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ABSTRACT 

We consider permutations of any given squared matrix and the generalized LU( r ) 
factorization of the permuted matrix that reveals the rank deficiency of the matrix. 

Chan has considered the case with nearly rank deficiency equal to one. This paper 

extends his results to the case with nearly rank deficiency greater than one. Two 

applications in constrained optimization are given. We are primarily interested in the 

existence of such factorizations. In addition to the theories, we also present an 

efficient two-pass rank revealing LU( r) algorithm. 

1. INTRODUCTION 

Let A be an n-by-n matrix. We shall consider the generalized LU(r) 
factorization P, AQ, = LU which will reveal the nearly rank deficiency of A 

(herein P, and Qr always denote permutation matrices, L unit lower 
triangular and U upper triangular except for a small r X r block at its last 
r X r position; see the definition of LU(r) factorization in Section 2 below). 
Our main interest is on the nearly singular case. Chan [4] considers the case 
when the nearly rank deficiency of A is one. In this paper, we extend his 
results to the case with higher-dimensional rank deficiency. Such a rank 
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revealing (henceforth, RR) IN(r) f ac orization t is faster than either SVD 
(singular-value decomposition) or RRQR(r) factorization (see Chan [3] and 
Foster [lo]) and is important in matrix theory and linear algebra for its wide 
applications. 

One kind of applications of such RR factorization arises from constrained 
optimization (see Chan [4, 51, Chan and Resasco [7]). When an equality 
constrained problem is solved by the Lagrange-multiplier approach, we have 
a symmetric but not positive definite system with the Hessian in the (1,1) 
block and the constraints constituting the borders. If the Hessian is singular 
at the solution, then our RR factorization together with deflated block 
elimination [7] can be used to solve the problem (Chan [6]). The following is 
another application. If the active-set method is used to solve an inequality 
constrained optimization problem and the problem is (nearly) degenerate at 
an intermediate iteration, then the RR factorization is essential to make the 
method successful (Fletcher [9]). B esi es, d it can also be used to solve 
least-squares problems following the method proposed by BjGrk [l, 21. 

Let T > 1 be the nearly rank deficiency of A. That is, the rth smallest 
singular value a;, _ r + 1 of A is of small magnitude, and the (r. + I)th smallest 
singular value a,- r is of order one. We will show that, for this matrix A, 
there always exists a generalized LU(r) factorization with an T X r position 
of U. Here “small” means O(a,_,+ l). Chan [4] notes that the usual partial 
pivoting cannot guarantee to produce small pivots, i.e., to reveal the rank 
deficiency. In this paper, we shall concern ourselves with the theoretical 
questions of the existence of such RRLU(r) f ac orizations but shall also give t 
a practical (i.e. efficient) algorithm for computing such factorizations. 

The following notation will be used throughout. n(A) and det A denote 
the nullity and the determinant of A, respectively. A[i,, . . . , i,(j,, . . . , j,] 
denotes the p X p submatrix of A obtained from the intersection of rows 

21,. . . > i, withcolumnsjl,...,jp. When the two sets of indices are the same, 
we write A[i,, , ip] for short. A(i,, . . . , iplj,, . . . ,j,) and A(i,, . . , ip> 

denote the determinants of A[i,, . . . , i,lj,, . . . ,j,] and A[i,, . . , i,], 
respectively. 

In this paper some lemmas are simple extensions of those in 141, but 
others are not simple. In Section 2, we outline the ways to find permutations 
P and Q such that there exists a generalized LU(r) factorization for PAQ. In 
Section 3, we discuss the exactly singular case; in Section 4, we discuss the 
nonsingular case, In Section 5, we present an efficient two-pass algorithm, 
RRLU(r), that utilizes the theories in the previous sections. We give some 
numerical results to illustrate that the first pass of Algorithm RRLU(r) fails 
but the second pass succeeds in revealing the nearly rank deficiency of a 
given nearly singular matrix. 
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2. EXISTENCE OF GENERALIZED M(T) FACTORIZATIONS 

In this section, we first define the generalized LU(r) factorization of a 
given matrix A E R”’ “, and then we give an equivalence condition for the 
existence of the LU(r) factorization. 

DEFINITION. Let A be an n X n matrix and 0 < r < n. If there exist 
permutations P, and Qr which, respectively, permute only the first n - T 
rows and columns of A such that 

(2.1) 

where Us, E RrXr (not necessary upper triangular), U,, E R(“-‘)x(“-‘) is 
upper triangular, and L,, E R(“-‘!x(n-r) is unit lower triangular, then we 
say that A has a generalized LU(r) factorization. 

Note that the generalized LU(0) factorization of A is the usual LU 
factorization of A (which always exists). 

We first prove two lemmas for the fundamental existence theorem. 

LEMMA 2.1. 

(a) Zf A i-s nonsingular and has a generalized LU(r1 factorization as in 
(2.0, then we can perturb the submatrix 

P,AQ,[n-r+ l,...,n] 

by U, to make A singular with nullity equal to r. 
(b) Zf A is singular with nullity r and has a generalized LU(r) factoriza- 

tion (2.1) with U,, = 0, then we can perturb the submatrix P, AQ,[n - r + 
1,. . , n] by a nonsingular r X r matrix to make A nonsingular. 

Proof. (a): Write 
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A = P,AQ, - dkg{0,_,,U2,} = 
-Lull JLu12 
L u 

21 11 

L u 

21 12 1 

Thus n(A) = r. The proof for part (b) is similar. n 

LEMMA 2.2. Let A, with nullity equal to 0 

partitioned form 

or r, be represented in the 

4, A,, A=A 
[ 1 21 

A > 
22 

where A,, E R(n-r)x(n-r) and A,, E R"'. Then we can change the nullity 
of A (from 0 to r or vice versa) by perturbing the submatrix A,, if and only 
if A,, is nonsingular. 

Proof. The “only if” part: Suppose that A,, is singular and rank A,, = k. 
Let 

A,, =U ; ; VT 
[ I 

be the SVD of A,,, where C = diag(u,, . . . , Us) > 0. Define 

S(A22) = () 1, [” “]A[: qT= [s;l s!2 ;g 

where S,, and S& are in R'X("-k-'). 
For the case rank A = n - r: 

(i) If S,, has deficient column rank, then rank S( A,,) < n - 1 for all 
A 

=iii) If S, has full column rank, then 
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and since rank A = n - r, we have S,, = 0. Thus 

rankS(Azz) <n - 1 for all A,, . 

From (i) and (ii), we know that there does not exist A, such that rank 

S( A,) = n, which is contradictory. Thus A,, is nonsingular. 
For the case rank A = n: Since rank A = n, we have rank S,, = n - k 

- r (full column rank), rank S,, = n-k-r(fullrowrank),andn_2r< 
k < n - r - 1. Thus 

rankS(A,) >k + ( n - k - r) + (n - k - r) = 2n - k - 2r. 

From n - 2r < k < n - r - 1, we have n - r + 1 < 2n - k - 2r G n. 

Therefore, rank S( A,,) 2 n_- r + 1 for all A,,; i.er there does not exist a 
perturbation of A,, say A,,, such that rank S( A,,) = n - r, which is 
contradictory. Thus A,, is nonsingular. 

The “if” part: Suppose that Al, is nonsingular. Then 

From (2.2), we have that 

All 0 
rank A = rank 

0 A,, 1 - &&‘4, . 

Therefore, we can change the nullity of A (from 0 to r or vice versa) by 
perturbing the submatrix A,. This complete the proof. n 

On the basis of Lemma 2.1 and 2.2, we want to find a submatrix H of A 
such that if we perturb H, then n(A) is changed either from 0 to r or vice 
versa. 

DEFINITION. Let C,(r) denote the set of all r x r submatrices 

of A, where n(A) can be changed (from 0 to r or vice versa) by perturbing 
the submatrix H of A alone. 
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When an element H in C,(r) is found, we use permutations, called P 

and Q, to permute H to the last r X r position of PAQ. In the following we 
will prove the fundamental theorem on the existence of a generalized LU(r) 
factorization for PAQ. 

THEOREM 2.3. Let P and Q be two permutations. Then PAQ has a 

generalized LU(r) factorization as in (2.1) if and only if P and Q permute a 

submatrix H in C,(r) to the last r-by-r position of PAQ. 

Proof. The “only if” part is Lemma 2.1. We prove the “if” part as 
follows. Let 

All Al, 
PAQ= A 1 1 A , 

where A,, E Rrx’. 
21 22 

By Lemma 2.2, A,, is nonsingular. So A,, has an LU(0) factorization, say 
~~~~~~~ = L,,U,,, where rri, 8, are permutations and Vi, has nonzero 
diagonal elements. Let 

P, = “0’ 
0 

[ 1 I 
r 

Thus 

where U,, = A,, - A,181U~~1L~1~lAl, = A,, - A,,A,‘A,,. Therefore, 
PAQ has a generalized LU(r)-factorization. w 

In the following two sections, we shall establish some subsets of C,(r) 

which will give further equivalent and sufficient conditions for the existence 
of the LU(r) factorization of a singular or a nonsingular matrix. This 
information will lead to a practical algorithm in Section 5. 

3. THE SINGULAR CASE 

In this section, let A be a singular matrix with n(A) = r. We shall show 
how to find P and Q such that PAQ h as a generalized LU(r) factorization 
(2.1) with U, = 0. First, we need the following two preliminary lemmas. 
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LEMMA 3.1. Let D = diag(d, ,..., d,_,,O ,..., 01, U, z [ul,....url, 
and V, = [u,, . , II,] E R"". Then 

= ,G d,U,( n - r + 1,. . . , n(1,. , r)V,( n - r + 1,. . . , n(1,. . . , r). 

Proof. See appendix. W 

Now, let A = X CY T be the SVD of A, where c = diag(ar , . . , 
(T n--r* 0 ,..., O>,X=[xl ,..., r,],andY=[yr ,..., y,]areorthogonahFrom 
now on, let H denote an r x r matrix [a,,]. Then 

LEMMA 3.2. 

A + 2 k &e,,ei 
l=l k=l 

=(detXdetYdetH)X(i, ,..., i,(n-r+l,..., n) 

n-r 

XY(jl,. . .,jrln-r+ l,..., n)ngi. 
i=l 

Proof. See appendix. n 

The next lemma shows that Cl(r) is related to the left and right singular 
vectors corresponding to 0, _ r+ i = *** = a, = 0, respectively. 

DEFINITION. Define the set 

C,(r) = {H: H isin C,(r) 

satisfying X(i,,...,i,ln - r + 1, . . ..n) # 0 

andY(j,,... ,j,ln - r + 1,. . . , n) # 0). 

Note that we use nonzero determinants instead of nonzero components to 
generalize the definition of C,(r) in Chan [4]. 

LEMMA 3.3. Zf A is singular with n(A) = r, then C,(r) = C,(r) and is 
rwnempty. 
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Proof. By Lemma 3.2, we know that for a nonsingular matrix H = [a,,] 
E RrXr 

A + i i 6,, e,,eJ? # 0 if and only if 
I=1 k=l 

X(i,, . . .) i,ln-r+I ,..., n)ZO and Y(ji ,..., j,ln-r+l,..., n)#O. 

Thus C,(r) = C,(r). 
It remains to show that C,(r) is nonempty. If X(i, , . . , i,ln - r + 

1 1 . . . , n) = 0 for any possible set of i, : 1 = 1,. . , T, then {x,,_,+ ,, . . . , x,,) 
is linearly dependent, which is contradictory. This can be similarly shown for 
the determinant involving Y. Therefore, C, is nonempty. n 

Combining Theorem 2.3 and Lemma 3.3, we have the following primary 
result of this section. 

THEOREM 3.4. Suppose that n(A) = r. Then PAQ has a generalized 

LU(r) factorization (2.1) with U,, = 0 if and only q P and Q permute an 

element in C,(r) to the last r x r position of PAQ. Moreover, there always 

exists at least one such j&torization for any singular A. 

4. THE NONSINGULAR CASE 

In this section, we assume that A is nonsingular but with r small singular 
values. We shall show how to find permutations P and Q such that PAQ has 
a generalized LU(r) f ac t orization (2.1) with such a small U,, E R" r that the 
factorization reveals the nearly rank r deficiency of A. First, we show that 
C,(r) is related to r-by-r submatrices of A-’ with nonzero determinants. 

DEFINITION. Let M = A-l. Define 

cd?-) E {H = A[i,,...,i,Ij,,...,j,]:/3 = M(j,, . . ..jrlil....,ir) # 0). 

LEMMA 4.1. Let A be nonsingular. Zf H E C,(r) and H = [ 6,,], for 
1, k = 1,. . . , r, is the inverse of M[j,, . . . ,j,li,, . , i,], i.e., 

‘1, = 

( - l)‘+k 

P 
M(j,,...,.fk, . . . . j,lil ,..., i, ,..., i,), (4.1) 
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where i means “omit i,” then 

n A - i k &eireI~ 
( I=1 k=l 

In other words, we have C,(r) C C,(r). 

Proof. See appendix. 
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r. 

n 

THEOREM 4.2. Zf P and Q pemute a submatrix A[i,, . . , i,lj,, . . . , j,] 
E C,(r) to the last r X r position of PAQ, and 

A - i i Slkei,ejT 
Z=l k=l 

then PAQ has a generalized LU(r) factorization (2.1) with U, = [t&l. 

Proof. Let 

4, 
PAQ= A 

4, 

[ 1 A > 
where A 22 E R”‘. 

21 22 

By Lemma 2.2 and the definition of C,(r), we have that A,, is nonsingular. 
By Theorem 2.3, PAQ has a generalized LU(r) factorization. Let it be 

If P, = diaar,, Z,) and Q1 = diag(8,, I,), then 

Let li=A, 

where 

- 

“141% = 4% ami v,, = A22 - L2,42. (4.2) 

&2 = A22 - [slkl~ (4.3) 
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On the other hand, 

where 

ti22 = AZ2 - L,,U,, . (4.4) 

n(A) = r implies tiss = 0. From (4.2), (4.31, and (4.41, we then have 

Q!s = &,I. n 

Combining Lemma 4.1 and Theorem 4.2, we have the following theorem 

immediately. 

THEOREM 4.3. Zf A is nonsingular and P and Q permute an element of 
C,(r) to the last r x r position of PAQ, then PAQ has a generalized LU(r) 

factorization (2.1). Moreouer, the (1, k)th entry of U,, , say 6,, , is equal to 

( - l)‘+k 

P 
M(j,, . . . ?ik,. . . , j,bl,. . . ,i,, . . . ,ir) (4.5) 

for 1, k = 1,. . . , r, where p = M(j,, . . . , j,lil,. . , i,). 

Now, let XrAY = x = diag(u,, . . . , u,,) be the SVD of A with cri > ..* 

> a, > 0, and denote the columns of X and Y by xi and yi, respectively. 

In the following, we will characterize the generalized LU(r) factorization 

(2.1) of PAQ with small U,, E Rrx’ by the singular vectors x,_,+i, . . . , x, 

and Yn-,+l>...> Yn corresponding to ~“_~+i,. . . , a,,, where on_, * ~“_~+i 

= O(E) (small in magnitude). 

DEFINITION. Define 

C,(r) = H e A[i,, . . . , irljl,. . . ,jr] : 

absY(j,,... , jrln - r + 1,. . . , n) > 
( r!(nn;r)! r2 

and abs X(i,, . . . , i,ln - r + 1,. . . , n) > 
r!(n - r)! 

n! 

where abs denotes the absolute value. 
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THEOREM 4.4. C,(r) is empty. 

Proof. Let Y, = Y[l, . . . , nln - r + 1,. . . , n]. Since Y, is orthogonal, 

by the Binet-Cauchy formula we have 

1 = det Y,‘Y, = c Y,(k,, . . . , k,ln - r + 1,. . .) n)‘. 
l<k,< ... <k,<n 

Hence, there exist indices j,, . . . , j, such that 

absY(j, ,..., j,ln - r + l,..., n) > 
( r!‘nn; r)! r2, 

Similarly, there exist i,, , i, such that 

abs X(i,, . , i,)n - r + 1,. . ., n) > 
( r!(nn; r)! r2. , 

Next, we show our main result in this section. The next theorem, using 

the Binet-Cauchy formula, is also the main contribution of this paper. 

THEOREM 4.5. Let A be nonsingular. Zf P and Q permute an element in 
C,(r) to the last r x r position of PAQ, then PAQ has a generalized LU(r) 

factorization (2.1) with U, = [ 6,,] satisfying the following upper bound: 

IS,,1 < n! 
[ 

1 -1 
n. q-r+1 

r!(n - r)! s-r+1 ’ - r!(n - r)! q_, 1 
for 1, k = 1,. . . , r, provided that th e quantity inside the bracket is positive. 

Proof. For ease of exposition, we shall first use the case of r = 2 to 

illustrate the derivation. Let A = XXY T and M = A-’ = Et=, uilykxl. 
Then 

M[j, kli,Z] = Y[j, kll,. ..,n]diag(a,‘,..., a;‘)X[i,Zll,..., n]‘. 
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By the Binet-Cauchy formula, we have 

P = M(j,klQ) = c ~(j,klp,9)X(~,~lp,q)~,-‘a,-’ 
l<p<9<n 

= Y(j, kin - 1, n)X(i,Zln - l,n)a,.,a,’ 

+ c y(j,klp,q)X(~,~lp,q)~,-‘~~‘. (4.6) 
l<p<g<n 

(p,q)zh-l,n) 

In the following we will show the upper bound for the second term in 
(4.6) is o-;lo--?,: 

abs c Y(j,klp,9)X(i,~lp,q)a~‘~~’ 
l<p<q<n 

(p,q)+(n-l,n) 

Q a,-lu;J, c abs[Y(j,klp,q)X(i,Ilp,q)] 
l<p<q<n 

(p,g)f(n-1.n) 

i 1 
l/2 

Q a, ‘u;Jg c Y(j,klp,9)’ 
l<p<q<n 

(p,q)z(n-l,n) 

i 1 
l/2 

c x(i,zlp,9)2 
l,<p<q<n 

(p,q)+(n-l,n) 

(by the Cauchy-Schwarz inequality) 

< a, lu”-12 . 

The last inequality follows from applying the Binet-Cauchy formula to the 
matrices 

I2 = Y [ j, kll, . . . , n]Y [ j, kll, . . . , nl’ (4.7a) 

and 

z2 = X[i, 111,. . * ) n]x[i, 111,. . . , n]‘. (4.7.b) 
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By the definition of C,(r) and the assumption that the quantity inside the 
bracket is positive, we have 

Hence C,(r) G C,(r) and 

n(n - 1) 
IPI-‘< 2 anun_, 1 - 

[ 

n(n - l)U"_, -l 1 2u,_, . 

We show this similarly for the general case, i.e., when the nearly rank 
deficiency is r. By the Binet-Cauchy formula, 

p = M(j,, . . . ,j&,, . . . ) iJ 

= Y(&,. . &In - r + 1,. . , rr) 

x X(i,, . . . ) i,ln - ?- + 1,. .) f+n-J,+l a*’ o;,’ 

+ c Y(jl>. . . J,lp,, . . . > pr) 
l<p,< ..’ <p,<n 

(p I,.‘., p,)#(n-r+1,.. ,n) 

x(i1,. . .) i,lp,, . .) p,)up;l 0.. up;‘. (4.8) 

The second term of (4.8) can be estimated as follows by using the Cauchy- 
Schwarz inequality and the Binet-Cauchy formula: 

abs 

( 
c Y(jl> . . J,l p,, . f. > pJ 

l<pl< .‘. <p,<n 

(pl ,...> p,)+(n-r+ I,..., n) 

xx@,,. . .) i,lp,, . . ., p,)c$yl --* up;’ 

-1 
< U” 

-1 
... un-r+2un-?r c 

l<p,< “’ <pr4n 

(pl ,..., p,)+(n-r+l,..., n) 

1 
l/2 

qj1,. . . J,l p,, . . . , pt.)2 
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X 1 
l/2 

c x(i,, . . . I i,l p,, . . . , pJ2 
l<p,< .‘. <p,<n 

(PI,. .., p,)+(n-r+l,..., n) 
i 

Hence, by the definition of C,(r), (4.8), (4.9), and the assumption of the 

theorem, a lower bound on I p I is given by 

r!(n - r)! 
ii 

[ 

n! 
IPI, n! u;’ 1 - 

q-r+1 
- >o. 

p=n-r+l r!(n - r)! u,_, I 

Thus, we have C,(r) c C,(r) and 

IpI-’ Q n! 
ii 

r!(n - r)! p_n-r+l 
up 1 - [ 

n! 
-1 

q-r+1 
- 

r!(n - r)! u,_, 1 . (4.10) 

By Theorem 4.3, PAQ h as a generalized LU(r) factorization (2.1). We have 

estimated an upper bound (4.10) for I P 1-l. To estimate an upper bound for 

I S,, I (see Theorem 4.3 for S,, ), we only need to estimate an upper bound for 

the numerator of /6,,1. By using the Cauchy-Schwarz inequality and the 

Binet-Cauchy formula in a similar way, we have 

abs(M(j,,.. .,I’~,.. .,j,li,,. ..,i, ,..., ir)) 

= abs 
( 

c Y(jr 1..., j.k >...> j,lpw Pr- 1) 
l=sp,< .” <p,_,<n 

xx@,, . . . , il, . . . , i,l p,, . . . , p,_ &qy 52, 1 
-1 

< a, 
-1 

*** q-*+2. (4.11) 

By (4.10) and (4.11) we complete the proof. n 

Theorem 4.4 and Theorem 4.5 together establish the existence of a 

generalized W(r) f ac orization with small U, for any rank r deficient t 

square matrix A. In addition to being nonempty, C,(r) is applicable in 

practical algorithms. In the next section, we propose such an algorithm for 
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finding an element in C,(r), which leads to a generalized W(r) factorization 
with small U, as bounded by the bound of Theorem 4.5. 

5. ALGORITHM AND EXAMPLES 

Suppose the matrix A E Rnx" has nearly rank deficiency r (r > 1) and 
the quantity [n!/r!(n - r)!]a,_,.+, is sufficiently small, where a, _ r+ i is the 
rth smallest singular value of A. By using Theorem 4.4 and Theorem 4.5, we 
give an efficient algorithm for finding a rank revealing LU(r) factorization for 
the matrix A. 

ALGORITHM RRLU(r). Given A E R""' with nearly rank deficiency r, 
I where r > 1 (but r is unknown a priori). Let X rAY = diag(o,, . . . , q,,) be 
the SVD of A with cri > **a > a,_, * ~“_~+i > 9.. > a;, > 0. This algo- 
rithm computes permutations P, Q and a generalized LU(r) factorization of 

PAQ 

PdPAQ)Ql = [ ::; ;][ “;I’ ;I] 
with a small Us, = [S,,] E R"', which reveals the rank r deficiency of A. 

Step 1: Compute the LU(0) factorization of A by some conventional 
pivoting strategy (e.g., partial pivoting): 

Step 2: Determine a temporary rank deficiency i. Determine the index i 

(0 < ; < n) such that ltii j 1 < tolerance for all i, j = n - i + 

1 . . > n and there exists an’index k E (n - i,. . . , n} with I&,_, k] 
>: ’ tolerance. 

Step 3: Use inverse iteration to determine the true rank deficiency r and 
compute the approximate singular values Us_ r+ i(A), , a,( A), 
the corresponding approximate right singular vectors Y, = 

r+i>“‘r 
t::I,+,,...,x:l: 

y ] and the approximate left singular vectors X, = 

If i = 0, then set m = 1; else set m := i. 

For k = 1,2,. . . 
m:= 2m. 

Given an orthonormal matrix 2 E Rnx" 
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Set Q = I, A, = 1. 
While A1 > tolerance, do 

Set U = ZQ. 
Solve AW = U by using the factorization (5.1). 
Solve ATV = W by using the factorization (5.1). 
Let 2 = V(VTV)-1/2 (e.g., Gram-Schmidt). 
Compute the eigenvalues of ZTAATZ. Since ZTAATZ = 
ZTU(VTV)-‘/2, we compute an orthogonal Q E Rmx" so 
that 

QTZTU(VTV)-1’2 Q = hag(h,,...,&), (5.2) 

where 0 Q A, < .*. < A,,,. 
Endwhile 
If there exists index r (1 < r < m) such that A, Q tolerance and 
A r+ 1 > tolerance then stop; else continue; 
Endfor k. 
Let X, = ZQr, where Qr is the first r columns of Q. 

Remark : The convergence rate for the above inverse iteration 
process without adding (5.2) is (c”_ .+Ju”_~)~. The convergence 
rate is now accelerated by the correction step (5.2) (see [8] for 
details). 

Solve A? = X,. 
Let Y, = yl(ylr+? 
Compute the singular values of X,?AY,, which are approximations 
to the smallest singular values a, _ r+ 1(A), . , q,(A). 
If r = i, then done (first pass). 

Step 4: Determine an element in the set C,(r). 

Comment: Indeed, the maximal elements of the sets 

(absY,.(j,, . ,j,ll,. . . , r): 1 <j, < ... <jr < n} =y 

and 

{abs X,(i,, . , i,(l,. . , r): 1 < i, < *** < i, < n} E-?- 

satisfy the conditions in C,(r). That is, the corresponding indices 

(j,, . . . , jr> and (i,, . . , i,) yield a submatrix H = A[i,, . . . , 
i,lj,, . . ..j.l in C,(r). Unfortunately, for an r > 2 it is not econom- 
ical to find the maximums of y and z’, because that needs 
n!/[r!(n - r)!] flop counts. In the following we give an efficient 
algorithm to find an element in C,(r). 
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Compute the LU(O) factorizations with complete pivoting of Y, and 
X, , respectively: 

Q’Y,e, = L, 2 , [ 1 

PTX,8, = L, RX 

[ 1 0 ’ 
(5.3b) 

where PT, Q’ E R”“‘, 13,) 0, E R” r are permutations, L, , Lx E 
R “‘” are unit lower triangular, and R, , Rx are upper triangular. 

Comment: Let (1,. . . , n)Q = (j,, . . ,j,) and (1,. . . , n>P = 
(i,, . . . , i,). It is easily seen that Y,.(ji, . . . ,j,ll, . . . , r) = det R, 
and X,(i,, . . . , i,ll, . . . , r) = det Rx. Although we cannot prove 
that both ldet Rrl and ldet Rx1 are larger than (r!(n - r)!/n!)“‘, a 
statistical result shows that there is no counterexample in up to a 
total of about 60,000 randomly generated tested orthonormal matri- 
ces Y,. and X, E Rnx’ for n = 10,12,. . . ,100 and r = 2,. . . , n/2. 
That is, the corresponding submatrix H = A[i,, . . . , i,lj,, . . ,j,l 
produced by (5.3) is always in C,(r). 

Step 5: Compute the generalized LU(r) factorization (2.1) of PAQ: Per- 
form the Gaussian eliminations by using the partial pivoting only on 
the 1st row to the (n - r)th row of the current matrix. 

Comment: By Theorem 4.5, we have that the entries 6,, of U,, 
satisfy 

n! n! 
-1 

CT 

l&l G 
[ 

n-r+1 

r!(n - r)! 
@i-r+1 1 - 

r!(n - r)! u”,-~ I 
for 1, k = 1, . . . , r. 

The main work of this algorithm consists of two parts. The first part (steps 
1, 2, and 3), referred to as the first pass of the algorithm, computes an initial 
LU(0) factorization of A. It requires n3/3 + 0(n2) flops. If and only if 
r z i in step 3, then we perform the second part of the algorithm (steps 4 
and 5), which is referred as the second pass of Algorithm RR LU(r). Step 3 
computes the left and right singular vectors corresponding to 
u .-.+1(A), . . . > a,(A) by using the inverse iteration method. It needs about 
2Jn2r flops, where J is the number of inverse iterations used for the 
computation of X, and Y,. Usually / < 5 is sufficient in practice. Step 4 
computes the complete LU(O)-factorizations of X, and Y,. as in (5.3). It 
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requires about 2nr ’ flops. Step 5 refactors the matrix PAQ. Here, we 
compute the Gaussian eliminations from the 1st column to the (n - r)th 
column by forcing the partial pivoting only on the submatrix Ack)[k, . . . , n - 
rlk,..., n - r], where Ack’ denotes the current matrix in the elimination 
process with initial matrix A (i) = PAQ. It requires about n3/3 flops. There- 
fore, the total flop count C(r) for Algorithm RRLU(t-) is given by 

C(r) = +n” + 2]n2r + 2nr2 

= $n” + 4n2r + 2nr2, assuming that J = 2. 

Therefore, if r 4 n, the total work for Algorithm RRLU(r) is the same as 
that for RRQR(r) [3, lo]. H owever, Algorithm RRLU(r) has the following 
practical advantage over RRQR(r). Chan [4] notes that the rank deficiencies 
of almost all nearly singular matrices can be successfully detected by the first 
pass of RRLU(r) algorithm, unless A is nearly singular and A-’ has a very 
skew distribution of the sizes of its elements. The first pass requires in” + 
0(n2), which is only half the cost of computing the QR factorization in 
Algorithm RRQR(r) [3, lo]. 

Chan [4] presented numerical results for two well-known matrices: 

T,, = ] -yEp (5.4a) 

. -1 
1 1 

and 

w= 

1 10 1 
1 9 1 

1 1 

10 1 
1 -1 1 

i -9 1 
1 - 10 

E R21X21 

(5.4b) 
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which are nearly singular with nearly rank 1 deficiency. In the following, we 
construct some nearly singular matrices with higher-dimensional rank defi- 
ciency based on a direct sum of matrices T, or W. All computations were 
performed on a PC MATLAB. 

EXAMPLE 4.1. Let A = diag(T,,, Tdo). Compute elementary row and 
column operations of A by the following steps: 

fori = 1:40 
A(1:40,81-i)=A(1:40,81-i)+A(1:40,i) 
A(i, 41: 80) = A(i, 41: 80) + A(81 - i, 41: 80) 

end 

Then the resulting matrix is 

A= 

1 -1 

0 

. -1 -1 

-1 -1 
1 2 

1 
-1 
-1 

-1 2 
2 -1 
. 

. -1 

. -1 

. 
-1 

1 

which has nearly rank 2 deficiency. 
The three smallest singular values of A are 6.214 X lo-‘, 1.93 X lo-‘“, 

and 1.93 x 1~‘~. Algorithm RRLU(r) produces the generalized LU(2) 
factorization (2.1) with 

u, = 1.05 x lo-i5 3.638 x lo-l2 

-3.638 x lo-l2 I 1.323 x 1O-23 ’ 

The upper bound of elements of U, in Theorem 4.5 is 6.098 X lo-‘. 

EXAMPLE 4.2. Let A = diag(TN, T30, T30). Compute elementary row 
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and column operations of A by the following steps: 

fir i = 1: 30 
A(1:90,61 - i) = A(1:90,61 - i) + A(1:90,i) 
A(i, 1: 90) = A(i, 1: 90) + A(61 - i, 1: 90) 

end 

for i = 1: 30 
A(1 : 90,91 - i) = A(1 : 90,91 - i> + A(1 : 90,30 + i) 

A(30+i,1:90)=A(30+i,1:90)+A(91-i,1:90) 
end 

Then the resulting matrix is 

A= 

1 -1 -1 . . . -1 -1 . . . -1 2 2 -1 -1 . . . -1 

1 -1 . . . -1 -1 . . . 2 -1 -1 2 -1 . . . -1 

1’. : : 

. . -i -i 2 -i -i i -i 
1 2 -1.. . -1 . . . -1 2 

1 -1.. . -1 . . . -1 2 

. . . 2 -1 
. . . . . . 

The smallest four singular values of A are 4.0204 X lo-‘, 2.794 X lo-‘, 
1.397 x 1o-g, and 1.397 X lo-‘. Algorithm RRLU(r) produces the 
generalized LU(3) factorization (2.1) with 

-3.725 x lo-’ -3.868 x 10-l’ 1.388 x 10-l’ 
u, = 

[ 

5.454 x 10-l’ -3.726 x lo-’ 3.725 x lo-’ . 

-1.585 x 10-l’ 3.725 x lo-’ 5.906 x 1o-26 1 
The upper bound of elements of U, in Theorem 4.5 is 3.285 X 10e4. 

EXAMPLE 4.3. Let A = diag(W, W). Compute elementary row and 

. -1-1 2 . . 

0 1 2 -1 . . . -1 -1 

1 -1 . . . -1 -1 

1 . . 

. . -1 -i 

1 -1 

1 

which has nearly rank 3 deficiency. 
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column operations of A by the following steps: 

j&i = 1:21 

A(1:21,43 - i) =A(l:21,43 -i) +A(1:21,i) 

A(i, 22 : 42) = A(i, 22 : 42) + A(43 - i, 22 : 42) 
end 

Then the resulting matrix is 

A= 

1 

1 1 

-1 

1. 

2 0 

2 0 2 

2 0 2 
. 

. . 

. 

-9 120 2 

1 -10 0 2 

10 1 

19 1 

1 1’ 1 

10 1 

1 -1 1 

l’-i 1 

1 -10 

135 

which has nearly rank deficiency r = 2. 

The three smallest singular values of A are 5.523 X 10-r, 8.675 X lo-r6, 

and 2.669 x lo- 16. Step 1 of Alg orithm 

submatrix of fi as follows: 

RRLU(r) produces the last 3 x 3 

1.0 x loo -9.0 x 10” 1.0 x loo 

ri[n - 2,n] = 0 1.0 x loo -1.0 x 10’ , 

0 0 8.1552 x 10P” 

1 
which gives the temporary rank deficiency i = 1. To illustrate in a general 

case, suppose that the true rank deficiency r is unknown a priori. Step 3 of 

the algorithm always determines correctly r. The second pass of Algorithm 
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RR LLJ(2) produces the generalized LU(2) factorization (2.1) with 

u22 = 
-0.2097 x lo-l6 -0.6775 x lo-i6 

0.1106 x lo-l6 I -0.2944 x lo-r6 

The theoretical upper bound in Theorem 4.5 is 7.4692 X 10-13. Note that 
only if the first pass produces a nearly rank deficiency r which is larger than 
i is the second pass required in order to obtain the correct RRLU(r) 
factorization. 

Although the theoretical bound in Theorem 4.5 is not always tight, it 
works well if [ n!/r!(n - r)!]a,_ r+ 1 is small [i.e., smaller than the tolerance 
we desire in Algorithm RR LU(r)]. Under this condition, Algorithm RR LU(r) 
can produce small U,, even though the conventional partial-pivoting LU 
factorization fails to do so. 

6. CONCLUSION 

The main contribution of this paper is to extend the theory of Chan 141 for 
rank revealing LU factorizations to the general case when the nearly rank 
deficiency is greater than one. We have also proposed an efficient two-pass 
algorithm for finding an RR LU(r) factorization which usually succeeds in the 
first pass, thus taking $” + 0(n2) flops. If the first pass fails (i.e., r # F), 
then the current efficient implementation of the second pass, taking another 
$” flops, finds RRLU(r) f ac orizations t for all of our 60,000 test problems. 
In comparison, Algorithm RRQR( ) r needs 97~” flops in the first pass and 
O(n’) flops in the second pass. The rank deficiency of most randomly 
generated nearly singular matrices can be detected by the first pass of both 
algorithms. Therefore, for the square matrix A, Algorithm RRLU(r) is in 
most cases twice as efficient as RRQR(r). In the extreme case that the first 
pass fails and step 4 also fails to find an element in C,(r) (which never 
happened in our tests), we can switch to Algorithm RRQR(r) of [4, 71 as a 
last resort. This hybrid strategy can take advantage of both the efficiency of 
our Algorithm RR LU( r and the hundred-percent guarantee of finding an ) 
RR(r) factorization given by Algorithm RRQR(r). 

APPENDIX 

In this appendix, we shall prove Lemma 3.1, Lemma 3.2, and Lemma 4.1. 
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Proof of Lemma 3.1. Let 

D, = diag(d, ,..., d,_,,l,..., l), 

I, = diag(l,..., 1,0 ,..., 0). 

Then 

D + i up: = D, I, + i ( D,'ui)u,T 
i=l i=l I 

Z + i (D;‘u,)u~ - i e,_i+le;_i+l 
i=l i=l 1 

= D,(Z + [D,‘u,,. . . , D&.,e,_,+,,. we,] 

x[u, ,...> u,,--e,-,+,,..., -“IT) 

= D,B. 

Let 

c = z + [Ul,. . . ,u,, -e”_r+l,. . .) --enIT 

XID;‘ul ,..., D;lu,,e,_,+l ,..., e,]. 

137 

(‘4 J) 

Then 

C= 
I, + VTTD;‘U, V,[n - r + 1,. . . , nil, . . . , f-1 

-u,[n - r + 1,. . .) nil,. . .) ?-I 0, 1. 
Thus 

det C = Ur(fl - r + 1,. . . , nil,. . . , r)Vr(n - r + 1,. . , 41, . . , r). 

(A J) 
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From (A.l), (A.2), and the well-known result det B = det C, the conclusion 
follows. n 

Proof of Lemma 3.2. From 

= det (X[Z + 2 (Xrei,)( i S,,(Yrejk)‘)]Yr} (A .3) 
I=1 k=l 

and Lemma 3.1, we have 

(A.31 

=det Xdet Ydet(C + X’[l,. . .,nli,, .., i,.]HY[j,,. . . ,j,ll,. ., n]) 

=(det XdetYdet H)XT(n - r + l,..., nli, ,..., i,.) 

XY(j,, . . .,jrln - r + l,...,n)nai. 
i=l 

w 

Proof of Lemma 4.1. By defining U and V as 

’ E [ ‘ll( Mei,), . . . ) slr( Me,,), . . . , a,,( Me,,), . . . , S,,( A4eir)] 

and 

VE [-e. ,,, . . . , -ejr,. . . , -ej,, . . , -ejrlT 

we have 

A - i i Slkei,ejT, = A Z - i k a,,( hfe,,)ei 
Z=l k=l I=1 k=l I 

= A[Z - UVT]. 
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Let W = Z - V TU. We have n(W) = n( A[ Z - W T]). Since H is nonsingu- 
lar, for each i = l,..., r there exists j such that aij # 0. By a careful 
computation, S,, (1, k = 1,. , r.) g ‘ven by (4.1) in Lemma 4.1 solve the 
equations 

det 

and 

-&kmjli, m.. 
JI’I+I ‘.. 

= 0 for all I = 1,. . , r. 

Therefore, we have n(W) z r. 

Next we need to show that n(W) < r. After row subtractions on the 
matrix 

w= 

-1 - s,,mjltl ... - s,,mj,i, ... -%lm,$, ... -km,,,, 

-6. llmj,i, “’ 1 - Slrmj r il 
... -S,;mjrz, ... - Cmj,,, 

- S,;mj,i, ... -S,,mili, ... - S,,.mjl,, .‘. - %imj,zr 

- S,,'mjvi, ... - S,,mjri, ... - %lytF ... - %Jmj.,_ 
-S,,mj,i, ... - Slrmjli, ... 1 - tir,mj,i, ... - hmj,i, 

-6 Ilmj,i, .” - S,Jm,ril ... - S,;mjri, ... 1 - irmjri, 
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we have the new transformed matrix 

1 -1 0 

0 

1 (j -‘I 

*= 
0 1 -1 0 

1 0 -'l 
-S,,mj,i, “’ -6,,m,,,, . . -Sr-l,rmj,i,_, 1 - hlmj,,, “’ -hm,,+ 

-6 Ilm,,il ... - Slrmj,t, ’ . -Gm,,,,., -Srlm,,zr ... 1 - krm,,,, 

Thus rank W = rank W > r(r. - l), which implies n(W) < r and 

A - 2 i Slkei,e,: =n(W) =r. 
I=1 k=l 

Therefore, C,(r) c C,(r). 4 

We are grateful to Professor Tony Chan and an anonymous referee for 

their many helpful and detailed suggestions. 
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