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The real Lyapunov order in the set of real n × n matrices is a rela-

tion defined as follows: A � B if, for every real symmetric matrix S,

SB + BtS ispositive semidefinitewheneverSA + AtS ispositive semi-

definite. We describe the main properties of the Lyapunov order in

terms of linear systems theory, Nevenlinna–Pick interpolation and

convexity.
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1. Introduction

The set GL(n,R) of real n × n non-singular matrices is divided into n + 1 classes of regular inertia

(ν, δ,π) = (k, 0,n − k),k = 0, . . . ,n. In thispaper,westudyanordering relationbetweenmatrices ineach

of these inertia classes, called the Lyapunov order, whosemaximal elements are the scaled involutions.

The Lyapunov order is defined as follows. Let S (resp. P) denote the sets of symmetric (resp.

symmetric positive semidefinite) real n × nmatrices. Given A,B ∈ Rn×n
we say that A � B if

S ∈ S, SA + AtS ∈ P ⇒ SB + BtS ∈ P. (1)

The Lyapunov order is a preorder (a reflexive and transitive relation) in Rn×n
.
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Although definition (1) appears to be new, the situation where A � B and B � A occur simulta-

neously was studied by Loewy in the 1970s in the context of the algebraic Lyapunov equation [26]. Our

interest in the subject arose in the context of interpolation theory and the theory of convex cones. The

Lyapunov order seems to be a unifying link between these three areas.

Below we summarize our main results.

1.1. Basic properties

We call A ∈ Rn×n
Lyapunov regular if its eigenvalues λi satisfy the standard condition [15, Section

15.5]

λi + λj /= 0, 1 � i, j � n. (2)

Inwhat followsweassume thatA,B,C ∈ Rn×n
;A is Lyapunov regular; andA � B,C.With these assump-

tions, the following holds:

(I) At � Bt .

(II) A±1 � B±1, A � B + C, aA � bB (ab > 0) [8, Section 3]. Loewy showed that if A is Lyapunov

regular then B � A and A � B hold simultaneously if and only if A = aB or A = aB−1, a > 0 [26],

making the Lyapunov relation essentially a partial order.

(III) Trivially, TAT−1 � TBT−1 for all T ∈ GL(n,R).

(IV) Every real A-invariant subspace is B-invariant. (In general, complex A-invariant subspaces need

not be B-invariant.) More precisely, if A is block upper triangular then, conformably, so is B, and

the diagonal blocks satisfy Aii � Bii. This has strong implications in terms of putting the triple

(A,B, S) in a common real Jordan or Schur type canonical form (see [4]).

(V) A and B have the same stable–antistable dichotomy. LetVs(X),Vas(X) ⊂ Rn
denote the stable and

antistable invariant subspaces of a real matrix X . ThenVs(A) = Vs(B) andVas(A) = Vas(B). In

particular, A and B have the same inertia, and the stable and antistable parts of A and B satisfy

As � Bs and Aas � Bas. In particular, if A is Hurwitz stable, so is B.

(VI) Eigenvalues have diminished argument. We use the polar representation z = ±ρeiφ , π/2 > |φ| in
the left and right half planes. It turns out that each eigenvalue of B has lower argument |φ| than
its A counterpart. In particular, B has at least as many real eigenvalues as A.

(VII) The jointly real parts commute. More precisely, letVr be the spectral subspace of Awith respect

to the entire real axis. ThenVr is a common reducing subspace forA and B.Moreover, ifAr ,Br are

the corresponding restrictions ofA,B to this subspace then Br has real eigenvalues and Br ∈ {Ar}′′.
(An analogous Lyapunov order between complex matrices may be defined by comparing the

Hermitian positive definiteness of HA + A∗H and HB + B∗H for H Hermitian (see [7, Proposition

3.9], [12, 27]). The complex Lyapunov relation A � B is stronger and implies that B ∈ {A}′′.)
(VIII) If A is Hurwitz stable then B has more quadratic Lyapunov functions than A. Indeed, if SA + AtS ∈

P, then, by Lyapunov’s stability theorem (e.g. [30, Theorem 7.11]) −S ∈ P and so the function

νs(x) = −xtSx is a quadratic Lyapunov function for the dynamical system dx
dt

= Ax. If moreover

A � B thenwehave SB + BtS ∈ P, hence νs(x) is aquadratic Lyapunov functionalso for the system
dx
dt

= Bx.

(IX) The Lyapunov order respects the positive real lemma. Assume that A ∈ Rn×n
is Hurwitz stable and

(A, b, c; S) satisfy the conditions of the Positive Real Lemma [1, Chapter 5], [11, Section 4.3], [29].

According to this lemma, the strictly proper rational function fA(s) :=ct(sI − A)−1b is positive real.

It is easy to check that (B, b, c; S) satisfy the same conditions if A � B, hence fB(s) = ct(sI − B)−1b

is also positive real.

(X) The Lyapunov order respects controllability. For every real n × mmatrix V , (A,V) is controllable if

(B,V) is controllable.

Involutions play a unique role in the Lyapunov order: in each of the n + 1 regular inertia classes in

GL(n,R), the maximal elements are the scaled involutions. If A has regular inertia the cone

CL(A) :={B ∈ Rn×n : A � B} (3)
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contains,up toscaling, a singlemaximalelement,namely, the involutionE :=Sign(A) (see [7, Proposition

2.5], [17, Chapter 5], [22]). Increase in the Lyapunov order is well correlated with increased involution-

type behavior of the matrix: in particular more real-invariant subspaces in item IV, better eigenvalue

clustering in item VI, and in the stable case, increase in the set of Lyapunov functions in item VIII.

1.2. Convexity issues

An inner product space formalism in the spaceS of n × n symmetricmatrices provides a geometric

interpretation of the Lyapunov order. Following [26] we define the Lyapunov operator:

LA : S → S, LA(S) = SA + AtS (4)

and the forward and backward Lyapunov cones in S:

Q(A) = LA(P), S(A) = L−1
A (P).

The closed conesS(A) andQ(At) aredual coneswithinS in the Frobenius innerproduct [26]. Assuming

that A is Lyapunov regular we show that the relation A � B is equivalent to any of the following cone

inclusions2:

S(A) ⊂ S(B), LBL
−1
A (P) ⊂ P, Q(B) ⊂ Q(A),

S(A) ⊂ S(B), LBL
−1
A (P) ⊂ P, Q(B) ⊂ Q(A).

This generalizes Loewy’s result [26] stating the equivalence of the following statements:

S(A) = S(B), Q(At) = Q(Bt), B = aA±1 (a > 0).

The transpose in his result may be dropped due to Property 1.1.I.

1.3. Convex invertible cones

A cic (or convex invertible cone) in Rn×n
is a convex cone of matrices which is closed under matrix

inversion. The smallest cicwhich contains a givenmatrix A is a commutative set denoted byC(A) (see

[7–12,25]); other cics of interest are the cones CL(A) and CL(A), where CL(A) is defined in (3) and

CL(A) is the set of matrices of regular inertia in CL(A) (here, the subscript L refers to the Lyapunov

order). The following inclusions hold:

C(A) ⊂ CL(A) ∩ {A}′′ (A general);
C(A) ⊂ CL(A) ∩ {A}′′ (Awith regular inertia);
C(A) = CL(A) ∩ {A}′′ (A Lyapunov regular).

(5)

We study cases where C(A) = CL(A). We also study the equalities C(A) = C(B) and CL(A) = CL(B)

for a pair A,B, which are related to Loewy’s work in [26].

1.4. Extreme points and the Pick test

The Lyapunov order involves inclusion between Lyapunov cones. In general, a cone inclusion K ⊂ K ′
is established by showing that any extreme ray of K belongs to K ′. Thus, we need to be able to char-

acterize the set of extreme rays of a forward or backward Lyapunov cone. In the final analysis, this

involves the description of extreme rays of P, which is well known. Take for example the backward

Lyapunov cone S(A).

Assume that A is Lyapunov regular. Extreme rays in S(A) consist of matrices S = S(u) ∈ S such that

SA + AtS = uut for some non-zero u ∈ Rn×n
. These will be called A-extreme matrices.

2 Throughout this work the inclusion sign “⊂” will always be interpreted as “⊆”.
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Extreme matrices S(u) can be ordered by r, the dimension of the controllable subspace associated

with the pair (At ,u). Those matrices S(u) for which r is maximized will be called A-maximal matrices.

They form a relatively open and dense subset of A-extreme matrices, implying the following:

The weak Pick test. Let A be Lyapunov regular. A necessary and sufficient condition for A � B is that

S(u)B + BtS(u) ∈ P for every A-maximal matrix S(u).

Weadd that theA-maximalmatrices formasingleorbit under theactionof thegroupGL(n,R) ∩ {A}′.
Moreover, when B ∈ {A}′′ (this case occurs in interpolation) the corresponding Pick matrices can be

shown to be pairwise congruent, and so checking just one of them is sufficient, leading to the following

result:

The strongPick test. Let A be Lyapunov regular andB ∈ {A}′′. Then anecessary and sufficient condition
forA � B is that the Pickmatrix� :=S(u)B + BtS(u) is positive semidefinite for someA-maximalmatrix

S(u).

It is in this context that Pick matrices appear in interpolation and moment problems. Indeed, in [11,

Corollary 5.2.2] it is shown that B ∈ C(A) if and only if B = f (A) for some positive real odd function f (s)

on the right half plane; and, if A is Lyapunov regular, we know that C(A) = CL(A) ∩ {A}′′ according to

(5). So the strong Pick test is a necessary and sufficient condition for the interpolation B = f (A). This

topic is described in detail in [12].

In the last section of the paper, we mention several open research problems associated with the

Lyapunov order.

2. Matrix preliminaries

2.1. Commutation

The set of real matrices, Rn×n
, is a non-commutative algebra.We associate with each A ∈ Rn×n

two

subalgebras of Rn×n
, the commutant and bicommutant of A:

{A}′ = {B ∈ Rn×n : AB = BA},
{A}′′ = {C ∈ Rn×n : BC = CB for all B ∈ {A}′}.

{A}′′ is the set of real polynomials in A. The following statements are equivalent: (i) {A}′ = {A}′′; (ii) the
minimal and characteristic polynomials of A are equal; (iii) different blocks in the Jordan form of A

have distinct eigenvalues. Such a matrix is called non-derogatory, see [19, Theorem 3.2.4.2, Problem

3.2.1], [21 p. 93], [24, p. 419], [31, p. 23].

2.2. Lattices and invariant subspaces

A lattice is a partially ordered set with a maximum and a minimum for each subset [14]. The sets

Lat(A) (resp. Latr(A)) of complex (resp. real) invariant subspaces of a matrix A, ordered by inclusion,

are classical examples. Consider the following subalgebras of Rn×n
:

{A}c = {B ∈ Rn×n : Lat(A) ⊂ Lat(B)},
{A}r = {B ∈ Rn×n : Latr(A) ⊂ Latr(B)}. (6)

We have the obvious inclusion relations {A}′′ ⊂ {A}′ and {A}′′ ⊂ {A}c ⊂ {A}r .

2.3. Inertia

As usual we denote the inertia of A by In(A) = (ν, δ,π) [20, Definition 2.1.1]. We call the inertia

regular, (Hurwitz) stable or antistable if δ = 0, ν = n or π = n, respectively. If A ∈ Rn×n
has regular

inertia, we denote by Sign(A) the unique matrix E which satisfies

E2 = I, E ∈ {A}′, AE is antistable. (7)
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Actually E ∈ {A}′′. There are several equivalent definitions: in terms of the Jordan form, or in terms of

the sign function algorithm. According to the latter, Sign(A) is the limit of the sequence {Ak} defined by

Ao = A, Ak+1 = 1

2
(Ak + A−1

k
), k = 0, 1, . . . , (8)

see e.g. [22,17, Chapter 5]. In particular, we get Sign(A) = I if and only if A is antistable.

3. The Lyapunov order

3.1. Definitions

We consider the space S of real symmetric n × nmatrices as a real inner product space in the trace

inner product and Frobenius norm defined by

〈S1, S2〉 = tr(S1S2), ‖S‖2F = tr(S2).

In it, we consider the two convex cones P,P of symmetric positive definite and semidefinitematrices,

respectively. Given A ∈ Rn×n
, the Lyapunov operator LA (4) is invertible exactly when A is Lyapunov

regular.3 The preimages of P,P under the Lyapunov operator are the convex cones4 in S:

S(A) = {S ∈ S : SA + A∗S ∈ P}, S(A) = {S ∈ S : SA + A∗S ∈ P}
called the inverse Lyapunov cones for A. Their members are sometimes called strong/weak Lyapunov

factors for A. Matrices in S(A) are invertible, and it is not difficult to see that S(A) /= ∅ if and only if

A has regular inertia. On the other hand, S(A) is never trivial: when A is Lyapunov regular, it is the

closure of S(A); otherwise, it contains the kernel of the Lyapunov operator. In the sequel we take S(A)

as a basis for comparing matrices.

Definition 1. Let A,B ∈ Rn×n
. We say that A � B if S(A) ⊂ S(B).

Theorem 15(vi) implies that whenever A � B and A has regular inertia, so does B. However, if

A is Lyapunov regular B need not be Lyapunov regular, as shown by the example A = diag{1,−2},
B = Sign(A) = diag{1,−1}.

3.2. Cone duality and transpose

It is well known that P ⊂ S is a self-dual cone (in the trace inner product). This has the following

implication. Define the convex cones

Q(A) = LA(P), Q(A) = LA(P).

Lemma 2 [26]. For A ∈ Rn×n
,S(A) is the dual cone of Q(At).

The proof was omitted in [26] and is included here for completeness. Assume that S,K ′ ∈ S. If

SA + AtS = K and S′ = K ′At + AK ′ then also S′,K ∈ S. Using basic properties of the trace function we

get

〈S, S′〉 = tr(SS′) = tr(S(AK ′ + K ′At)) = tr(SAK ′) + tr(SK ′At)

= tr(SAK ′) + tr(AtSK ′) = tr((SA + AtS)K ′) = tr(KK ′) = 〈K ,K ′〉.

3 The same condition also guarantees invertibility of the Kronecker product operator A ⊗ I + I ⊗ A, see e.g. [20, Corollary 4.4.7].

Lyapunov regularity, defined by (2), implies regular inertia, but not conversely. Our terminology is not consistent with [16],

where a matrix with regular inertia is called Lyapunov regular.
4 Topologically, P is the closure of P but S(A) need not be the closure of S(A), and the same applies to Q(A) in Lemma 2.

Nevertheless, we maintain the bar notation for convenience.
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If S ∈ S(A) and S′ ∈ Q(At) then K ,K ′ ∈ P, hence by self-duality 〈S, S′〉 = 〈K ,K ′〉 � 0. Conversely, if S′ ∈
S and 〈S, S′〉 � 0 for all S ∈ S(A) then K ′ ∈ S and 〈K ,K ′〉 � 0, hence by self-duality K ′ ∈ P, namely,

S′ ∈ Q(At). �
The sets S(A) and S(At) consist of non-singular matrices and are connected by the map S → S−1,

immediately implying the following:

Lemma 3. For all A,B ∈ Rn×n
,S(A) ⊂ S(B) if and only if S(At) ⊂ S(Bt).

3.3. Comparison of several cone inclusions

A theory of Lyapunov order could, in principle, be based on any of the following cone inclusions:

(i) S(A) ⊂ S(B); (ii) S(A) ⊂ S(B);
(iii) Q(B) ⊂ Q(A); (iv) Q(B) ⊂ Q(A). (9)

However, these conditions are not necessarily equivalent. For example, when A = 0 and B is arbitrary

one gets ∅ = S(A) ⊂ S(B) ⊂ S(B) ⊂ S(A) = S, showing that (i) and (ii) can be incompatible. On the

positive side, conditions (i) and (iii) are always equivalent by Lemma 2, and the implication (iv) ⇒ (iii)

holds since in general Q(A) is the closure of Q(A).

Lyapunov regularity guarantees complete equivalence in (9), based on a simple topological obser-

vation.

Definition 4. An ordered pair (Y ,Y) of subsets of a topological space X is called proper if Y /= ∅, Y is

the closure of Y , and Y is the interior of Y .

Given two proper pairs (Y ,Y) and (Z , Z) of X , the inclusions Y ⊂ Z and Y ⊂ Z are clearly equivalent.

Proposition 5. Assume that A,B are Lyapunov regular. Then:

(I) The four items in (9) are equivalent as definitions for A � B;
(II) A � B if and only if At � Bt .

Proof. (I) Concerning the inverse Lyapunov cones, we start with the proper pair (P,P) in S. If A is

Lyapunov regular, invertibility of the Lyapunov operator implies that the pair (S(A),S(A)) is proper;

similarly (S(B),S(B)) is proper, implying the equivalence of (i) and (ii). For the forward Lyapunov

cones, a similar argument shows the equivalence of (iii) and (iv).

(II) follows from the equivalence of (i) and (ii) together with Lemma 3. �

For completeness we point out that a discussion relevant to (9) appeared in [16].

We do not know whether Proposition 5 extends to matrices A,B with regular inertia. For A =
diag{1,−1} the pair (S(A),S(A)) is proper while the pair (Q(A),Q(A)) is not. Indeed, the interior of

Q(A) is empty.

4. The setsC(A),CL(A),CL(A)

The following definitions and properties can be found in [8, Section II]. A convex cone C ∈ Rn×n

is called a cic (convex invertible cone) if it is closed under inversion in the following sense: A−1 ∈ C
whenever A ∈ C ∩ GL(n,R). We call C non-singular if it consists entirely of non-singular matrices. It

is easy to see that the intersection of (non-singular) cics is a (non-singular) cic. A non-singular cic C
contains a single involution E and for every matrix A ∈ C we have Sign(A) = E. In particular, all the

matrices in a non-singular cic have the same regular inertia.
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Given A ∈ Rn×n
, the subalgebras {A}′, {A}′′, {A}c , {A}r defined in Section 2 are examples ofmatrix cics.

In the context of the Lyapunov order, though, we shall study the following two cics:C(A), the smallest

cicwhich contains A, and the coneCL(A) defined in (3). We shall refer toC(A) as the cic generated by

A. It is always a strict subset of {A}′′. Assuming A non-singular, both A and A−1 lie on extreme rays in

C(A), and we define the set conf(A) as the union of these two rays5:

conf(A) = {aA, aA−1 : a > 0}. (10)

Theclosedconvex setCL(A) is alsoa cic. This canbeproveddirectly fromthedefinitionusingProperties

1.1.II. An alternative argument is as follows. For all S ∈ S define the convex cone A(S) = {A ∈ Rn×n :
SA + AtS ∈ P} which is a closed cic [8, Section 3, 16]. By a routine set-theoretic argument we have

CL(A) =
⋂

S∈S(A)

A(S). (11)

We conclude thatCL(A) ⊂ Rn×n
is a closed cic, as the intersection of closed cics.

Due to Property 1.1.II it is clear that C(A) ⊂ CL(A). This inclusion is strict for several reasons: (a)

whileC(A) is always commutative,CL(A) is not (see case (ii) in the proof of Lemma 12); (b)CL(A) but

not C(A), is always closed (see Example 7); (c) if A has regular inertia then C(A) consists of matrices

with regular inertia whileCL(A) contains the zero matrix and often other singular matrices. Inspired

by item (c) we defineCL(A) as the set of matrices with regular inertia inCL(A).

Theorem 6

(i) For all A ∈ Rn×n
we haveC(A) ⊂ CL(A) ∩ {A}′′.

(ii) If A ∈ Rn×n
has regular inertia thenC(A) ⊂ CL(A) ∩ {A}′′.

(iii) If A is Lyapunov regular thenC(A) = CL(A) ∩ {A}′′.

Proof (i) both {A}′′ andCL(A) are cics which contain A, hence containC(A). So, their intersection also

contains C(A). (ii) If A has regular inertia, C(A) is a non-singular cic, hence by (i) we have C(A) ⊂
CL(A) ∩ {A}′′. The equality in (iii) is not trivial and is proven in [12] using the Pick test for interpola-

tion. �

When A has imaginary eigenvalues, C(A) is not necessarily closed (even when the zero matrix is

included). Here is one example.

Example 7. Consider the matrices of type

A(b, c) = diag{B(b),C(c)}, B(b) =
(
1 b

0 1

)
, C(c) =

(
0 c

−c 0

)

and the sets

C′ = {rA(b, c) : −1 < b < 1, r > 0, c ∈ R}, C′′ = {rA(1, 1), rA(−1,−1) : r > 0}.

ThenC′ ∪C′′ is the cic generated by A :=A(1, 1) and is not closed in R4×4
.

Indeed, it is easy to see that C′
is a convex cone, C′

,C′′ are closed under inversions, and any non-

trivial convex combination in C′ ∪C′′ belongs to C′
. This shows that C′ ∪C′′ is a cic. It is not closed

since, for example, A(1, 2) is on its boundary.

Now we show that this set is generated by A(1, 1). First, C′′ consists of (positively scaled) A and

its inverse, and its convex hull contains the matrices A(x, x) (−1 < x < 1). By inversion we get also

5 In [8] (see also [11, Section 2]) we describe an inductive process of constructing a cic in terms of its generators. Consid-

ering C(A) with the single generator A, the first inductive step gives the set conf(A). The notation “conf” is suggestive since

conf(s) = {as, a/s : a > 0} consists of the real-conformal maps on the right and left half planes C+ ,C− , respectively.
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A(−x,−1/x) (−1 < x < 1, x /= 0). By considering 1
2
(A(−x,−1/x) + A(x, x)) we obtain all matrices of the

form A(0, c) (c ∈ R). Positive combinations of A(x, x) and A(0, c) fill all ofC′
.

5. Matrices which generate the same cic

Consider the following four equivalence relations in Rn×n
:

(i) B ∈ conf(A), (ii) C(A) = C(B),

(iii) CL(A) = CL(B), (iv) Q(A) = Q(B). (12)

Condition (i) means that B is a positive multiple of A or A−1, and so is easily decidable. Condition

(iii) may be viewed as the natural equivalence relation in Rn×n
, denoted here by A ∼ B, defined by the

simultaneous inequalities A � B and B � A. It was characterized by Loewy in [26] in terms of condition

(i), and we show that the same characterization holds for condition (ii) (see also [10, Theorem 4.1]).

The following result is analogous to Proposition 5.

Theorem 8. LetA,B ∈ Rn×n
be Lyapunov regular.Then the four conditions in (12)are equivalent definitions

for A ∼ B.

Proof. Statements (iii) and (iv) are equivalent unconditionally, in view of duality (Lemma 2; a sim-

ilar argument can be found in [26]). The equivalence of (i) and (iii) is shown in [26], assuming the

Lyapunov regularity of A only. Clearly, (i) implies (ii); also, (ii) implies (iii) as follows: if C(A) = C(B)

then B ∈ C(A) ⊂ CL(A) and, similarly, A ∈ C(B) ⊂ CL(B). So B � A and A � B. In other words,CL(A) =
CL(B). �

In the remaining part of this section we study the exact relation between conditions (i) and (ii) in

(12) for general complex matrices. The definition of conf(A) for non-singular matrices, given in (10),

is extended to singular matrices as conf(A) = {rA : r > 0}.

Definition 9. We say that A ∈ Cn×n
is uniquely generating if the equality C(A) = C(B) for B ∈ Cn×n

implies B ∈ conf(A).

Theuniquegeneratingpropertydependscriticallyon theexistenceof simple imaginaryeigenvalues.

In the following result we exclude the case n = 1 which is always uniquely generating.

Lemma 10. Assume that A ∈ Cn×n
with n � 2.

(I) The following are equivalent:
(i) A is not uniquely generating;
(ii) A is similar to diag{E,D} where D ∈ Cm×m

is non-singular skew-Hermitian, m � 1, E ∈
C(n−m)×(n−m)

is a scaled involution, and in case n = m then iD is not a scaled involution.

(II) In particular,A is uniquely generating if it has regular inertia, or it is singular, or non-diagonalizable.

Proof. Up to similarity we may assume that A is in complex upper Jordan form A = diag { Jk1 (λ1),
Jk2 (λ2), . . .} where Jkj (λj) is a Jordan block of size kj associated with an eigenvalue λj . Everymatrix B ∈
C(A) has similar block structure B = diag{B1,B2, . . .}where each Bj is a kj × kj Toeplitz upper triangular.

We denote by μ1j ,μ2j , . . . ,μkj
,j the first row of Bj . A is clearly uniquely generating if it contains a block

with the following characteristic:

(1) λj , iλj /∈ R (since |arg(μ1j)| � |arg(λj)| with equality only when B ∈ conf(A));

(2) iλj /∈ R, kj > 1 (since |μ2j/Re[μ1j]| � 1/|Re[λj]| with equality only when B ∈ conf(A));
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(3) iλj ∈ R and kj > 1 (since |μ1j/μ2j| � |λ| with equality only when B ∈ conf(A));

(4) λj , λi ∈ R and |λj| /= |λi| (since | log |μ1j/μ1i|| � | log |λj/λi||with equality onlywhenB ∈ conf(A)).

This argument isbasedon thesteadydecreaseof certain functionals along thegivencic, so thatmatrices

with lower value of the given functional cannot generate matrices with a higher value. In each of the

four cases, the functional in question remains the sameupon positive scaling and inversion, but strictly

decreases on sums.

Nowwe prove item (I). If we assume (i), cases 1–4 are discarded, and up to re-ordering of diagonal

elementswe conclude thatA = diag{E,D}; E is (n − m) × (n − m)diagonal and real;D ism × mdiagonal

and imaginary, hence skew-Hermitian. Due to case 4, E is a scaled involution. We cannot have m = 0,

otherwise A itself is a scaled involution, hence is uniquely generating. A similar argument discards the

case wherem = n and iA = iD is a scaled involution, hence uniquely generating. Thus (ii) holds.

Conversely, assume (ii). Up to similarity we may write A = diag{E,D}. There are two cases:

In the first case, m = n. Let d1 < · · · < dt be the distinct moduli of the (imaginary) eigenvalues

of A = D. Up to permutation of the diagonal terms we have A = diag{id1E1, . . . , idtEt} with Ei diago-

nal involutions. It can be seen with some calculation that C(A) consists of all matrices of the form

B = diag{ir1E1, . . . , irtEt} with ri ∈ R, and as long as ri are non-zero and distinct, B is also a generator.

Since iA is not a scaled involution, t > 1, hence there exist generators B which are not proportional to

either A or A−1, implying (i).

In the second case, n � m + 1. HerewemaywriteA = diag{E, id1E1, . . . , idtEt}. Sincem � 1,wehave

t > 0. It can easily be seen that C(A) consists of all matrices of the form B = diag{qE, ir1E1, . . . , irtEt}
with ri ∈ R and q > 0. As long as ri are non-zero and distinct, B is also a generator. Again, there exist

generators B which are not proportional to either A or A−1, implying (i).

Item (II) in the Lemma follows directly from (I). �

6. The equalityC(A) = CL(A)

Assume that A has regular inertia. According to Theorem 6,C(A) ⊂ CL(A) with equality only if the

latter set is commutative. Here we bring evidence that this happens only when A has real eigenvalues.

The sets S(A),C(A),CL(A) (andCL(A)) respect similarity in the sense that for all T ∈ GL(n,R)

S(T−1AT) = TtS(A)T , C(T−1AT) = T−1C(A)T , CL(T−1AT) = T−1CL(A)T .

Thus we can always assume A to be in real Jordan form; but positive scaling remains an additional

degree of freedom.

Lemma 11. Assume that A ∈ Rn×n
has regular inertia. Then:

(i) If A is real diagonalizable thenC(A) = CL(A);
(ii) IfC(A) = CL(A) then A has only real eigenvalues.

Proof of (i). Up to real similarity we may assume that A is diagonal, say A = diag{aiEi} where 0 < a1 <

a2 < · · · and Ei are diagonal involutions of size ki. Theorem 14 (items (i) plus (iii)) implies that CL(A)

consists of real diagonal matrices. By restriction to each block it can be seen that each B inCL(A) is of

the form B = diag{biEi} with bi > 0. Thus,CL(A) ⊂ {A}′′. By a different restriction, this time to a single

slot in each block, plus a sign change if necessary, wemay assume that A = diag{ai}, which is Lyapunov

regular. Then by item (ii) in Theorem 6C(A) = CL(A). �
We shall prove item (ii) at the end of the section. Meanwhile, let us examine the general 2 × 2 case

with regular inertia.

Lemma 12. For A ∈ R2×2
Lyapunov regular,C(A) = CL(A) if and only if A has real spectrum.

Proof. We may apply positive scaling and similarity on A. Cases involving two distinct real eigen-

valuesare treatedby Lemma11. ThusA is stable or antistable, and to avoid redundancyweonly consider
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the antistable case. There are twopossibilities, eitherA is non-diagonalizable or it has a pair of complex

eigenvalues.

Allmatriceswill be rescaled to have trace equal to 2. Rescaledmatrices S ∈ S(A) ⊂ P can be param-

eterized by a single complex number z = α + iβ (|z| � 1) via

S = S(α,β) =
(
1 + α β

β 1 − α

)
, α,β ∈ R, α2 + β2 � 1.

Thesematricesmay be identifiedwith an open domain in the unit disk, in fact, the interior of an ellipse

contained in the closed unit disk (see Fig. 1). We shall denote the ellipse itself byEll(A). The Lyapunov

relation A � B means that Ell(A) is inscribed inside Ell(B):

(i) One (positive) real eigenvalue. Assume that A has a single eigenvalue λ. If A is diagonalizable

we are back in Lemma 11, so we may assume that A = I + 2X where X =
(
0 1
0 0

)
. It is easy

to show that C(A) = conv(A,A−1), hence rescaled matrices in C(A) have the form I + γX with

γ ∈ [−2, 2]. Also, direct calculation gives for Ell(A) the ellipse 2α(α + 1) + β2 = 0. Now assume

that 0 /= B ∈ CL(A). By Theorem 15(ii), B is upper triangular.

We show that B11 = B22. Indeed, assuming the contrary, up to a similarity of the form T = I + tX ,

which leaves A invariant, we may assume that B is diagonal. Rescaling, we may assume that

B = diag{1 + c, 1 − c}, where−1 < c < 1, and c /= 0. Direct calculation gives forEll(B) the ellipse

α2 + β2/(1 − c2) = 1.We compare the behavior ofEll(A) andEll(B) at the point z = −1 by calcu-

lating a tangent parabola in each case. Setting α = ε − 1 with ε ↘ 0, a first order approximation

of the ellipse equation gives β2 ∼ 2ε for Ell(A) and β2 ∼ 2ε(1 − c2) for Ell(B). This shows that

Ell(A) is not inscribed inside Ell(B) for any c non-zero, contradicting the assumption A � B.

So B11 = B22. Since A,B have the same stability type, up to positive scaling we have B = I + rX ∈
{A}′′ with r ∈ R. Choosing S = −I ∈ S(A) we see that |r| < 2, hence B ∈ C(A).

(ii) Two complex antistable eigenvalues. Wemay take A = I + bZ with 0 /= b ∈ R and Z =
(

0 1
−1 0

)
.

Rescaled non-zero matrices B ∈ CL(A) will be written in the form:

B(c, d, e) =
(
1 + c d + e

d − e 1 − c

)
, c, d, e ∈ R.
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We now show that:

(iia) Rescaled matrices inC(A) have the form I + eZ = B(0, 0, e) with |e| � |b|;
(iib) Rescaled matrices inCL(A) have the form B(c, d, e) with

|e| +
√

(1 + b2)(c2 + d2) � |b|. (13)

This would show that in the case of non-real eigenvalues C(A) is indeed a proper subset of CL(A).

First we prove item (iia): c = d = 0 is necessary for commutation with A and it is easy to see that (up

to scaling) C(A) is the convex hull of A and A−1, hence consists of matrices of the form I + eZ with

|e| � |b|.
Next we prove item (iib). Direct calculation gives forEll(A) the ellipse α2 + β2 = 1/(1 + b2), a con-

centric disk, see Fig. 1. To show that A � B = B(c, d, e) it is sufficient to demonstrate that the symmetric

matrix Qb = SB + BtS has non-negative trace and determinant on Ell(A). Minimizing 1
4
trace(Qb) =

1 + αc + βd on an ellipse in (α,β) is a simple linear programming problem; direct calculation shows

that 1 + αc + βd is positive onEll(A) if and only if 1 + b2 > c2 + d2. Similarly, minimizing 1
4
det(Qb) =

1 + (αc + βd)2 − (α2 + β2 + (c − βe)2 + (d + αe)2) on Ell(A) is a simple quadratic programming prob-

lem (using Lagrange multipliers). This minimum is calculated to be b2 − (|e| +
√

(1 + b2)(c2 + d2))2,

and its positivity yields (13) (the trace condition 1 + b2 > c2 + d2 calculated earlier turns out to be

redundant), and item (iib) is established. �

Denoting by |arg(λj(M))| the absolute value of the argument of the jth eigenvalue ofM ∈ Rn×n
one

has the following.

Corollary 13. If A,B ∈ R2×2
have regular inertia and A � B, then for j = 1, . . . ,n |arg(λj(B))| �

|arg(λj(A))|.

For real eigenvalues there is nothing to prove, and for non-real eigenvalues this follows from direct

calculation of the eigenvalues of B(c, d, e) in (iib) above satisfying (13). �
We wish to examine further the geometric aspects of case (ii) in Lemma 12. Here, A =

(
1 b

−b 1

)
with 0 /= b ∈ R, and the inclusionC(A) ⊂ CL(A) is strict. Set B(c, d, e) − I = (B(c, d, 0) − I) + eB(0, 0, 1).

Thus, the inequality in (13) may be interpreted as

‖eB(0, 0, 1)‖ + t‖B(c, d, 0) − I‖ � ‖bB(0, 0, 1)‖

in the trace inner product norm (see Section 3) and t =
√
1 + b2. Since symmetric and skew-symmetric

matrices are orthogonal in the trace inner product, this inequality is satisfied if and only if B(c, d, e) is in

the convex hull of the two sets C(A) = {e′B(0, 0, 1) : |e′| � |b|} and B̂ :={B(c′, d′, 0) : t(c′2 + d′2) � |b|}.
But B̂ is the convex hull of

B = {B(c′, d′, 0) : t(c′ 2 + d′ 2) = |b|}.

So one can conclude thatCL(A) is the convex hull ofC(A) andB.

Thematrix Bo :=B(c, 0, 0)with c = b√
1+b2

belongs to the setB. Direct calculation shows thatEll(Bo)

is the ellipse 1 > α2 + β2(1 + b2)which touchesEll(A) tangentially at the points α = 0, β = ∓1√
1+b2

, see

Fig. 1. In this example, none of the matrices inCL(A) \C(A) commutes with A (this is consistent with

Theorem 6). Some of these matrices have real spectrum (for example, the symmetric matrices in B)

or non-real spectrum (for example, A + εB with B ∈ B and ε small). Some are non-diagonalizable, for

example B1 :=B(c, 0, e)with c = e = |b|
1+

√
1+b2

. The ellipseEll(B1) touchesEll(A) at a single point, α = 0,

β = 1√
1+b2

, see Fig. 1.
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Proof of Lemma 11(ii). Let A be Lyapunov regular with C(A) = CL(A), and assume by contradiction

that A has at least two non-real (say, antistable) conjugate eigenvalues. Up to real similarity we may

put A in the form
(
A1 A2
0 A3

)
with A1 a 2 × 2 matrix of type d in Lemma 12. If C(A) = CL(A) then by

restriction to the first block one would haveC(A1) = CL(A1), contradicting Lemma 12. �

7. Invariant subspaces

Since CL(A) is not necessarily commutative, we cannot expect the relation A � B to imply that B

has the same invariant subspaces as A. However, it does have the same real-invariant subspaces.

Theorem 14. Assuming that A has regular inertia and S(A) ⊂ S(B), the following holds:

(i) B ∈ {A}r , namely, real A-invariant subspaces are B-invariant;
(ii) Real A-reducing subspace pairs are B-reducing;
(iii) Assume that A is upper block triangular. Then B is conformably upper block triangular and the

diagonal blocks satisfy ∅ /= S(Aii) ⊂ S(Bii).

If A,B are Lyapunov regular we actually have A � B; in view of Lemma 5. By restriction, the same holds

w.r.t. Aii,Bii in item (iii).

Proof. We shall use the fact that S(A) /= ∅ if and only if A has regular inertia [20, Theorem 2.4.10]:

(i) By joint similarity we may put A,B in the block form A =
(
A11 A12
A21 A22

)
, B =

(
B11 B12
B21 B22

)
with

A21 = 0.We need to show that B21 = 0. Up to an additional joint similarity T = diag{I, εI} (ε > 0)

we may replace (A,B) by

Aε :=T−1AT =
(
A11 εA12

0 A22

)
, Bε :=T−1BT =

(
B11 εB12
1
ε
B21 B22

)
. (14)

We still have ∅ /= S(Aε) ⊂ S(Bε), implying by restriction that ∅ /= S(Aii) ⊂ S(Bii) (i = 1, 2). Now

choose anyblock-diagonalmatrix S = diag{S1, S2}with Si ∈ S(Aii). For ε very small, thedominant

partofSAε + At
εS is positivedefinite andblock-diagonal, henceS ∈ S(Aε) ⊂ S(Bε). Inotherwords,

Q :=SBε + BtεS is positive definite. The 2, 1-block of Q is ε−1S2B12, and for ε very small Q cannot

be positive definite unless this termvanishes; so S2B21 = 0. Since S2 is non-singular,we conclude

that B21 = 0.

(ii) Follows directly from (i).

(iii) Assume that A is upper block triangular andwith diagonal blocks (of necessarily regular inertia)

Aii. Item (i) implies that B is upper triangular under the same block structure.

By restriction we get ∅ /= S(Aii). We claim that S(Aii) ⊂ S(Bii). Indeed, choose conformably

S(t) = diag{tiSii} with Sii ∈ S(Aii) arbitrary. A simple recursive Schur complement argument on

S(t)A + AtS(t) shows that S(t) ∈ S(A) ⊂ S(B) for t sufficiently large. So Q (t) :=S(t)B + BtS(t), as

well as its iith block ti(SiiBii + Bt
ii
Sii), is positive definite, implying that Sii ∈ S(Bii). Since there

was no restriction of Sii other than Sii ∈ S(Aii), we are done. �

8. Spectral properties

With the help of Theorem 14 we can use real similarity to put A,B in compatible block form and

study their spectral properties. These include eigenvalue clustering and commutation of the “real

spectral parts” of A and B.
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Weshall use thepolar representation for eigenvalues ofA andB and study thedecrease in their argu-

ment. To this end,wedenotebym±(A, a) (a � 0) thenumberof eigenvaluesofA, countingmultiplicities,

in a sector symmetric with respect to the real axis, i.e.

m±(A, a) :={x + iy ∈ C : ±x > 0, ax � |y|}.
We shall denote byVr ,Vnr ,Vs,Vas the invariant subspaces related to the real, non-real, Hurwitz

stable and antistable parts of the spectrum. Clearly, by Theorem 15 below the pairs Vr ,Vnr and

Vs,Vas are A-reducing, hence also B-reducing. We denote by Ar ,Anr ,As,Aas the restriction of A to

these spaces. Similarly, we use Br , etc. for the restrictions of B to the subspacesVr etc. defined by A.

Theorem 15. Assuming that A,B ∈ Rn×n
have regular inertia and that S(A) ⊂ S(B):

(i) For all a � 0 we have m±(A, a) � m±(B, a);
(ii) Br ∈ {Ar}′′; hence, by Theorem 6(ii), Br ∈ C(Ar).

(iii) S(Ar) ⊂ S(Br) and S(Anr) ⊂ S(Bnr);
(iv) If A,B are Lyapunov regular,Ar � Br , and Anr � Bnr;
(v) As � Bs and Aas � Bas;
(vi) Inertia(A) = Inertia(B) and Sign(A) = Sign(B).6

Proof. (i) Up to (orthogonal) similarity wemay assume that A is in real Schur canonical form: namely,

upperblock triangularandwithAii eithera realnumberora real2 × 2matrixof the form
(

a b
−b a

)
(a, b /=

0). By item (ii), B has conformal upper block triangular structure, and Bii is a 1 × 1 or a 2 × 2 matrix,

conformable in size and stability type with Aii, but not necessarily commuting with Aii.

It is enough to prove item (i) for each pair Aii,Bii. In the 1 × 1 case the eigenvalues are real and there

is nothing to prove, and in the 2 × 2 case this follows directly from Corollary 13.

(ii) Up to real similarity we may assume that Ar = diag{Ai} is in real Jordan upper canonical form.

By Theorem 14, Br = diag{Bi} conformably with Bi upper triangular and S(Ai) ⊂ S(Bi). To show that

Br ∈ {Ar}′′, we need to show that (1) Bi is upper Toeplitz; (2) whenever Ai is a minor of Aj also Bi is a

minor of Bj .

Firstwe show that Bi is upper Toeplitz. Setting Ti = I − t(Ai − λiI)wehave Ti ∈ {Ai}′. SinceAi � Bi, by

similarityT−1
i

AiTi = Ai � Bi + tCi = T−1BiT . Here,Ci is strictlyupper triangular andCi = 0exactlywhen

Bi is Toeplitz. Consider the matrix Si = diag{t, t2, . . .} for t � 1 fixed. SiAi + At
i
Si is diagonal dominant,

hence Si ∈ S(Ai). On the other hand, if Ci /= 0 thenQ :=SiCi + Ct
i
Si ∈ Sni is non-zero and has zero diago-

nal, hence has a negative eigenvalue. But then for t � 0 thematrix Si(Bi + tCi) + (Bi + tCi)
tSi = Qo + tQ

(with Qo :=SiBi + Bt
i
Si) has a negative eigenvalue, hence Si ∈ S(A) \ S(Bi + tCi). This would contradict

Ai � Bi + tCi, unless Ci = 0. So Bi is upper Toeplitz.

Assume that the ki × ki Jordan cell Ai is a minor of the kj × kj Jordan cell Aj . We want to show that

Bi is a minor of Bj . Let T be the identity matrix with the ki × kj matrix Eij = [Iki , 0] added in block ij. We

have T ∈ {Ar}′ and it is enough to show that also [Br , T ] = 0. Let C ′ be the zero matrix with BiEij − EijBj
added in block ij. By similarity, Ar = T−1ArT � T−1BrT = Br + C ′.

Use thediagonalmatrices Si ∈ S(Ai) and Sj ∈ S(Aj) constructed earlier in theproof. Let S′ ∈ S(Ar)be

thezeromatrixwithSi, Sj added inblock ii, jj resp. IfC
′ /= 0thenQ ′ :=S′C ′ + C ′tS′ ∈ S isnon-zeroandhas

zero diagonal, hence Q ′ has a negative eigenvalue. But then for 1 � ε > 0S′(C ′ + εBr) + (C ′ + εBr)
tS′ =

Q ′ + εQo (with Q ′
o :=S′Br + BtrS

′) still has a negative eigenvalue, hence S′ ∈ S(Ar) \ S(C ′ + εBr). This

contradicts Ar � Br + C ′, so C ′ = 0.

Item (iii) follows from Theorem 14. Items (iv) and (v) follow from the equivalence of items (i) and

(ii) in (9) (Proposition 5). Note that stable and antistable matrices are always Lyapunov regular. (vi)

follows directly from the common stable–antistable structure of A and B. �

6 It is known, e.g. [7, Proposition 2.6] that Sign(A) is the only involution in C(A). In view of (6) we may conclude that Sign(A)

is also the only involution inCL(A).
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9. The Lyapunov order respects controllability

With every pair (X ,u) ∈ Rn×n × Rn
the controllability matrix is defined as

Cont(X ,u) = [u,Xu, . . . ,Xn−1u].
The columns of Cont(X , v) span the associated controllable subspace and its rank will be denoted by

r(X ,u). By a classical definition, (X ,u) is controllable if and only if r(X ,u) = n. More generally, we shall

call the pair (X ,u) maximally controllable if r(X ,u) � r(X , v) for all v ∈ Rn
. Note that every matrix X has

maximally controllable vectorswhich formanopendense set inRn
.7 Moreover, amaximally controlla-

ble pair satisfies r(X ,u) = n if and only ifX is non-derogatory. Note that for a pair (X ,V) ∈ Rn×n × Rn×m
,

m = 1, . . . ,n the n × (nm) controllability matrix Cont(X ,V) is similarly defined and its range spans the

controllable subspace associated with the pair (X ,V).

Proposition 5 has the following consequence.

Proposition 16. Assume that A,B ∈ Rn×n
are Lyapunov regular and A � B:

(i) If V ∈ Rn×m
and the pair (B,V) is controllable then so is the pair (A,V),

(ii) If Q ∈ P and the pair (B,Q ) is controllable then so is the pair (A,Q ).

Version (ii) is connected with the inertia theorem for the Lyapunov equation [6,13,34].

Proof. As versions (i) and (ii) are easily shown to be equivalent via the map V → Q = VVt , we shall

only prove (ii). Using Proposition 5(II) we shall replace A,B by At ,Bt throughout. First assume that A,

hence also B, is antistable. Choose Q ∈ P so that (Bt ,Q ) is controllable. According to the Lyapunov con-

trollability theorem, e.g. [6], [20, Theorem 2.4.7], [34] Q ∈ Q(B). Assuming A � B, by Proposition 5(iv)

we get Q ∈ Q(A). Thus, Q = SA + AtS for some S ∈ P. A being antistable, the Lyapunov controllability

theorem implies that the pair (At ,Q ) is controllable.

Now, consider the more general case where A and B are Lyapunov regular. Assume that Q ∈ P(A)

and (Bt ,Q ) is controllable. This occurs if and only if no eigenvector of B lies in the null space of Q [30,

Theorem 13.3]. Now let E = Sign(A) = Sign(B). Lyapunov regularity guarantees that B and EB have the

same set of eigenvectors, hence by the same result (EtBt ,Q ) is controllable. Since EB, EA are antistable

and EA � EB, by the first part of the proof we conclude that (EtAt ,Q ) is controllable, and (using the

same eigenvalue argument) so is (At ,Q ). �

10. The weak Pick test via extreme rays

Given A,B ∈ Rn×n
and Q ∈ P, the matrix W = W(Q ) = LB(LA

−1
(Q )) defined by

SA + AtS = Q , SB + BtS = W

is well defined if A is Lyapunov regular. To verify the relation A � B directly, one needs to check that

W ∈ P for allQ , which is clearly not practical. As it turns out, this task simplifies for general pairs (A,B),

and especially when B ∈ {A}′′.
For general pairs (A,B) (i.e.B is not necessarily in {A}′′)we show that it is enough to considermatrices

Q of the form Q = uut where u ∈ Rn
is such that the pair (At ,u) is maximally controllable (see Section

9). We refer to this test as the weak Pick test. Clearly the weak Pick test is a necessary condition for

A � B. In this section, we show that it is also sufficient.

If, moreover, B ∈ {A}′′, a sharper result can be obtained: it is enough to apply the Pick test on a single

matrix of the above type. This criterion is, in fact, a basis-free formulation of the classical Pick test. This

sharper result and its relationship with complex interpolation is discussed in the sequel paper [12].

7 The reason is that the vanishing of all minors of order r + 1 of the controllability matrix defines an algebraic variety.



N. Cohen, I. Lewkowicz / Linear Algebra and its Applications 430 (2009) 1849–1866 1863

10.1. Controllability gramians as extreme directions in S(A)

Compare the three sets:

S(A) = {S ∈ S : SA + AtS ∈ P},
Sext(A) = {S = S(A,u) ∈ S : SA + AtS = uut for some u ∈ Rn};
Scont(A) = {S(A,u) ∈ Sext(A) : (At ,u) is maximally controllable}.

Scont(A) consists of a small set on the topological boundary of S(A). If A is antistable and (At ,u) is

controllable then S(At ,u) ∈ P and is known in the control literature as the controllability gramian of

(At ,u) [30, Theorem 9.2 and Exercise 9.4]. With a slight abuse of terminology, we refer to all members

of Scont(A) as controllability gramians.

The relation A � Bmeans that S(A) ⊂ S(B). Theweak Pick test for the pair (A,B) amounts to check-

ing that all the controllability gramians for A are in S(B). Obviously, the weak Pick test is a necessary

test for A � B; we show that it is also sufficient. We shall denote byE(K) the set of extreme directions

of a cone K .

Theorem 17. Assume that A ∈ Rn×n
is Lyapunov regular. Then:

(i) The set S(A) is a closed convex cone and E(S(A)) = Sext(A).

(ii) The set Scont(A) is a generic (relatively open and dense) subset of Sext(A).

Proof. (i)P ⊂ S is a closed convex conewhose extremedirections consist of thematrices uut(u ∈ Rn
).

If A is Lyapunov regular the linear operatorLA : S(A) → P is a cone isomorphism, hence by convexity

theory E(S(A)) = E(L−1
A (P)) = L−1

A (E(P)) = Sext(A).

(ii) Given A, let r be the maximal controllability rank for a pair (At ,u) with u ∈ Rn
. u is maximally

At-controllable if and only if at least one of the r × r submatrices of the controllability matrix does

not vanish. It is easy to see that the set of maximally controllable vectors for At is open and dense.

Now, Scont(A) is the inverse image under LA of a dense relatively open subset of rank-one positive

semidefinite matrices, hence is a dense relatively open subset of Sext(A). �

If A is not Lyapunov regular, the Lyapunov operator has a non-void kernel, So(A) :=Ker(LA). Since

S(A) is invariant under translations by elements of thenon-void affine setSo(A), by definition it cannot

have extreme rays. However,Sext(A) in Theorem 17(i) may ormay not be void. For example, it is void if

A =
(

0 1
−1 0

)
but not if A =

(
1 0
0 −1

)
. If it is not void, we can still prove that Scont(A) is relatively dense

(though typically not open) in Sext(A). Indeed, let S′
(A) be the orthogonal projection (in the Frobenius

norm) of S(A) along (i.e. perpendicular to) So(A). Then S(A) is the algebraic sum of the cones So(A)

and S′
(A). First one shows that S′

(A) ∩ Scont(A) is a relatively open and dense set in S′
(A) ∩ Sext(A);

then, summing So(A) to both sides, denseness (but not openness) is extended to the entire cone.

For further information on the boundary structure of cones related to the Lyapunov and Riccati

equations see [28,2].

10.2. Pick matrices and the weak Pick test

Here we consider an equivalent formulation which is closer in spirit to the original Pick test, i.e. is

given in terms of Pick-like matrices.

Definition 18. Let the three cones �(A,B), �ext(A,B), �cont(A,B) be defined as the respective images

of the sets S(A),Sext(A),Scont(A) under the Lyapunov operator LB. We shall refer to matrices in these

cones as nominal, extremal or maximally controllable Pick matrices for (A,B), respectively.
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Extremal Pick matrices will be denoted by P = P(A,B,u). They are defined by SA + AtA = uut , SB +
BtS = P. They aremaximally controllable if (At ,u) ismaximally controllable. The geometry of the closed

convex cone �(A,B) of Pick matrices is similar to that of S(A) and is described next.

Corollary 19. Let A,B ∈ Rn×n
be Lyapunov regular. Then E(�(A,B)) = �ext(A,B); and �cont(A,B) is a

generic (relatively open and dense) subset of �ext(A,B).

Indeed, LB maps S(A) isometrically onto �(A,B), and Theorem 17 can be applied. �

Corollary 19 partly extends to matrices without the Lyapunov regularity condition on both A and B.

If just A is not Lyapunov regular, we use the extension of Theorem 17 to the non-Lyapunov regular case.

Lyapunov regularity of B is not needed to imply that E(S(A)) ⊂ Sext(A) and that Scont(A) is dense in

Sext(A); linearity of LB is sufficient.

Based on the above analysis, we consider the following two criteria, given A,B:

(T1) (The Lyapunov order): Every Pick matrix for (A,B) is positive semidefinite;

(T2) (The weak Pick test): Everymaximally controllable Pickmatrix P(A,B,u) is positive semidefinite.

Also define the cics

CL(A) = {B ∈ Rn×n : �(A,B) ⊂ P},
CL,cont(A) = {B ∈ Rn×n : �cont(A,B) ⊂ P}. (15)

Clearly,CL(A) is the sameasdefined in (3); and the statements (T1) and (T2) areequivalent toB ∈ CL(A)

and B ∈ CL,cont(A), respectively.

Theorem 20. For all A,B ∈ Rn×n
we have CL(A) = CL,cont(A); as a result, conditions (T1) and (T2) are

equivalent. In other words, the weak Pick test is a necessary and sufficient test for A � B.

Proof. SinceScont(A) ⊂ S(A), we get the inclusionCL(A) ⊂ CL,cont(A). To show the opposite inclusion,

assume that B ∈ CL,cont(A). The continuous linear operator LB maps Scont(A) into P. By the density

claim in Theorem 17 it follows that LB maps Sext(A) = E(S(A)) into P. By convexity, LB maps S(A)

into P, i.e. B ∈ CL(A) as required. �

11. Comments and open problems

1. The time domain implications of Properties I–X in Section 1, and especially of Theorem 15, are

still not clear, but seem to be related to transient behavior of the type discussed in [18] and in

problem 6.3 in [3].

2. If A is Lyapunov regular and A � B then the linear map LBL
−1
A : S → S is a non-negativity

preserver, i.e. takesP into itself.We do not knowwhether every linear non-negativity preserver

in S is of this form.

3. Theorem 6 plus (11) imply that for all S ∈ S(A)

C(A) ⊂ A(S) ∩ {A}′′. (16)

It would be interesting to characterize matrices S ∈ S(A) for which (16) holds with equality. It

is natural to conjecture that S should be on an extreme ray in the cone S(A), namely rank(SA +
AtS) = 1.
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Consider, for example,A = diag{1, 2} and S =
(
6 4
4 3

)
∈ S(A). The set {A}′′ consists of all real diag-

onal matrices andC(A) = {r · diag{1, a} : r > 0, 1/2 � a � 2}. We have SA + AtS = 12uut where

u = (1, 1)t , hence S ∈ S(A). A(S) contains non-diagonal matrices, for example, B =
(−4 −3

6 4

)
which satisfies SB + BtS = 0. However, direct calculation shows that a diagonal matrix B =
diag{b1, b2} ∈ {A}′′ satisfies SB + BS � 0 exactly when B ∈ C(A). Thus (16) holds with equality.

4. Given A,B ∈ Rn×n
, what are the necessary and sufficient conditions for the existence of T ∈

GL(n,R) such that A ∼ T−1BT? or such that A � T−1BT?

5. The following question is related to Theorem 15: Is it true that A � B together with B ∈ {A}c (see
(6)) implies B ∈ {A}′′, or at least B ∈ {A}′?

6. Theorem 15(i) raises the question of characterizing matrix flows which have similar sector

behavior with respect to the eigenvalues, such as the MSF (matrix sign function) algorithm

mentioned in (8).

7. Can one define a proper distance function d so that A � Bwith A Lyapunov regular, implies that

d(A, E) � d(B, E), where E = Sign(A) = Sign(B)?

8. The inequality A � B does not imply that A + B � B. Similarly, the relation B ∈ C(A) does not

imply thatB ∈ C(A + B). As a counterexample forboth statements takeA = I + N andB = I − N =
A−1 where N /= 0 and N2 = 0. We cannot have A + B � B since A + B is a scaled involution and B

is not. Similarly, we cannot have B ∈ C(A + B) sinceC(A + B) = {aI : a > 0}.
9. The matrix Lyapunov relation SA + AtS ∈ P may be interpreted as the LMI analogue of cone

duality. Namely, the formal relation (A, S) :=SA + AtS is interpreted as a “matrix-valued inner

product” in Rn×n × S. In this language, the set S(A) ⊂ S is the “dual cone” of R+{A} ∈ Rn×n
;

and, in the other direction, the set A(S) ⊂ Rn×n
in (11) is the “dual cone” of R+{S} ∈ S.

10. The relation (I)S(A) ⊂ S(B) studiedhere stands in contrastwith the relation (II)S(A) ∩ S(B) = ∅
studied in e.g. [10,23] and to (III) Sign(A) = Sign(B). Clearly (I) �⇒ (II) �⇒ (III) and in general

none of the converse implications holds. For 2 × 2 matrices the relation with (III) is of interest.

If A,B are antistable, one can take A =
(

0 −1
0.1 2

)
and B =

(
0 −1
2 0.5

)
[10, Example 5.3] showing

that (III)�(II). However, in the case of mixed inertia (III) �⇒ (I): Indeed up to similarity we

may assume that A,B as well as E = Sign(A) are diagonal, and E ∈ S(A) ∩ S(B). In fact, direct

calculation implies one of the inclusions S(A) ⊂ S(B) or S(B) ⊂ S(A).

11. In this paper, we restricted the scope to (quadratic) Lyapunov functions associated with finite-

dimensional linear time-invariant systemsof the form ẋ = Ax. It appears that extensions inmany

directions are possible.

Acknowledgements

The authors wish to thank the anonymous referee for his/her thorough review, improving the

quality of this work.

References

[1] B.D.O. Anderson, S. Vongpanitlerd, Networks Analysis and Synthesis, A Modern Systems Theory Approach, Prentice-Hall,
New Jersey, 1973.

[2] F.A. Badawi, On a quadratic matrix inequality and the corresponding algebraic Riccati equation, Internat. J. Control 36 (2)
(1982) 313–322.

[3] V.D. Blondel, A. Megretski (Eds.), Unsolved Problems in Mathematical Systems and Control Theory, Princeton University
Press, 2004.

[4] D. Carlson, Rank and inertia bounds for matrices under R(AH) � 0, J. Math. Anal. Appl. 10 (1965) 100–101.
[5] D. Carlson, R. Loewy, On ranges of Lyapunov transformations, Linear Algebra Appl. 8 (1974) 237–248.
[6] C.-T. Chen, A generalization of the inertia theorem, SIAM J. Appl. Math. 25 (1973) 158–161.
[7] N. Cohen, I. Lewkowicz, A necessary and sufficient criterion for the stability of a convex set ofmatrices,IEEE Trans. Automat.

Control 38 (1993) 611–615.
[8] N. Cohen, I. Lewkowicz, Convex invertible cones and the Lyapunov equation, Linear Algebra Appl. 250 (1997) 105–131.
[9] N. Cohen, I. Lewkowicz, Convex invertible cones of state space systems,Math. Control Signals Systems 10 (1997) 265–285.



1866 N. Cohen, I. Lewkowicz / Linear Algebra and its Applications 430 (2009) 1849–1866

[10] N. Cohen, I. Lewkowicz, A pair of matrices sharing a common Lyapunov solution – a closer look, Linear Algebra Appl. 360
(2003) 83–104.

[11] N. Cohen, I. Lewkowicz, Convex invertible cones and positive real analytic functions, Linear Algebra Appl. 425 (2007)
797–813.

[12] N. Cohen, I. Lewkowicz, On a matrix theoretic approach to Nevanlinna–Pick interpolation – a preprint.
[13] B.N. Datta, Stability and inertia, Linear Algebra Appl. 302–303 (1999) 563–600.
[14] T. Donnellan, Lattice Theory, Pergamon, 1968.
[15] F.R. Gantmacher, Matrix Theory, Chelsea Publishing Company, New York, 1959.
[16] D. Hershkowitz, On cones and stability, Linear Algebra Appl. 275–276 (1998) 249–259.
[17] N.J. Higham, Function of Matrices: Theory and Computation, SIAM Editions, 2008.
[18] D. Hinrichsen, E. Plischke, A.J. Pritchard, Lyapunov and Riccati equations for practical stability, in: Proceedings of the ECC

(European Control Conference), Porto, 2001.
[19] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[20] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[21] N. Jacobson, Lectures in Abstract Algebra, vol. II, Van Nostrand, Princeton, 1953.
[22] C. Kenney, A.J. Laub, The matrix sign function, IEEE Trans. Automat. Control 40 (1995) 1330–1348.
[23] C. King, R. Shorten, Singularity conditions for the non-existence of a common quadratic Lyapunov function for pairs of

third order linear time invariant dynamic systems, Linear Algebra Appl. 413 (2006) 24–35.
[24] P. Lancaster, M. Tismenetsky, The Theory of Matrices, second ed., Academic Press, 1985.
[25] I. Lewkowicz, Convex invertible cones ofmatrices a unified framework for the equations of Sylvester, Lyapunov and Riccati,

Linear Algebra Appl. 286 (1999) 107–133.
[26] R. Loewy, On ranges of real Lyapunov transformations, Linear Algebra Appl. 13 (1976) 79–89.
[27] R. Loewy, On ranges of Lyapunov transformations III, SIAM J. Appl. Math. 30 (4) (1976) 687–702.
[28] O. Mason, R. Shorten, The geometry of convex cones associated with the Lyapunov inequality and common Lyapunov

function problem, Electron. J. Linear Algebra 12 (2005) 42–63.
[29] O. Mason, R. Shorten, S. Solmaz, On the Kalman–Yakubovich lemma and common Lyapunov solutions for matrices with

regular inertia, Linear Algebra Appl. 420 (2007) 183–197.
[30] W.J. Rugh, Linear System Theory, second ed., Prentice-Hall, 1996.
[31] D.A. Suprunenko, R.I. Tyshkevich, Commuting Matrices, Acad. Press, 1968.
[32] O. Taussky, Research problem 17 in matrix theory research problems, Bull. Amer. Math. Soc. 71 (5) (1965) 711.
[33] O. Taussky, Positive definite matrices, Adv. Math. 2 (1968) 175–186 (Reprinted in: O. Shisha (Ed.), Inequalities II, Acad.

Press, 1970, pp. 389–400).
[34] H.K. Wimmer, Inertia theorems for matrices, controllability and linear vibrations, Linear Algebra Appl. 8 (1974) 337–343.


	Introduction
	Basic properties
	Convexity issues
	Convex invertible cones
	Extreme points and the Pick test

	Matrix preliminaries
	Commutation
	Lattices and invariant subspaces
	Inertia

	The Lyapunov order
	Definitions
	Cone duality and transpose
	Comparison of several cone inclusions

	The sets CCCC(A), CCCCLLLL(A), CCCCLLLL(A)
	Matrices which generate the same cic
	The equality CCCC(A)=CCCCLLLL(A)
	Invariant subspaces
	Spectral properties
	The Lyapunov order respects controllability
	The weak Pick test via extreme rays
	Controllability gramians as extreme directions in SSSS(A)
	Pick matrices and the weak Pick test

	Comments and open problems
	References

