, isometry, and areas according to the type of reconstruction.

Single bundle Double bundle

Lachman (mm)
Before reconstruction 11.7 ± 2.3 10.8 ± 2.6 n.s
After reconstruction 4.5 ± 2.6 3.4 ± 3.7 P < 0.01

Internal rotation (degree)
Before reconstruction 21.4 ± 5.2 20.4 ± 4.4 n.s
After reconstruction 17.5 ± 4 13.2 ± 4.9 P < 0.01

Pivot shift (index) 0.17 ± 0.06 0.21 ± 0.16 n.s

Isometry (mm) 2.5 ± 2 AMB: 2.9 ± 2PLB: 9 ± 3.7 —

Areas (mm2)
Tibia 71 ± 17 99.9 ± 30 P < 0.01
Femur 67 ± 11 96.9 ± 28 P < 0.01
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PLB: posterolateral bundle; AMB: anteromedial bundle.

scores and the Chi2 test was used for comparisons of groups.
A 5% risk of a Type I error was considered acceptable to
determine the significance of comparative tests. Statistical
tests were performed with Stat View 4.5 software.

Results

The results are given in Table 1.

Insertion sites

Single bundle reconstruction
The surface area of the graft was 71 mm2 ± 17 (55—85) for
the tibia and 67 mm2 ± 11 (52—79) for the femur. The isom-
etry profile was always favorable with a mean anisometry of
2.5 mm ± 2 (0—4).

Double bundle reconstruction
The surface area of DB (anteromedial [AM] and posterolat-
eral [PL]) grafts was 99.9 mm2 ± 30 (73,23—148,50) for the
tibia and 96.94 mm2 ± 28 (66.73—141.15) for the femur. The
isometry profiles showed that the AMB fibers were nearly
isometric (0—115◦), a mean 2.91 mm ± 2 (1—6). The anisom-
etry profile of the PLB was favorable in all cases, a mean
9.6 mm ± 3.7 (6—13).

Surface areas of tibial and femoral insertion sites were
statistically different between the two groups (P < 0.01).

Laxity

After reconstruction there was a significant difference
between the two groups for AP laxity (mm): 4.5 ± 2.6 (SB)
and 3.4 ± 3.7 (DB) (P < 0.01) and internal rotational lax-
ity: 17.5◦ ± 5.2 (SB) et 13.2◦ ± 4.9 (DB) (P < 0.01) (Table 1).
No statistically significant difference was found for the
pivot shift test between the two groups (Colombet’s index):

0.17 ± 0.06 (SB) and 0.21 ± 0.016 (DB).

There was a statistically significant correlation between
the surface area of the tibial insertion site and AP laxity and
internal rotation laxity, all groups combined, while there

r
t
n
i

as no significant correlation between the pivot shift index
nd femoral or tibial insertion site surface areas.

iscussion

he aim of this study was to compare the surface areas of
ibial and femoral insertion sites following SB and DB ACL
econstructions and to correlate results with the laxity. A
tatistically significant difference was found in support of
ncreased filling of native ACL footprints with DB reconstruc-
ions. We also observed an improvement in correction of AP
nd internal rotational laxity with DB reconstruction, which
as significantly correlated to increasing the filling of ACL

nsertion sites. Ishibashi et al. [21] evaluated the role of
he AMB and the PLB in the control of laxity in 32 cases of
B ligament reconstruction with the computer aided navi-
ation system Orthopilot. They found that the PLB played
n important role in controlling laxity when the knee was
ear extension while the role of the AMB was continuous
hroughout knee flexion. On the other hand, the two bun-
les did not play a role in internal rotation. Steckel et al. [12]
howed that AP laxity after DB reconstruction or SB recon-
truction with the AMB alone was comparable to that in an
ntact knee. Correction of internal and external rotational
axity as well as Lachman test results were better with DB
econstruction. In these studies, tunnels for SB reconstruc-
ion were placed in the same position as that for the AMB
n DB reconstructions. Kanaya et al. [27] placed SB recon-
truction grafts nearer to the PLB resulting in control of AP
nd rotational laxity that was similar to that in DB recon-
tructions. Feretti et al. [28,29] did not find any significant
ifference for AP and rotational laxity in an in vivo study
omparing the two techniques (SB versus DB).

While it has not been confirmed that placing the PLB in
he native ACL PLB footprint results in better control of rota-
ional laxity because of its inclined position, adding another
undle that is tense when the knee is near extension plays a

ole in controlling the anterior compartment [30]. We found
hat PLB and AMB isometry were identical when the knee was
ear extension. Thus, adding the PLB to the AMB should log-
cally result in a significant increase in the amount of graft
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issue available to correct the anterior compartment. This
s supported by our results showing a significant relationship
etween graft insertion site surface area and correction of
P laxity. Graft inclination seems fundamental for the cor-
ection of AP laxity and rotational laxity, emphasizing the
mportance of graft position both in single and DB grafts
31—37].

We did not find any difference in pivot shift results: the
esults of the literature on this subject are controversial.
19,38,39]. The parameters for data acquisition with naviga-
ion systems are either planar or biplanar making it possible
o define three dimensional coordinates linking two points in
pace: either the ends of a fiber (to calculate isometry); or
he linear displacement of two points (to calculate laxity).
hese calculations are determined with the knee in a partic-
lar position and do not take into account the dimension of
ime. Thus, the mathematical translation of pivot shift is not
ealistic with existing tools. An envelope of passive range
f motion has been described for DB reconstruction with,
or certain authors, better control of pivot shift. [14,40].
ur study does not confirm these results and shows that the
est is not reproducible and that the proposed index prob-
bly does not reflect the dynamic three-dimensional reality
f the pivot shift. Musahl et al. [41] performed an in vitro
tudy using a robot to study continuous knee flexion and its
idimensional AP and rotational components. Hoshino et al.
42] evaluated pivot shift with an electromagnetic system
hat measured acceleration.

The following are the limits to our study: the relatively
ew number of subjects. Also, in vivo studies using naviga-
ion systems can only be perioperative and do not reflect
ormal clinical conditions: in the future non-invasive tools
hould make it possible to measure the parameters of laxity
ver time.

onclusion

o-called anatomical or DB ACL reconstruction makes it pos-
ible to fill more of the native ACL surface area as well
s to increase the biomechanical value of the graft tissue
nd obtain better control of anteroposterior and rotational
axity of the knee. The navigation tool provides validation
f the favorable anisometric profile of both bundles in the
natomic ACL footprint so that results are near the isometric
nvelope.
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