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Clustering is a widely used technique in machine learning, however, relatively little
research in consistency of clustering algorithms has been done so far. In this paper
we investigate the consistency of the regularized spectral clustering algorithm, which
has been proposed recently. It provides a natural out-of-sample extension for spectral
clustering. The presence of the regularization term makes our situation different from that
in previous work. Our approach is mainly an elaborate analysis of a functional named
the clustering objective. Moreover, we establish a convergence rate. The rate depends
on the approximation property and the capacity of the reproducing kernel Hilbert space
measured by covering numbers. Some new methods are exploited for the analysis since the
underlying setting is much more complicated than usual. Some new methods are exploited
for the analysis since the underlying setting is much more complicated than usual.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Clustering is wildly used in statistics, computer science and various data analysis applications. Clustering algorithms
partition a given data set x = {xi}n

i=1 ⊂ X into several groups based on notions of similarity among the data points. Very
often we assume the data points are drawn from an underlying probability distribution on X . The most fundamental issue
is whether the clustering algorithm is consistent: do the clusterings constructed by the given algorithm converge to a useful
partition of the whole data space as the sample size increases? Consistency is a key property of statistical learning. While
extensive literature exists on clustering and partition, very few results on their consistency have established, for exceptions
being only k-centers [9], linkage algorithm [6] and spectral clustering [17].

Spectral clustering has attracted a considerable amount of attention recently. With the similarity K (xi, x j) among the
data points, one can construct graph Laplacian matrices. The simplest form of spectral clustering uses the second eigenvec-
tor of graph Laplacian to partition the data points into two groups. In general the first several eigenvectors are all used.
We refer to Spielman and Teng [14] for a survey of spectral clustering and von Luxburg [16] for a tutorial to spectral
clustering. The consistency of spectral clustering is essentially the convergence of spectral properties of graph Laplacian
matrices. Von Luxburg et al. [17] prove that under some mild assumptions the normalized spectral clustering is consistent.
However, the unnormalized spectral clustering is consistent only under very specific conditions. Their approach is based on
perturbation theory on linear operators in Banach spaces. The problem of out-of-sample extension is considered via Nys-
tröm approximation argument, that is, by relating the eigenvectors of the graph Laplacian to the eigenfunctions of a linear
operator U ′

n on C(X). They establish the convergence of the eigenfunctions of U ′
n to those of the limit operator. In either

case, von Luxburg et al. [17] assume that, for some positive constant l, the similarity function K (x, y) � l.
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The regularized spectral clustering algorithm is developed from a general framework proposed by Belkin et al. [3]. It also
provides a natural out-of-sample extension for clustering data points not in the original data set. In this algorithm, a regu-
larization term is required to control the smoothness of the target function on X . The experiments in [3, Section 6.1] show
the impact of different values of the regularization parameter γ on clustering results. We note that a similar regularized
method has also been proposed in the context of graph inference in Vert and Yamanishi [15]. The framework of Belkin et
al. [3] actually spans the range from unsupervised to fully supervised learning. It brings together three distinct concepts:
manifold learning, spectral graph theory and kernel based learning algorithms. Although plentiful experiments were per-
formed with the proposed algorithms and comparisons were made with inductive methods (SVM, regularized least squares)
in Belkin et al. [3], the consistency of algorithms has not been addressed yet.

This paper investigates the consistency of the regularized spectral clustering algorithm. We prove that, as the number of
samples tends to infinity, the sequence of the target functions (modulo signs) converges to a function f ∗ , which corresponds
to the limit clustering, essentially the same as in [17]. Moreover, a convergence rate is established. It should be noted that
our arguments require the similarity function to be a positive semi-definite kernel function. In addition, the linear operators
in this paper are defined on L2

ρ(X) rather than C(X). This might also make our results different from those in [17].
It should be pointed out that, due to the presence of regularization term, the situation is different from that in [17].

In particular, the target function is no longer given as an eigenfunction of some linear operator approaching to the limit
operator. Therefore, the methods of [17] do not work well in our setting. Our approach is mainly an elaborate analysis
of a functional ε( f ) (see Section 3 below for the definition) measuring the quality of the partition induced by f . This
functional plays the same role as the functional of generalization error does in supervised learning. Adopting the arguments
for estimation of generalization error, we prove that the functional of the target functions tends to the minimum ε( f ∗). This
is interesting in its own right, and it in turn yields the convergence of the regularized spectral clustering. Moreover, we use
the results of the perturbation theory on the eigenvalues of a integral operator to bound the norm of fx,γ . A concentration
inequality for random variables with values in a Hilbert space is also required to give the convergence rate (usually referred
to as learning rate). We note that similar concentration inequalities and perturbation results are used in Rosasco et al. [10]
and Smale and Zhou [12]. In the former paper, the authors used a technique based on a concentration inequality for Hilbert
spaces to simplify proofs of many results in spectral approximation. Using this method they also provided several new
results on spectral properties of the graph Laplacian extending and strengthening results from von Luxburg et al. [17]. In
the latter, results similar to Rosasco et al. [10] are derived. Yet the similarity function is required to be a positive definite
kernel function.

We would like to compare the analysis of clustering objective ε( f ) with previous work on estimation of generalization
error. There are a few new features in our analysis since the setting of regularized spectral clustering is more complicated. In
regularized spectral clustering, orthogonality and normalization restrictions are required on the target function and the limit
function, and yet there are no such restrictions in other cases, such as SVM and regularized least squares, etc. Moreover, the
restrictions on the target function are different from those on the limit function. In fact, the former are empirical versions
of the latter. The restrictions (and the difference of the restrictions) make the analysis of consistency much more involved
than that in other cases. We mention two points. One is the estimation of the so-called space error. There is no such a step
in previous work. For the consideration of space error, some auxiliary functions and new techniques are needed. The other
is the estimation of the norm of target functions. Only with a great deal of efforts can we establish even a rough bound. In
this regard, the estimation of eigenvalues of some random matrices plays an important role. But it is quite straight in the
cases of SVM and regularized least squares to establish such bounds of norms of target functions.

The paper is organized as follows. In Section 2, we introduce the regularized spectral clustering algorithm described
in Belkin et al. [3]. Due to the normalization consideration, our restrictions on hypothesis spaces are somewhat different
from those of [3]. The clustering objective for measuring the quality of algorithms is defined in Section 3. After proving the
existence of its minimizer f ∗ , we state our main results in Theorem 3.3. In Section 4, the convergence of ε( fx,γ ) to ε( f ∗) is
investigated, and its convergence rate is derived in Theorem 4.1. The space error and the norm of target functions are both
considered. Finally, the proof of Theorem 3.3 is given via Theorem 4.1 in Section 5.

2. Regularized spectral clustering

In this section, regularized spectral clustering algorithm and its limit version will be introduced. In the rest of the
paper we assume the data space X ⊂ R

d is a compact metric space, and ρ is a probability measure on X . The function
K (x, y) : X × X → R measures the similarities between pairs of points x, y ∈ X .

2.1. Spectral clustering

Given a set of samples x = {xi}n
i=1 ⊂ X drawn independently according to ρ , we construct a weighted undirected graph

G = (V , E) with vertex set V = X. Each edge carries a non-negative weights Kij = K (xi, x j) � 0.
Let K = (Kij)

n
i, j=1 be the similarity matrix and D be a diagonal matrix with diagonal entries Dii = ∑n

j=1 Kij . The unnor-
malized graph Laplacian of G is defined as Ln = D − K and the normalized graph Laplacians are defined as

L′
n = I − D−1/2KD−1/2, L′′

n = I − D−1K.
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Note that Ln and L′
n are symmetric and positive semi-definite. It is easy to see that Ln , L′

n and L′
n have 0 as the smallest

eigenvalue.
The normalized spectral clustering uses the first several eigenvectors to obtain a partition of the set x. It is known that

v is an eigenvector of L′′
n with eigenvalue λ if and only if w = D1/2 v is an eigenvector of L′

n with eigenvalue λ. Hence the
two normalized graph Laplacians are equivalent from a spectral point of view. The main result of von Luxburg et al. [17] for
normalized spectral clustering is that under mild assumptions, among which K (x, y) � l for some positive constant l, the
first several eigenvectors of L′

n converge to those of a limit operator.
In the simplest form, only the eigenvector v with the smallest positive eigenvalue of L′

n is needed. By

1

2n2

n∑
i, j=1

(ui − u j)
2 Kij = 1

n2
uT Lnu, (2.1)

we can deduce

v = arg min
1
n uT Du=1, uT D1=0

1

2n2

n∑
i, j=1

(ui − u j)
2 Kij . (2.2)

The restrictions on u in (2.2) remove an arbitrary scale factor and a translation invariance in u. The clusters of x are given
by v , e.g. C = {xi | vi � 0} and C̄ = {xi | vi < 0}. For details we refer to von Luxburg [16].

2.2. Regularized spectral clustering algorithm

The spectral clustering algorithm (2.2) provides a vector dealing with the sample data only. We construct a function f ,
defined on whole space X , to give an out-of-sample extension for clustering points that are not in the original data set. By
regarding u in (2.2) as the sample f̂ = ( f (x1), . . . , f (xn))T of f on x, we consider the following optimization problem over
a set of functions

f = arg min
1
n f̂ T D f̂ =1, f̂ T D1=0

1

n2
f̂ T Ln f̂ . (2.3)

It is understood that a regularization term is necessary to ensure the resulting function is smooth on X . In Belkin et al. [3],
the set of functions is a reproducing kernel Hilbert space (RKHS) and the regularizer is the squared norm of f .

Recall that there is a one-to-one correspondence between RKHSs and Mercer kernels. A function K (x, y) is a Mercer
kernel, if K (x, y) = K (y, x), and, given an arbitrary finite set of points {x1, . . . , xn} ⊂ X , the matrix K = (K (xi, x j))

n
i, j=1 is

positive semi-definite. Such an example is the Gaussian kernel K (x, y) = exp{− |x−y|2
2σ 2 }. The RKHS H K associated with the

kernel K is the completion of span{Kx = K (x, ·): x ∈ X}, with respect to the inner product given by 〈Kx, K y〉K = K (x, y).
See Aronszajn [1] and [5, Chapter 4] for details. Let κ = supx∈X

√
K (x, x). It follows that κ = supx,y∈X

√|K (x, y)|. Then by
f (x) = 〈 f , Kx〉K , f ∈ H K we have∣∣ f (x)

∣∣ � κ‖ f ‖K , ∀ f ∈ H K , x ∈ X . (2.4)

Precisely, the regularized spectral clustering algorithm of [3] computes the target function

fx,γ = arg min
f ∈A∩H K

1

n2
f̂ T Ln f̂ + γ ‖ f ‖2

K , (2.5)

where

A =
{

f ∈ L2
ρ

∣∣∣∣
n∑

i=1

f (xi)px(xi) = 0,
1

n

n∑
i=1

f 2(xi)px(xi) = 1

}
, (2.6)

with px = 1
n

∑n
i=1 Kxi . The set of constrains (2.6) is slightly different from that adopted by Belkin et al. in [3]. They consider

the unnormalized spectral clustering, while we choose a set of normalized constrains that is also used in Belkin and Niyogi
[2]. Different kinds of constrains in spectral clustering are discussed in [16].

The regularization term γ ‖ f ‖2
K in (2.5) controls the smoothness of the resulting function in the ambient space. The

experiments in [3, Section 6.1] show the impact of different values of γ on clustering results.
Although the constrains in (2.6) are a bit different from those in [3], we can also conclude that the target function fx,γ

admits the representation of the form

fx,γ =
n∑

αx
i K (xi, ·),
i=1
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where αx = (αx
1, . . . ,αx

n)T ∈ R
n is determined by the optimization problem

αx = arg min
α∈Rn

1

n2
αT KLnKα + γ αT Kα,

s.t.
1

n2
αT KDKα = 1,

αT KD1 = 0. (2.7)

Please refer to Belkin et al. [3] for details.

3. The limit version of spectral clustering and main result

In this section, we will give the notions of the clustering objective and the limit version of graph Laplacian, provide the
existence of the limit function, and state our main results on the consistency.

To measure the quality of clustering by a function, the clustering objective is defined by

ε( f ) = 1

2

∫ ∫ (
f (x) − f (y)

)2
K (x, y)dρ(y)dρ(x).

Hereinafter,
∫∫ = ∫

X2 and
∫ = ∫

X . Moreover, ‖ · ‖2 is used instead of ‖ · ‖L2
ρ

for simplicity. In fact, the clustering objective

is a limit version of the quadratic form 1
n2 f̂ T Ln f̂ in (2.3). By transforming the constrains in (2.3) into the limit form, we

minimize ε( f ) over the set

B =
{

f ∈ L2
ρ

∣∣∣ ∫
f p dρ = 0,

∫
f 2 p dρ = 1

}
,

where p(x) = ∫
K (x, y)dρ(y). The existence of its minimizer over B will be discussed later, with the help of spectral

properties of the operator T K : L2
ρ(X) → L2

ρ(X) defined as

T K f (x) =
∫

f (x)
K (x, y)√
p(x)p(y)

dρ(y).

The limit version of graph Laplacians Ln and L′
n , denoted by L and L′ respectively are two operators on L2

ρ(X), given by

L f (x) = f (x)p(x) −
∫

f (y)K (x, y)dρ(y),

L′ f (x) = f (x) −
∫

f (y)
K (x, y)√
p(x)p(y)

dρ(y).

Clearly, L satisfies a limit version of (2.1)

ε( f ) =
∫

f (x)L f (x)dρ(x), (3.1)

and L′ = I − T K . Moreover, two operators L and L′ are associated by the equality∫
f (x)L f (x)dρ(x) =

∫
g(x)L′ g(x)dρ(x) with g = f

√
p. (3.2)

From now on, we make the following assumption.

General assumption. There exists a constant l > 0 such that p(x) � l for any x ∈ X .

As it is known, K (x, y) � κ2. Hence, under the General assumption, p satisfies

l � p(x) � κ2, x ∈ X . (3.3)

Note that T K is a compact and positive operator under the General assumption. Its eigenvalues can be listed in non-
increasing μ1 � μ2 � · · · � 0 counting multiplicities. Moreover, {1 − μi}i�1 is the set of eigenvalues of L′ . By (3.1) and (3.2)
we know L′ is a positive semi-definite operator. It follows that μi � 1 for all i � 1. Consequently, 1 is the largest eigenvalue
of T K with

√
p being a corresponding eigenfunction.

A sufficient condition for the existence of the minimizer of ε( f ) over B is established in the following proposition.
Although the proof is elementary, we provide it for readers’ convenience.
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Proposition 3.1. Suppose μ1 = 1 is a simple eigenvalue of T K . Then there exists a function f ∗ ∈ B such that

0 � ε( f ) − ε
(

f ∗) � μ2κ
2
∥∥ f − f ∗∥∥2

2, ∀ f ∈ B, (3.4)

where μ2 is the second largest eigenvalue of T K .
Assume in addition that μ2 is a simple eigenvalue of T K . Then for any f ∈ B with 〈 f

√
p, f ∗√p 〉 � 0, there holds

∥∥ f − f ∗∥∥2
2 � 2(ε( f ) − ε( f ∗))

(μ2 − μ3)l
. (3.5)

Proof. Let φi be normalized eigenfunctions of T K associated with μi , i = 1,2, . . . . Then {φi}i�1 is an orthonormal basis
of L2

ρ . Set φ1 = √
p/‖√p ‖2,

∫
φ2

√
p dρ = 0 and, consequently, f ∗ = φ2/

√
p ∈ B. We claim that the function f ∗ is a mini-

mizer of ε( f ) over B and ε( f ∗) = 1 − μ2.
In fact, for any f ∈ B, the function g = f

√
p can be represented as a series g = ∑

i�2 aiφi with
∑

i�2 a2
i = 1. It follows

from (3.1) and (3.2) that

ε( f ) − ε
(

f ∗) = −(1 − μ2) +
∑
i�2

a2
i (1 − μi) =

∑
i�3

a2
i (μ2 − μi) � 0, (3.6)

confirming f ∗ is a minimizer of ε( f ) over B.
With notations as above, (3.6) also tells ε( f )−ε( f ∗) � μ2(1−a2

2) � 2μ2(1−a2). On the other hand, since ( f − f ∗)√p =
g − φ2, (3.3) yields ‖g − φ2‖2 � κ‖ f − f ∗‖2. Now (3.4) follows from

‖g − φ2‖2
2 = (1 − a2)

2 +
∑
i�3

a2
i = 2(1 − a2). (3.7)

Now suppose furthermore μ2 is simple, i.e., μ3 < μ2. By (3.6), we find

ε( f ) − ε
(

f ∗) � (μ2 − μ3)
∑
i�3

a2
i = (μ2 − μ3)

(
1 − a2

2

)
� (μ2 − μ3)(1 − a2), (3.8)

where the last inequality holds due to

a2 = 〈 f
√

p, φ2〉 = 〈
f
√

p, f ∗√p
〉
� 0.

Under the General assumption,
√

l ‖ f − f ∗‖2 � ‖g − φ2‖2, where, as above, g = f
√

p. This, in connection with (3.7) and
(3.8), implies (3.5). The proof is complete. �

Proposition 3.1 tells us that f ∗ is the minimizer of ε( f ) over B and f ∗√p is an eigenfunction of L′ . In von Luxburg et
al. [7], it is known that the limit partition, given by f ∗ , segments the data space into sets such that the similarity within
the sets is high and the similarity between the sets is low. That intuitively is what clustering is supposed to do. Hence our
task is to prove the sequence of target function fx,γ converges to f ∗ in a certain sense, modulo signs (for the sign of a
function has no effect on the final partition).

To state the main results, some notations should be made. For a kernel K (x, y), the integral operator S K : L2
ρ → H K is

defined by

S K f (x) =
∫
X

K (x, y) f (y)dρ(y), x ∈ X . (3.9)

Clearly, as K is a Mercer kernel, S K is a self-adjoint, positive semi-definite and compact operator. Therefore, Sα
K is well

defined for any α > 0. It is well known that H K = S1/2
K (L2

ρ). See [5, Chapter 4] for details.
Since our approach to estimate the approximation of f ∗ by fx,γ involves the capacity of the function space H K , we

measure the capacity by means of the covering number of the balls B R = { f ∈ H K ; ‖ f ‖K � R}.

Definition 3.2. For a subset S of a metric space and η > 0. The covering number N (S, η) is defined to be the minimal l ∈ N

such that there exist l disks with radius η covering S .

When S is compact this number is finite. Denote the covering number of B1 in C(X) with the metric ‖ · ‖∞ by N (η).
We refer to [19,20] for more details about the covering number.

Our main result establishes a convergence rate of fx,γ to f ∗ , modulo signs.
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Theorem 3.3. Under the General assumption assume that K and ρ satisfy

(i) log N (B1, η) � C0(1/η)s for some s > 0;
(ii) S−α/2

K f ∗ ∈ L2
ρ for some α ∈ (0,1];

(iii) μ1 = 1 and μ2 are simple eigenvalues of T K ;
(iv) the second largest eigenvalue λ2 of S K is positive.

Let γ = n−θ with θ = 1
2(1+s)(1+α)

. Then for every 0 < δ < 1 and n > N1(δ), with confidence at least 1 − 9δ, there exist signs
βx,γ ∈ {1,−1} such that∥∥βx,γ fx,γ − f ∗∥∥2

2 � C log4(2/δ)n−θα.

Here C is a constant depending on s, C0 , μ2 , μ3 κ , l, α and ‖S−α/2
K f ∗‖2 , and we take

N1(δ) = max
{

Mδ, (4M1)
1
αθ ,

(
4D1 log(2/δ)

) 1
2αθ ,

(
D2 log(2/δ) + C0

) 1
αθ

}
,

with

D1 = 16κ4
∥∥S−α/2

K f ∗∥∥2
2

(
24κ6l−3 + 1

)(
μ2κ

2(κ2l−1 + 1
)4 + 4

(
1 + κ3l−2)2)

,

Mδ = max
{

64l−2κ4 log2(2/δ),64λ−2
2 κ4 log2(2/δ)

}
,

M1 = κ2(1 + κ2l−1)2∥∥S−α/2
K f ∗∥∥2

2 and D2 = 64κ4(1 + 2l−2κ4 + l−4κ4).
It was known that the assumption (i) holds if K ∈ C2d/s(X) with X ⊂ R

d , and then we say the RKHS H K has polynomial
complexity exponent s > 0 (see [20]). In particular, if K ∈ C∞(X), (i) is valid for any s > 0. Gaussian kernel is such an
example. The assumption (ii) is common in consistency analysis of learning theory, see, e.g., [4, Theorem 3], [5] and [13].
(iii) is required by Proposition 3.1 and we need (iv) to bound the norm of fx,γ which will be discussed in Section 4.4. The
selection of signs βx,γ will be given in Section 5.

If K ∈ C∞(X) and f ∗ is in the range of LK , then, as a consequence of Theorem 3.3, for any 0 < δ < 1, ε > 0, ‖βx,γ fx,γ −
f ∗‖2

2 � C log4(2/δ)(1/n)
1
4 −ε , with confidence 1 − 9δ. The learning rate is not as good as that in von Luxburg et al. [17].

4. An upper bound of ε( fx,γ ) − ε( f ∗)

Due to the presence of the regularization term in our setting, the methods provided in von Luxburg et al. [17] and
Rosasco et al. [10] do not work well in this situation. Our approach to establish the consistency of the regularized spectral
clustering is mainly an elaborate analysis of the clustering objective ε( f ).

In this section, we study the convergence of the sequence of ε( fx,γ ) to ε( f ∗) when n → ∞. An upper bound of
ε( fx,γ ) − ε( f ∗) is given in the following theorem. The proof is given in the last subsection of this section.

Theorem 4.1. Under the General assumption assume K and ρ satisfy

(i) log N (B1, η) � C0(1/η)s for some s > 0;
(ii) S−α/2

K f ∗ ∈ L2
ρ for some α ∈ (0,1];

(iii) 1 is a simple eigenvalue of T K ;
(iv) the second largest eigenvalue λ2 of S K is positive.

Let γ = n−θ with θ = 1
2(1+s)(1+α)

. Then for every 0 < δ < 1 and n > N2(δ), with confidence at least 1 − 7δ, there holds

ε( fx,γ ) − ε
(

f ∗) � C ′ log4(2/δ)n−θα.

Here C ′ is a constant depending on s, C0 , μ2 , κ , l, α and ‖S−α/2
K f ∗‖2 , and we take

N2(δ) = max
{

Mδ, (4M1)
1
αθ ,

(
4D1 log2(2/δ)

) 1
2αθ

}
,

where Mδ , M1 and D1 are given as in Theorem 3.3.

Unlike (iii) in Theorem 3.3, Theorem 4.1 only requires μ1 = 1 be a simple eigenvalue, since just the first result (3.4) in
Proposition 3.1 is required.

The technical difficulties for proving Theorems 3.3 and 4.1 are that fx,γ and f ∗ lie in different spaces, A ∩ H K and B ∩
H K respectively, and A is data dependent. To cooperate the constrains on A and B, we introduce the following construction
method denoted by PN.
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PN. For a function f ∈ L2
ρ , define two functions in A and B respectively as follows.

1. Projection:

g(x) = f (x) −
∫

f p dρ∫
p2 dρ

p(x), gρn(x) = f (x) −
∫

f px dρn∫
p2

x dρn
px(x),

where ρn = 1
n

∑n
i=1 δxi is the empirical distribution corresponding to the sample set x = {xi}n

i=1.
2. Normalization:

h(x) = ω
−1/2
g g(x) ∈ B, hρn(x) = ω

−1/2
gρn

gρn(x) ∈ A,

with ωg = ∫
g2 p dρ , ω̂gρn ,x = ∫

g2
ρn

px dρn provided ωg �= 0, ω̂gρn ,x �= 0.

When PN is applied, checking the conditions ωg �= 0, ω̂gρn ,x �= 0 is an issue we have to face.
In order to bound the term ε( fx,γ ) − ε( f ∗), the idea of the error analysis in Cucker and Zhou [5], Wu et al. [18] will be

used. We first introduce some definitions and notations.
Given a set x = {xi}n

i=1 of samples independently drawn according to ρ , the empirical clustering objective of a function f ,
denoted by εx( f ), is defined as

εx( f ) = 1

n2
f̂ T Ln f̂ = 1

2n2

n∑
i, j=1

(
f (xi) − f (x j)

)2
Kij, (4.1)

where f̂ is defined as above. The functional εx,γ ( f ) is given by

εx,γ ( f ) := εx( f ) + γ ‖ f ‖2
K . (4.2)

It is easy to see that the target function fx,γ is the minimizer of εx,γ ( f ) over A ∩ H K .
In Section 4.1, an auxiliary function fγ ∈ B ∩ H K is given. Note that ε( fx,γ ) − ε( f ∗) + γ ‖ fx,γ ‖2

K is an upper bound of
ε( fx,γ ) − ε( f ∗). It can be decomposed as

ε( fγ ) − ε
(

f ∗) + γ ‖ fγ ‖2
K + {

εx,γ ( fx,γ ) − εx,γ ( fγ )
} + {

ε( fx,γ ) − εx( fx,γ ) + εx( fγ ) − ε( fγ )
}
. (4.3)

The quantity

D(γ ) := ε( fγ ) − ε
(

f ∗) + γ ‖ fγ ‖2
K

is called the regularization error and its bound will be given in Section 4.1. The second term in (4.3), εx,γ ( fx,γ ) − εx,γ ( fγ )

is called the space error. It is discussed in Section 4.2. A probability inequality in a Hilbert space is used to deal with the
space error. The last term in (4.3) is the sample error. In Section 4.3, an upper bound of the sample error is derived, which
depends on the capacity of the RKHS measured by covering numbers. Finally, making use of the bound of ‖ fx,γ ‖K given in
Section 4.4, we complete the proof of Theorem 4.1.

4.1. The regularization error

In this section, the estimation of the regularization error D(γ ) will be provided. We first recall some approximation
properties discussed in [5] and [18]. Define

D̃(γ ) = min
f ∈H K

∥∥ f − f ∗∥∥2
2 + γ ‖ f ‖2

K .

If X ⊂ R
d is a compact domain and S−α/2

K f ∗ ∈ L2
ρ for some 0 < α � 1, there holds [5, Proposition 8.5]

D̃(γ ) � γ α
∥∥S−α/2

K f ∗∥∥2
2, (4.4)

and the minimizer Fγ of D̃(γ ) exists. Moreover, (4.4) implies∥∥Fγ − f ∗∥∥2
2 � γ α

∥∥S−α/2
K f ∗∥∥2

2. (4.5)

Apply the method PN to Fγ , and denote the two functions g and h by Gγ and Hγ respectively. When γ α � 1/(4M1),

we claim ωGγ > 0, for otherwise Fγ = 0 which in connection with (4.5) yields γ α � 1/(κ2‖S−α/2
K f ∗‖2

2) � 1/(4M1), a con-

tradiction. That is to say, Hγ exists when γ α � 1/(4M1). Hereinafter, let fγ = Hγ . Then D(γ ) = ε(Hγ ) − ε( f ∗) + γ ‖Hγ ‖2
K .

In the following, an estimation of D(γ ) is obtained.
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Theorem 4.2. Suppose that K is a Mercer kernel such that S−α/2
K f ∗ ∈ L2

ρ for some 0 < α � 1, and μ1 = 1 is a simple eigenvalue

of T K . Then for every 0 < γ � min{1, (1/(4M1))
1/α}, there holds

D(γ ) � c̃γ α,

where c̃ = (μ2κ
2(κ2l−1 + 1)4 + 4(1 + κ3l−2)2)‖S−α/2

K f ∗‖2
2 , and M1 is defined as in Theorem 3.3.

Proof. Under the assumption, a function Fγ ∈ H K exists minimizing D̃(γ ) and satisfying (4.5). Two functions Gγ and Hγ

are given by PN with f replaced by Fγ .
Since fγ = Hγ ∈ H K ∩ B, Proposition 3.1 ensures

D(γ ) = ε(Hγ ) − ε
(

f ∗) + γ ‖Hγ ‖2
K � μ2κ

2
∥∥Hγ − f ∗∥∥2

2 + γ ‖Hγ ‖2
K . (4.6)

It remains to estimate each of terms ‖Hγ − f ∗‖2 and ‖Hγ ‖K .
Clearly,

‖p‖2
2 � l2 and ‖p‖2

K =
∫ ∫

K (x, y)dρ(x)dρ(y) � κ2. (4.7)

Since
∫

f ∗ p dρ = 0, by (3.3), (4.5) and (4.7),

‖Fγ − Gγ ‖2
2 = ‖p‖−2

2

(∫ (
Fγ − f ∗)p dρ

)2

� κ4l−2γ α
∥∥S−α/2

K f ∗∥∥2
2. (4.8)

On the other hand, ‖Gγ ‖2
2 = ∫

G2
γ dρ � l−1ωGγ . Note that ω

1/2
Gγ

= ‖Gγ
√

p ‖2 and ‖ f ∗√p ‖2 = 1. Hence

‖Gγ − Hγ ‖2 = ∣∣1 − ω
−1/2
Gγ

∣∣‖Gγ ‖2 � l−1/2
∣∣ω1/2

Gγ
− 1

∣∣ � l−1/2
∥∥(

Gγ − f ∗)√p
∥∥

2 � κl−1/2
∥∥Gγ − f ∗∥∥

2.

This, together with (4.5) and (4.8), verifies

∥∥Hγ − f ∗∥∥
2 �

(
1 + κl−1/2)(1 + κ2l−1)γ α/2

∥∥S−α/2
K f ∗∥∥

2. (4.9)

We now turn to ‖Hγ ‖K . Clearly,

‖Fγ − Gγ ‖2
K = ‖p‖2

K (
∫

Fγ p dρ)2

‖p‖4
2

= ‖p‖2
K

‖p‖2
2

‖Fγ − Gγ ‖2
2.

Then it follows from (4.7) and (4.8)

‖Fγ − Gγ ‖2
K � κ6l−4γ α

∥∥S−α/2
K f ∗∥∥2

2.

Observing γ ‖Fγ ‖2
K � D̃(γ ) � γ α‖S−α/2

K f ∗‖2
2, we find

‖Gγ ‖2
K �

(‖Fγ − Gγ ‖K + ‖Fγ ‖K
)2 �

(
κ3l−2 + γ −1/2)2

γ α
∥∥S−α/2

K f ∗∥∥2
2. (4.10)

When γ α � 1/(4M1) with M1 = κ2(1 + κ2l−1)2‖S−α/2
K f ∗‖2

2,

ω
1/2
Gγ

� 1 − κ
∥∥Gγ − f ∗∥∥

2 � 1/2.

Consequently, (4.10) implies

‖Hγ ‖2
K = ω−1

Gγ
‖Gγ ‖2

K � 4
(
κ3l−2 + γ −1/2)2

γ α
∥∥S−α/2

K f ∗∥∥2
2. (4.11)

Note l−1/2κ � 1. When γ < 1 our statement follows from (4.6), (4.9) and (4.11). �
Theorem 4.2 shows a polynomial decay of the regularization error, D(γ ) = O (γ α) with some 0 < α � 1. The rate is not

only important for bounding the first term in (4.3), but also crucial for bounding the second and third terms. Moreover, it
contributes to the understanding of choice of the parameter γ .
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4.2. The space error

Usually in learning theory, least-square regularized regression for example, εx,γ ( fx,γ ) − εx,γ ( fγ ) � 0, since fx,γ is the
minimizer of εx,γ ( f ) over H K . Unfortunately, in our setting this conclusion is no longer correct because fx,γ and fγ live
in different spaces, A ∩ H K and B ∩ H K respectively, and this is why εx,γ ( fx,γ ) − εx,γ ( fγ ) is named as the space error.

We recall a probability inequality for random variables with values in a Hilbert space [8,11,12]. In [10], a similar con-
centrate inequality is used to obtain results in spectral approximation. Our methods of estimating the space error and the
sample error are based on the following lemma.

Lemma 4.3. Let (H,‖ · ‖) be a Hilbert space and ξ(x) be a random variable on (X,ρ) with values in H. Suppose that ‖ξ(x)‖ � M < ∞
almost surely. Then for any 0 < δ < 1, with confidence at least 1 − δ,∥∥∥∥∥1

n

n∑
i=1

ξ(xi) − Eξ

∥∥∥∥∥ � 4M log(2/δ)√
n

.

Applying the above lemma to H = H K and ξ(x) = Kx ∈ H K , with confidence at least 1 − δ,

‖px − p‖K � 4κ log(2/δ)√
n

, (4.12)

which in connection with (2.4) implies

∣∣px(xi) − p(xi)
∣∣ � 4κ2 log(2/δ)√

n
, i = 1, . . . ,n. (4.13)

Moreover, two particular results are derived from Lemma 4.3 with ξ(x) replaced by f (x)Kx and f 2(x)Kx respectively.

Lemma 4.4. For a function f satisfying ‖ f ‖∞ � R, let

I j( f ) =
∣∣∣∣∣
∫

f j(x)p(x)dρ − 1

n

n∑
i=1

f j(xi)px(xi)

∣∣∣∣∣, j = 1,2.

Then for every 0 < δ � 1, with confidence at least 1 − 3δ,

I j( f ) � 8κ2 R j log(2/δ)/
√

n, j = 1,2.

Proof. Clearly,

I1( f ) �
∣∣∣∣
∫

f (x)
(

p(x) − px(x)
)

dρ

∣∣∣∣ +
∣∣∣∣∣
∫

f (x)px(x)dρ − 1

n

n∑
i=1

f (xi)px(xi)

∣∣∣∣∣.
Denote the first and second terms by P1 and P2 respectively. For ‖ f ‖∞ � R , by (2.4) and (4.12), with confidence at least
1 − δ,

P1 � R · κ‖px − p‖K � 4κ2 R log(2/δ)√
n

. (4.14)

Let ξ(x) = f (x)Kx ∈ H K . Observing ‖ξ‖K � κ R , with confidence at least 1 − δ,

P2 =
∣∣∣∣∣1

n

n∑
j=1

(
1

n

n∑
i=1

f (xi)K (xi, x j) −
∫

f (x)K (x, x j)dρ

)∣∣∣∣∣
� 1

n

n∑
j=1

∣∣∣∣∣
(

1

n

n∑
i=1

ξ(xi)

)
(x j) − (Eξ)(x j)

∣∣∣∣∣ � κ

∥∥∥∥∥1

n

n∑
i=1

ξ(xi) − Eξ

∥∥∥∥∥
K

� 4κ2 R log(2/δ)√
n

, (4.15)

where the last equality holds due to Lemma 4.3.
Consequently, an upper bound of I1( f ) is given by (4.14) and (4.15) with confidence at least 1 − 2δ.
Similarly, by applying Lemma 4.3 to η(x) = f 2(x)Kx , the estimation of I2( f ) is obtained. �
Recall that fγ = Hγ in Section 4.1. As fγ and fx,γ are in different spaces, the technique PN is required once again.

Replace f in PN by fγ and denote the resulting functions gρn and hρn by gρn,γ and hρn,γ respectively. Certainly, we need
the condition ω̂gρ ,γ �= 0 to ensure the existence of hρn,γ .
n
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Proposition 4.5. For every 0 < δ < 1, when n > 64l−2κ4 log2(2/δ), with confidence at least 1 − 3δ, there holds

|ω̂gρn ,γ − 1| � D1(n, δ, γ ) := D(γ )

γ

{
8κ4(1 + 8l−2κ4) log(2/δ)√

n
+ 1024κ12 log2(2/δ)

l4n

}
.

Assume in addition that n � 256κ8(1 + 24l−3κ6)2(D(γ )/γ )2 log2(2/δ). We have ω̂gρn ,γ � 1/2 > 0 with the same confidence
1 − 3δ.

Proof. Note that

ω̂gρn ,γ − 1 = 1

n

n∑
i=1

g2
ρn,γ (xi)px(xi) − 1.

Since
∫

fγ p dρ = 0 and
∫

f 2
γ p dρ = 1, Lemma 4.4 implies, with confidence at least 1 − 3δ,

I1( fγ ) =
∣∣∣∣∣1

n

n∑
i=1

fγ (xi)px(xi)

∣∣∣∣∣ �
8κ2‖ fγ ‖∞ log(2/δ)√

n
, (4.16)

I2( fγ ) =
∣∣∣∣∣1

n

n∑
i=1

f 2
γ (xi)px(xi) − 1

∣∣∣∣∣ �
8κ2‖ fγ ‖2∞ log(2/δ)√

n
. (4.17)

Clearly, |px(x)| � 1
n

∑n
i=1 |K (xi, x)| � κ2. Therefore,

|ω̂gρn ,γ − 1| � I2( fγ ) + 2I−1
x I1( fγ )

1

n

n∑
i=1

∣∣ fγ (xi)p2
x(xi)

∣∣ + I−2
x I2

1( fγ )
1

n

n∑
i=1

∣∣p3
x(xi)

∣∣
� I2( fγ ) + 2κ4‖ fγ ‖∞ I−1

x I1( fγ ) + κ6 I−2
x I2

1( fγ ), (4.18)

where Ix := 1
n

∑n
i=1 p2

x(xi).
Recall that f ∗ is the minimizer of ε( f ) over B. Hence

γ ‖ fγ ‖2
K � ε( fγ ) − ε

(
f ∗) + γ ‖ fγ ‖2

K = D(γ ).

This, in connection with (2.4), implies

‖ fγ ‖∞ � κ‖ fγ ‖K � κ
√

D(γ )/γ . (4.19)

Moreover, when n > 64l−2κ4(log(2/δ))2, (4.13) tells us that

px(xi) � p(xi) − 4κ2 log(2/δ)√
n

� l/2, i = 1, . . . ,n. (4.20)

Consequently,

Ix = 1

n

n∑
i=1

p2
x(xi) � l2/4. (4.21)

By (4.16), (4.17), (4.18), (4.19) and (4.21), we complete the proof. �
When n > Nγ , Proposition 4.5 ensures the existence of hρn,γ with confidence at least 1 − 3δ. Here Nγ is given by

Nγ := max
{

64l−2κ4 log2(2/δ),256κ8(1 + 24l−3κ6)2(D(γ )/γ
)2

log2(2/δ)
}
. (4.22)

By the expression (2.5), εx,γ ( fx,γ ) − εx,γ (hρn,γ ) � 0. Therefore,

εx,γ ( fx,γ ) − εx,γ ( fγ ) � εx,γ (hρn,γ ) − εx,γ (gρn,γ ) + εx,γ (gρn,γ ) − εx,γ ( fγ ). (4.23)

Now an upper bound of the space error is provided as follows.

Theorem 4.6. Given 0 < δ < 1, when n > Nγ given by (4.22), with confidence at least 1 − 3δ, there holds

εx,γ ( fx,γ ) − εx,γ ( fγ ) � 2D1(n, δ, γ )
(
εx,γ ( fγ ) + D2(n, δ, γ )

) + D2(n, δ, γ ), (4.24)

where

D2(n, δ, γ ) := 32(κ4 + lκ2/2)(2κ4 + γ )D(γ )

l2γ

(
32(κ4 + lκ2/2) log2(2/δ)

l2n
+ 2 log(2/δ)√

n

)
.
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Proof. Clearly,

εx,γ (gρn,γ ) − εx,γ ( fγ ) = εx(gρn,γ ) − εx( fγ ) + γ
(‖gρn,γ ‖2

K − ‖ fγ ‖2
K

)
.

The definition of εx( f ) (4.1), in connection with (2.4), verifies

εx(gρn,γ ) − εx( fγ ) � 2κ4‖gρn,γ − fγ ‖K
(‖gρn,γ − fγ ‖K + 2‖ fγ ‖K

)
.

Moreover, ‖gρn,γ ‖2
K − ‖ fγ ‖2

K � ‖gρn,γ − fγ ‖K (‖gρn,γ − fγ ‖K + 2‖ fγ ‖K ). Hence

εx,γ (gρn,γ ) − εx,γ ( fγ ) �
(
2κ4 + γ

)‖gρn,γ − fγ ‖K
(‖gρn,γ − fγ ‖K + 2‖ fγ ‖K

)
. (4.25)

When n > 64l−2κ4 log2(2/δ), by (4.7) and (4.12), with confidence at least 1 − δ,

‖px‖K � ‖p‖K + 4κ log(2/δ)√
n

� κ + l

2κ
.

Combining the estimates in (4.16) and (4.21), this yields

‖gρn,γ − fγ ‖K = I−1
x I1( fγ )‖px‖K �

32(κ3 + lκ/2)‖ fγ ‖∞ log(2/δ)

l2
√

n
, (4.26)

with confidence at least 1 − 2δ. Then it follows from (4.19), (4.25) and (4.26)

εx,γ (gρn,γ ) − εx,γ ( fγ ) � D2(n, δ, γ ). (4.27)

On the other hand, the definition of hρn,γ tells us

εx,γ (hρn,γ ) − εx,γ (gρn,γ ) = (
ω̂−1

gρn ,γ
− 1

)
εx,γ (gρn,γ ).

Appealing to Proposition 4.5 and (4.27), when n > Nγ , there holds

εx,γ (hρn,γ ) − εx,γ (gρn,γ ) � 2D1(n, δ, γ )
(
εx,γ ( fγ ) + D2(n, δ, γ )

)
, (4.28)

with confidence at least 1 − 3δ. By (4.23), (4.27) and (4.28), the proof is complete. �
The bound (4.24) contains the term εx,γ ( fγ ) = εx( fγ ) − ε( fγ ) + γ ‖ fγ ‖2

K . Note that γ ‖ fγ ‖2
K � D(γ ) and the bound of

εx( fγ ) − ε( fγ ) is given in Section 4.3. Hence Theorem 4.2 and Proposition 4.7 would be applied to estimate (4.24).

4.3. The sample error

Recall that the sample error is (ε( fx,γ ) − εx( fx,γ )) + (εx( fγ ) − ε( fγ )). We begin with the second term. It can be esti-
mated by a probability inequality for random variables taking values in a Hilbert space.

To simplify computations we split εx( fγ ) − ε( fγ ) in four summands

εx( fγ ) − ε( fγ ) = Aγ + Bγ + Cγ + Dγ ,

where

Aγ = 1

n

n∑
j=1

(
1

n

n∑
i=1

f 2
γ (xi)K (xi, x j) −

∫
f 2
γ (x)K (x, x j)dρ(x)

)
,

Bγ =
∫

f 2
γ (x)

(
1

n

n∑
j=1

K (x, x j) −
∫

K (x, y)dρ(y)

)
dρ(x),

Cγ = 1

n

n∑
j=1

fγ (x j)

(∫
fγ (x)K (x, x j)dρ(x) − 1

n

n∑
i=1

fγ (xi)K (xi, x j)

)
,

Dγ =
∫

fγ (x)

(∫
fγ (y)K (x, y)dρ(y) − 1

n

n∑
j=1

fγ (x j)K (x, x j)

)
dρ(x).

It remains to bound each of the terms Aγ , Bγ , Cγ and Dγ , which we do in the following proposition. Then an upper
bound of εx( fγ ) − ε( fγ ) is obtained.
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Proposition 4.7. For all 0 < δ < 1, with confidence at least 1 − 3δ, there holds

εx( fγ ) − ε( fγ ) � 16κ4 D(γ ) log(2/δ)

γ
√

n
.

Proof. First note that |Aγ + Bγ | = I2( fγ ), given in Lemma 4.4. It follows from (4.17)

|Aγ + Bγ | � 8κ2‖ fγ ‖2∞ log(2/δ)√
n

, (4.29)

with confidence at least 1 − 2δ.
Next consider Cγ and Dγ . Let ξ(x) = fγ (x)K (x, ·). It is easy to see

|Cγ | � 1

n

n∑
j=1

∣∣ fγ (x j)
∣∣ ·

∣∣∣∣∣(Eξ)(x j) −
(

1

n

n∑
i=1

ξ(xi)

)
(x j)

∣∣∣∣∣,
|Dγ | �

∫ ∣∣ fγ (x)
∣∣ ·

∣∣∣∣∣(Eξ)(x) −
(

1

n

n∑
j=1

ξ(x j)

)
(x)

∣∣∣∣∣dρ(x).

Consequently, by (2.4) with confidence at least 1 − δ,

|Cγ + Dγ | � 2‖ fγ ‖∞ · κ
∥∥∥∥∥1

n

n∑
i=1

ξxi − Exξx

∥∥∥∥∥
K

�
8κ2‖ fγ ‖2∞ log(2/δ)√

n
, (4.30)

where the last equality holds due to Lemma 4.3.
Our desired estimate follows from (4.19), (4.29) and (4.30). �
The estimation of ε( fx,γ )−εx( fx,γ ) is more involved, since fx,γ changes with the sample x. To bound this term, we shall

provide the following lemma. It can be easily derived from (2.4) and Lemma 4.3 by the method of proving [5, Theorem 3.10].

Lemma 4.8. Given f ∈ B R , let ξ f (x) = f (x)K (x, ·) and η f (x) = f 2(x)K (x, ·) be random variables on (X,ρ) with values in H K . Then
for all ε > 0,

Prob
x∈Xn

{
sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

ξ f (xi) − Eξ f

∥∥∥∥∥
K

� ε

}
� 2N

(
B R ,

ε

4κ

)
exp

{
−

√
n ε

8κ2 R

}
,

Prob
x∈Xn

{
sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

η f (xi) − Eη f

∥∥∥∥∥
K

� ε

}
� 2N

(
B R ,

ε

8κ2 R

)
exp

{
−

√
n ε

8κ3 R2

}
.

The essential difference between the above lemma and Lemma 4.3 is the inclusion of the covering number, which
extends the results from a single random variable to a family of variables.

Now we bound the first term of the sample error by Lemma 4.8 with f replaced by fx,γ as follows.

Proposition 4.9. For any ε > 0 and R > 0, there holds ε( fx,γ ) − εx( fx,γ ) � κ(κ R + 1)2ε, with confidence at least

1 − Prob
x∈Xn

{ fx,γ /∈ B R} − 2

(
N

(
ε

8κ2 R2

)
e−√

n ε/8κ3 R2 + N
(

ε

4κ R

)
e−√

n ε/8κ2 R + e−√
n ε/4κ

)
.

Proof. Note that ε( fx,γ ) − εx( fx,γ ) can be decomposed as

ε( fx,γ ) − εx( fx,γ ) = −Ax − Bx − Cx − Dx, (4.31)

where Ax, Bx, Cx and Dx are defined as Aγ , Bγ , Cγ , Dγ with fγ replaced by fx,γ .
By (2.4) and Lemma 4.8 with f replaced by fx,γ ,

|Ax| � κ

∥∥∥∥∥1

n

n∑
i=1

η fx,γ (xi) − Eη fx,γ

∥∥∥∥∥
K

� κ sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

η f (xi) − Eη f

∥∥∥∥∥
K

� κε, (4.32)

with confidence at least 1 − Probx∈Xn { fx,γ /∈ B R} − 2N (B R , ε/8κ2 R)exp{−√
n ε/8κ3 R2}. Similarly, since ‖ fx,γ ‖∞ �

κ‖ fx,γ ‖K � κ R , there holds
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|Cx + Dx| � 2‖ fx,γ ‖∞ · κ sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

ξ f (xi) − Eξ f

∥∥∥∥∥
K

� 2κ2 Rε, (4.33)

with confidence at least 1 − Probx∈Xn { fx,γ /∈ B R} − 2N (B R , ε/4κ)exp{−√
n ε/8κ2 R}.

Let ε = 4κ log(2/δ)/
√

n. It follows from (4.12)

|Bx| � κ‖ fx,γ ‖2∞‖px − p‖K � κ3 R2ε, (4.34)

with confidence 1 − Probx∈Xn { fx,γ /∈ B R} − 2 exp{−√
n ε/4κ}. This, in connection with (4.32) and (4.33), verifies

ε( fx,γ ) − εx( fx,γ ) � |Ax| + |Bx| + |Cx + Dx| � κ(κ R + 1)2ε,

with confidence at least

1 − Prob
x∈Xn

{ fx,γ /∈ B R} − 2

{
N

(
B R ,

ε

8κ2 R

)
exp

{
−

√
n ε

8κ3 R2

}
+ N

(
B R ,

ε

4κ

)
exp

{
−

√
n ε

8κ2 R

}
+ exp

{
−

√
n ε

4κ

}}
.

Note that an α
R −covering of B1 yields an α−covering of B R and viceversa. So the proof is complete. �

The following conclusion [18,19] concerning the covering number is required to realize the confidence in Proposition 4.9.

Lemma 4.10. For 0 < δ < 1, there exists a unique ζ(n, δ) such that

log N
(
ζ(n, δ)

) −
√

n ζ(n, δ)

β
= log δ.

Moreover, if the Mercer kernel K satisfies log N (ζ ) � C0(1/ζ )s for some s > 0, then

ζ(n, δ) � max

{
2β log(1/δ)√

n
, (2βC0/

√
n )1/(s+1)

}
.

Here β and C0 are positive constants.

For the estimation of sample error, we shall require the confidence N ( ε
8κ2 R2 )exp{−

√
n ε

8κ3 R2 } to be at most δ > 0. Appealing
to (4.32) and Lemma 4.10 with β = κ , with confidence at least 1 − 2δ − Probx∈Xn { fx,γ /∈ B R},

|Ax| � 8κ3 R2ζ1(n, δ) � max

{
16κ4 R2 log(1/δ)√

n
,8κ3 R2

(
2κC0√

n

)1/(s+1)}
. (4.35)

Similarly, by (4.33) and Lemma 4.10 with β = 2κ , there holds

|Cx + Dx| � 8κ3 R2ζ2(n, δ) � max

{
32κ4 R2 log(1/δ)√

n
,8κ3 R2

(
4κC0√

n

)1/(s+1)}
, (4.36)

with confidence at least 1 − 2δ − Probx∈Xn { fx,γ /∈ B R}.
Provided with these results, we derive an upper bound of the sample error in the following theorem.

Theorem 4.11. Assume that the Mercer kernel K satisfies log N (ζ ) � C0(1/ζ )s for some s > 0. Then for R > 0 and 0 < δ < 1, with
confidence at least 1 − 5δ − Probx∈Xn { fx,γ /∈ B R}, there holds

ε( fx,γ ) − εx( fx,γ ) + εx( fγ ) − ε( fγ ) � 16κ4 D(γ ) log(2/δ)

γ
√

n
+ 3R2μ(n, δ),

where

μ(n, δ) = max

{
32κ4 log(2/δ)√

n
,16κ3

(
2κC0√

n

)1/(s+1)}
.

Proof. Taking ε = 4κ log(2/δ)/
√

n, (4.34) tells us

|Bx| � 4κ4 R2 log(2/δ)√
n

� R2μ(n, δ),

with confidence 1 − δ − Probx∈Xn { fx,γ /∈ B R}. Then appealing to (4.35) and (4.36) after replacing δ by δ/2, it is easy to see
that ε( fx,γ ) − εx( fx,γ ) � 3R2μ(n, δ). This, in connection with Proposition 4.7, proves out statement. �
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Remark 4.12. Note that for n � 4κ2C−2/s
0 (log(2/δ))(2+2/s) , the quantity μ(n, δ) is dominated by the term

16κ3(2κC0/
√

n )1/(s+1) .

4.4. Bounding function fx,γ

In this section, our task is to choose a suitable R = Rγ > 0 such that Probx∈Xn { fx,γ /∈ B R} is small enough for a suffi-
ciently large n. In this regard, the results of the perturbation theory on the eigenvalues of the integral operator S K (given
by (3.9)) play an important role.

We now provide the following estimates for the approximation of eigenvalues of S K by those of the operator Sx , which
is defined as

Sx f (x) = 1

n

n∑
i=1

f (xi)K (xi, x), f ∈ H K .

Clearly, it is positive semi-definite by 〈g, Sx f 〉K = 1
n

∑n
i=1 f (xi)g(xi), f , g ∈ H K . Let rx

1 � rx
2 � · · · � rx

n � 0 be its eigenvalues.
The following results are derived from [12, Propositions 1 and 2].

Lemma 4.13. Let {λi}∞i=1 with 0 � · · · � λ2 � λ1 be the set of eigenvalues of S K . Then for any δ ∈ (0,1), with confidence at least 1 − δ

∣∣λi − rx
i

∣∣ � 4κ2 log(2/δ)√
n

, i = 1, . . . ,n. (4.37)

Denote the eigenfunctions of Sx by f x
1 , . . . , f x

n with corresponding eigenvalues rx
1, . . . , rx

n , i.e., Sx f x
i = rx

i f x
i . It yields

1

n
K f̂ x

i = rx
i f̂ x

i , l = 1, . . . ,n.

If rx
i > 0, i ∈ {1,2, . . . ,n}, we claim f̂ x

i is not zero, otherwise f x
i is zero, a contradiction. Therefore, nrx

i is the eigenvalues of
the matrix K, and λx

i = nrx
i , if the eigenvalues of K by {λx

i }n
i=1 is denoted by λx

1 � λx
2 � · · · � λx

n � 0.
Recall that fx,γ can be represented as

fx,γ =
n∑

i=1

αx
i K (xi, ·),

where αx is given by (2.7). To bound ‖ fx,γ ‖K , a vector α ∈ R
n is firstly constructed with the eigenvectors ex

1 =
(ex

11, . . . , ex
1n)

T , ex
2 = (ex

21, . . . , ex
2n)

T ∈ R
n of K, corresponding to the largest two eigenvalues λx

1 and λx
2.

Proposition 4.14. Assume λ2 > 0. For any 0 < δ < 1, when n > Mδ , with confidence at least 1 − 2δ, there exists a vector α =
α(x) ∈ R

n satisfying

1

n2
αT KDKα = 1 and αT KD1 = 0, (4.38)

and for some constants c1 and c2 depending on x

α = c1

λx
1

ex
1 + c2

λx
2

ex
2. (4.39)

Here, as in Theorem 3.3, Mδ = max{64l−2κ4 log2(2/δ),64λ−2
2 κ4 log2(2/δ)}.

Proof. Since λ2 > 0, when n > 64λ−2
2 κ4 log2(2/δ), (4.37) implies that rx

1 � rx
2 � λ2/2 > 0, with confidence at least 1 − δ.

Consequently,

λx
i /n = rx

i � λ2/2 > 0, i = 1,2. (4.40)

Moreover, recall that D = diag{D11, . . . , Dnn} with Dii = ∑n
j=1 K (xi, x j). When n > 64l−2κ4 log2(2/δ), it follows from

(4.20) that

Dii = npx(xi) � nl/2. (4.41)

It yields eT De � (nl/2)eT e > 0, for any 0 �= e ∈ R
n , with confidence at least 1 − δ. Therefore, if ex

2
T D1 �= 0,

Iθ := ex T De1 + 2θex T Dex − θ2ex T Dex = (
ex − θex)T

D
(
ex − θex) > 0,
1 1 2 2 2 1 2 1 2
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where θ = ex
1

T D1

ex
2

T D1
. Then with confidence at least 1 − 2δ, there exists a vector α ∈ R

n defined as (4.39) with c1 = I−1/2
θ n and

c2 = −θ I−1/2
θ n. Furthermore,

αT KD1 = c1ex
1

T D1 + c2ex
2

T D1 = 0,

1

n2
αT KDKα = I−1

θ

(
ex

1
T Dex

1 + 2θex
1

T Dex
2 + θ2ex

2
T Dex

2

) = 1.

If ex
2

T D1 = 0, such a vector α also exists, satisfying (4.38) and (4.39) where c1 = 0 and c2 = n(ex
2

T Dex
2)

−1. The proof is
complete. �

Now a bound of ‖ fx,γ ‖K can be derived from Proposition 4.14.

Proposition 4.15. Assume λ2 > 0. Then for any 0 < δ < 1, when n > Mδ , with confidence at least 1 − 2δ,

‖ fx,γ ‖K �
√

γ −1 + l−1κ2.

Proof. Appealing to Proposition 4.14, there exits a vector α satisfying (4.38) and (4.39), with confidence at least 1 − 2δ. It
follows from (2.7)

1

n2
αxT KLnKαx + γ αxT Kαx � 1

n2
αT KLnKα + γ αT Kα. (4.42)

Recall that Ln = D − K. (4.39) verifies

1

n2
αT KLnKα = 1 − 1

n2

(
c2

1λ
x
1 + c2

2λ
x
2

)
� 1 − (

c2
1 + c2

2

)
λx

2/n2. (4.43)

If ex
2

T D1 �= 0, by the proof of Proposition 4.14,

c2
1 + c2

2 = I−1
θ n2(1 + θ2) � n

κ2
,

since Iθ � nκ2(ex
1 − θex

2)
T (ex

1 − θex
2) = nκ2(1 + θ2). Then it follows from (4.43)

1

n2
αT KLnKα � 1 − λx

2

nκ2
. (4.44)

On the other hand, when n > 64l−2κ4 log2(2/δ), (4.41) tells us with confidence at least 1 − δ

Iθ =
n∑

i=1

Dii(e1i − θe2i)
2 � nl

2

(
1 + θ2).

It implies c2
1 + c2

2 � 2l−1n, and thus

αT Kα =
(

c1

λx
1

ex
1 + c2

λx
2

ex
2

)T (
c1ex

1 + c2ex
2

) = c2
1

λx
1

+ c2
2

λx
2

� 2n

lλx
2
. (4.45)

Since εx( f ) � 0, by (4.40), (4.42), (4.44), and (4.45),

γ ‖ fx,γ ‖2
K = γ αxT Kαx � 1 − λx

2

nκ2
+ 2γ n

lλx
2

� 1 − λ2

2κ2
+ 4γ

lλ2
.

Note that 0 < λ2 � ‖S K ‖ � κ2 [5, Proposition 4.5, Theorem 4.7]. It yields

1 + 4γ

lλ2
� 1 − λ2

2κ2
+ 4γ

lλ2
� 1

2
+ 4γ

lλ2
> 0.

Consequently,

γ ‖ fx,γ ‖2
K � 1 + 4γ

lλ2
.

If ex
2

T D1 = 0, by c1 = 0 and c2 = n(ex
2

T Dex
2)

−1, the same bound is also derived. �
Remark 4.16. Taking R = (γ −1 + 4l−1λ−1

2 )1/2, Proposition 4.15 yields that Probx∈Xn { fx,γ /∈ B R} � 2δ.
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4.5. Proof of Theorem 4.1

Proof. Take γ = n−θ with θ = 1/(2(1 + s)(1 + α)). Our statement follows directly from Theorems 4.2, 4.6, 4.11 with R =
(γ −1 + 4l−1λ−1

2 )1/2 and Proposition 4.15. �
5. Proof of Theorem 3.3

In this section, we would prove the main theorem, Theorem 3.3, with the help of (3.5) and Theorem 4.1. To this end, the
technique PN should be applied to fx,γ , since (3.5) holds only for functions in B but fx,γ may not. Of course, the condition
ωgx,γ > 0 is required, which will be given by the following corollary.

Corollary 5.1. Assume λ2 > 0. Then for every 0 < δ � 1, with confidence at least 1 − 5δ, there holds

I1( fx,γ ) � κ−1 Rμ(n, δ), I2( fx,γ ) � R2μ(n, δ),

where R = (γ −1 + 4l−1λ−1
2 )1/2 , I j( f ), j = 1,2, are defined as in Lemma 4.4 and μ(n, δ) is given in Theorem 4.11.

Proof. It follows directly from Lemmas 4.4, 4.8 and 4.10 that

I1( fx,γ ) � κ2 R‖p − px‖K + κ sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

ξ f (xi) − Eξ f

∥∥∥∥∥
K

� κ−1 Rμ(n, δ),

I2( fx,γ ) � κ3 R2‖p − px‖K + κ sup
f ∈B R

∥∥∥∥∥1

n

n∑
i=1

η f (xi) − Eη f

∥∥∥∥∥
K

� R2μ(n, δ),

we have with confidence at least 1 − 3δ − Probx∈Xn { fx,γ /∈ B R}. The proof is complete by Remark 4.16. �
After replacing f with fx,γ , denote the functions g and h in PN by gx,γ and hx,γ respectively. The existence condition

of hx,γ , ωgx,γ > 0, is provided in the following.

Proposition 5.2. Assume λ2 > 0. Take R = (γ −1 + 4l−1λ−1
2 )1/2 . For 0 < δ � 1, with confidence at least 1 − 5δ,

|ωgx,γ − 1| � ε1(n, δ) := R2((1 + 2l−2κ4)μ(n, δ) + l−4κ4μ2(n, δ)
)
. (5.1)

Assume in addition that n > NR , where NR is an integer satisfying ε1(NR , δ) � 1/2. We have ωgx,γ � 1/2 with the same confidence
at least 1 − 5δ.

Proof. Note 1
n

∑n
i=1 f 2

x,γ (xi)px(xi) = 1 and
∑n

i=1 fx,γ (xi)px(xi) = 0. Since fx,γ ∈ B R with confidence at least 1 − 2δ, the
definition of ωgx,γ , in connection with (3.3), tells us

|ωgx,γ − 1| � I2( fx,γ ) + 2l−2κ5 R I1( fx,γ ) + l−4κ6 I2
1( fx,γ ).

Then (5.1) holds with confidence at least 1 − 5δ, due to Corollary 5.1.
Moreover, if n > NR satisfying ε1(NR , δ) � 1/2, (5.1) yields ωgx,γ � 1/2. �
It follows from Remark 4.12 that μ(n, δ) � 16κ3(2κC0/

√
n )1/(s+1) , when n � 4κ2C−2/s

0 (log(2/δ))(2+2/s) . Hence there
exists a sufficient large NR , only depending on l, κ , s, C0, and R , such that ε1(NR , δ) � 1/2. Then Proposition 5.2 ensures
the existence of hx,γ with confidence at least 1 − 5δ.

Now the term ‖ fx,γ − hx,γ ‖2 is bounded as follows.

Proposition 5.3. Assume λ2 > 0. Take R = (γ −1 + 4l−1λ−1
2 )1/2 . For every 0 < δ � 1, with confidence at least 1 − 5δ,

‖ fx,γ − hx,γ ‖2 � l−1κ−1 Rμ(n, δ) + l−1/2ε1(n, δ).

Proof. Since
∑n

i=1 fx,γ (xi)px(xi) = 0, it follows from (4.7) and Corollary 5.1 that

‖ fx,γ − gx,γ ‖2 = ‖p‖−1
2

∣∣∣∣
∫

fx,γ p dρ

∣∣∣∣ � l−1 I1( fx,γ ) � l−1κ−1 Rμ(n, δ), (5.2)

with confidence at least 1 − 5δ.
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Moreover, ωgx,γ = ∫
g2

x,γ p dρ � l · ‖gx,γ ‖2
2. Hence with confidence at east 1 − 5δ,

‖gx,γ − hx,γ ‖2 = ∣∣1 − ω
−1/2
gx,γ

∣∣ · ‖gx,γ ‖2 � l−1/2
∣∣ω1/2

gx,γ
− 1

∣∣ � l−1/2|ωgx,γ − 1| � l−1/2ε1(n, δ), (5.3)

where the last inequality holds due to Proposition 5.2. Our desired estimate follows from (5.2) and (5.3). �
Let βx,γ = sign〈hx,γ

√
p, f ∗√p 〉. Proposition 3.1 implies

∥∥βx,γ hx,γ − f ∗∥∥2
2 �

2(ε(hx,γ ) − ε( f ∗))
(μ2 − μ3)l

. (5.4)

It remains to bound the quantity ε(hx,γ ) − ε( f ∗).

Proposition 5.4. Assume λ2 > 0. Take R = (γ −1 + 4l−1λ−1
2 )1/2 . When n > NR , with confidence at least 1 − 5δ,

ε(hx,γ ) − ε
(

f ∗) �
(
ε1(n, δ) + 1

)(
ε2(n, δ) + ε( fx,γ ) − ε

(
f ∗)) + ε1(n, δ)ε

(
f ∗),

where ε2(n, δ) = 2l−1κ R2(l−1κ−1μ2(n, δ) + 2κμ(n, δ)).

Proof. Note that

ε(hx,γ ) − ε
(

f ∗) = (
ω−1

gx,γ
− 1

)
ε(gx,γ ) + ε(gx,γ ) − ε( fx,γ ) + ε( fx,γ ) − ε

(
f ∗). (5.5)

By (2.4) and the definition of ε( f ) in (3.1), it is easy to see

ε(gx,γ ) − ε( fx,γ ) � 2κ2‖gx,γ − fx,γ ‖2
(‖gx,γ − fx,γ ‖2 + 2κ R

)
.

Then it follows from (5.2), with confidence at least 1 − 5δ,

ε(gx,γ ) − ε( fx,γ ) � ε2(n, δ). (5.6)

When n � NR , Proposition 5.2 ensures(
ω−1

gx,γ
− 1

)
ε(gx,γ ) � ε1(n, δ)

(
ε( fx,γ ) + ε2(n, δ)

)
. (5.7)

Note that (5.5), (5.6) and (5.7) yield our statement. �
Proof of Theorem 3.3. Appealing to Proposition 5.4 and (5.4),

∥∥βx,γ hx,γ − f ∗∥∥2
2 �

(2ε1(n, δ) + 2)(ε2(n, δ) + ε( fx,γ ) − ε( f ∗)) + 2ε1(n, δ)ε( f ∗)
(μ2 − μ3)l

, (5.8)

with confidence at least 1 − 5δ.
Now take γ = n−θ with θ = 1/(2(1 + s)(1 + α)) and R = (γ −1 + 4l−1λ−1

2 )1/2. By Theorem 4.1, Proposition 5.3 and (5.8),
the proof is complete. �

In this paper we have established the consistency of the regularized spectral clustering algorithm. Only the simplest form,
partitioning the whole space to two clusters, is considered. Moreover, we choose a fixed kernel function when proving the
convergence results. To consider the case of a sample-dependent kernel function, such as the Gaussian kernel with the
bandwidth depending on the sample size, will be our future work.
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