Rational finite elements of class C^{k} over a quadrangulation

Jean Claude Koua Brou ${ }^{\text {a,* }}$, Alain Le Méhauté ${ }^{\text {b }}$
${ }^{\text {a }}$ UFR de Mathématiques et Informatique, Université de Cocody, 22 B.P. 582, Abidjan 22, Cote d'Ivoire
${ }^{\mathrm{b}}$ Laboratoire Jean Leray, Département de Mathématiques, Université de Nantes, 2 rue de la Houssinière, F-44072, Nantes Cedex, France

A R T I C L E I N F O

Article history:

Received 26 July 2009
Available online 14 April 2011
Submitted by J. Guermond

Keywords:

Rational finite element
Bivariate spline
Finite element

Abstract

In this paper we give a constructive method for rational C^{k} finite element method in \mathbb{R}^{2} for quadrilateral. For $k \geqslant 2$, the usual polynomials splines require some supersmoothness at the vertices of the quadrilateral, even when dealing with macro-elements. This is no more a requirement for our rational approach. The process of the construction is illustrated with the help of two examples namely the C^{1} case and the C^{2} case.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω be a connected polygonal bounded domain in \mathbb{R}^{2} and \diamond be a quadrangulation of Ω. Assuming all quadrilaterals in \diamond are strictly convex, let \diamond be the triangulated quadrangulation of Ω by adding two diagonals to each quadrilateral of \diamond. See $[9,10,12]$ and the references cited therein for some existing methods on how to construct quadrangulation of Ω.

Let $\mathcal{V}=\left\{v_{i}, i=1, \ldots, N_{v}\right\}$ be the set of the vertices and $\mathcal{E}=\left\{e_{j}, j=1, \ldots, N_{e}\right\}$ the set of all the edges of \diamond.
The spline space

$$
\mathcal{S}_{d}^{k}(\diamond)=\left\{s \in C^{k}(\Omega),\left.s\right|_{T} \in \mathbb{P}_{d}, \forall T \in \diamond\right\}
$$

where \mathbb{P}_{d} denotes the set of bivariate polynomials of total degree at most d, has been investigated.
It is our purpose to study the space

$$
\mathcal{R} \mathcal{S}_{r, q}^{k, t}(\diamond)=\left\{s \in C^{k}(\Omega),\left.s\right|_{T} \in \mathcal{R} \mathcal{Q} \mathcal{P}_{k, q, r}^{t}, \forall T \in \diamond\right\}
$$

where $\mathcal{R} \mathcal{Q} \mathcal{P}_{k, q, r}^{t}$ is a set of bivariate rational functions defined in Section 3.
Our motivation comes mainly from the fact that, for $k \geqslant 2, \mathcal{S}_{d}^{k}(\triangleleft)$ is in fact some kind of super-spline space, the order of the derivatives needed at each vertex $v_{i} \in \mathcal{V}$ being higher than k, contrary to our space $\mathcal{R} \mathcal{S}_{r, q}^{k, t}(\diamond)$ (see Section 3).

The paper is laid out as follows. In Section 2 we introduce some notations and recall some basic results. In Section 3, we construct the quadrilateral rational finite elements.

2. Preliminaries

For a function $S \in C^{r}(\Omega)$, we denote respectively by $C^{p}\left(v_{i}\right)$ and $C^{q}\left(e_{j}\right)$ the fact that S is C^{p} around the vertex $v_{i} \in \mathcal{V}$, and C^{q} across the edge $e_{j} \in \mathcal{E}$.

[^0]Let us recall from Ciarlet [3] that a finite element is a triple (K, E, \mathcal{L}) where K is a polygon, E a space of real-valued functions defined over K and \mathcal{L} is a finite set of linearly independent linear forms defined over E (the set of degrees of freedom), that enables us to build up functions in E.

We also recall that $\mathcal{L}=\left\{l_{i}, i=1, \ldots, \operatorname{dim} E\right\}$ is E-unisolvent if and only if $\# \mathcal{L}=\operatorname{dim} E$ and \mathcal{L} satisfies the following property: if $v \in E$ such that $l_{i}(v)=0, i=1, \ldots, \operatorname{dim} E$, then $v \equiv 0$.

Moreover, [3] a finite element (K, E, \mathcal{L}) is of class C^{r} if, whenever it is used to define the restriction to K of a (global) function S, then S has (global) smoothness r.

The finite elements are special spline functions as bivariate spline functions can be of variable smoothness across the domain, as we can use various smoothness conditions across each interior edge of triangulation Δ, while finite elements have only a fixed order of smoothness. However, when using finite element, an explicit construction can be made for each element individually.

For this reason, polynomial finite elements have been heavily studied. Unfortunately, one of the drawbacks of the polynomial splines (defined on triangles as well as quadrilaterals) lays in the following theorem which is an obvious modification of [11, Theorem 10.1]

Theorem 1. Suppose that K is a polygon and v_{1} one of its vertices, connected to v_{2} and v_{N}. Let Δ_{K} be a refinement of K such that there are $n \geqslant 0$ interior edges connected to the vertex v_{1}. Let S be a polynomial spline of degree d and smoothness r defined on Δ_{K}. Then the cross derivatives of S up to order r on the edges $e_{1}=\left[v_{1}, v_{2}\right]$ and $e_{N}=\left[v_{1}, v_{N}\right]$ can be specified independently only if we require $S \in C^{\rho}\left(v_{1}\right)$ with

$$
\rho \geqslant\left\lceil\frac{(n+2) r-n}{n+1}\right\rceil \text {. }
$$

Therefore, whenever K is a quadrilateral triangulated via its diagonals, we have to enforce supersmoothness of order ρ with

$$
\rho \geqslant\left\lceil\frac{3 r-1}{2}\right\rceil= \begin{cases}3 m & \text { if } r=2 m, \\ 3 m+1 & \text { if } r=2 m+1\end{cases}
$$

at each vertex v_{i} of K.
This implies that, for C^{1} interpolation, one has to prescribe derivatives up to order 1 at each vertices, but as soon as $r \geqslant 2$, the data should invoke extra smoothness at each vertex.

We conclude this section with some notations that will be useful later.
Let σ be a non-degenerated triangle with vertices B_{1}, B_{2}, and B_{3}. And let $\lambda_{\sigma}(M)=\left(\lambda_{1, \sigma}(M), \lambda_{2, \sigma}(M), \lambda_{3, \sigma}(M)\right)$ denote the barycentric coordinates of a point M relative to σ. If no confusion is possible, we note $\lambda_{,} \lambda_{1}, \lambda_{2}, \lambda_{3}$ in lieu of $\lambda_{\sigma}, \lambda_{1, \sigma}$, $\lambda_{2, \sigma}, \lambda_{3, \sigma}$. Moreover, for any $i=1,2,3, \sigma_{i}$ will denote the edge opposite to the vertex B_{i}.

Given $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{N}^{3}$, let $|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3}$, and $\lambda^{\alpha}=\lambda_{1}^{\alpha_{1}} \lambda_{2}^{\alpha_{2}} \lambda_{3}^{\alpha_{3}}$ where $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$.
For q, p and s positive integers with $s \leqslant q+p-1$, let

$$
\Gamma^{(2)}(q, p)=\left\{\alpha \in \mathbb{N}^{3},|\alpha|=2 q+p+1\right\}
$$

and

$$
\Gamma_{s}^{(2)}(q, p)=\left\{\alpha \in \Gamma^{(2)}(q, p), s+1 \leqslant \alpha_{i} \leqslant q+p, i=1,2,3\right\} .
$$

As usual, for d a nonnegative integer, \mathbb{P}_{d} denotes the space of all bivariate polynomials of total degree $\leqslant d$.
In the PPR (Polynomial Plus Rational) finite element method, we expose here, the space of interpolation consist of two parts: a polynomial part and a pure rational part.

Then we define the polynomial part of the space by

$$
\mathbb{P}_{2 q+p+1}(q, p, s, 0)=\operatorname{span}\left\{\lambda^{\alpha}, \alpha \in \Gamma^{(2)}(q, p) \backslash \Gamma_{s}^{(2)}(q, p)\right\}
$$

It is easy to see that

$$
\operatorname{dim} \mathbb{P}_{2 q+p+1}(q, p, s, 0)=\frac{3}{2}[(q+2)(q+1)+(s+2 p)(s+1)]
$$

Remark 2. Note that $\mathbb{P}_{2 q+p+1}(q, p, s, 0) \subset \mathbb{P}_{2 q+p+1}$.
Now given l and m positive integers such as $1 \leqslant l \leqslant m \leqslant q$, let

$$
\mathbb{P}_{2 q+p+1}(q, p, s, 0, m)=\mathbb{P}_{2 q+p+1}(q, p, s, 0) \oplus \mathbb{R}_{q}(s+1, m, p)
$$

where

$$
\mathbb{R}_{q}(l, m, p)=\mathbb{R}_{q, l, p} \oplus \mathbb{R}_{q, l+1, p} \oplus \cdots \oplus \mathbb{R}_{q, m, p}
$$

and

$$
\mathbb{R}_{q, l, p}=\operatorname{span}\left\{r_{i, n}^{l, q, p}, n=1, \ldots, l+p\right\}
$$

We recall that these rational basis functions are defined as follows:

$$
r_{i, m}^{l, k, p}=\tau_{i}^{m, l, p} \rho_{i}^{l, k}
$$

where $\tau_{i}^{m, l, p}, m=1, \ldots, l$, are polynomials of degree $l-1$ and $\rho_{i}^{l, k}$ are bubble functions.
For more details on rational PPR triangular finite element we refer to [1,5].

3. Rational quadrilateral finite elements

3.1. Introduction and notations

Quadrilateral finite elements using polynomial functions have been studied in [2-4,7-10,13-15]. The special case of quadrilateral finite using rational functions has received less attention. Let us, however, mention that we are aware of some of the investigation on the topic as [6,16]. Our aim is to give a method for this type of construction for rational functions. The construction proposed here is based on the PPR finite element technique.

Let K be a non-degenerated quadrilateral with vertices A_{1}, A_{2}, A_{3} and A_{4}. Let also, for $i=1,2,3, \Sigma_{i}$ denote the triangle deduced from K with vertices A_{i}, A_{i+1} and A_{i+2}. The point of intersection of the diagonals of K will be denoted A_{0}. Let $K_{i}, i=1,2,3,4$, be the triangle deduced from K with vertices A_{0}, A_{i} and A_{i+1}.

3.2. Rational quadrilateral finite element of C^{k}

Let k be a nonnegative integer. Then, for any $n=1, \ldots, k$ and for $m=1, \ldots, n$, let $Q_{i j}^{n, m}$ denote n distinct interior points of the side $A_{i} A_{j}$, for fixed i, j in $\{1,2,3,4\}, i<j$.

Thus, totally, one needs $n \times k$ points. For each n, the points $Q_{i j}^{n, m}$ are distinct. However, among $n=1, \ldots, k, Q_{i j}^{n, m}$ may not be distinct.

Let

$$
\begin{equation*}
\mathcal{L}_{k}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant k, i=1,2,3,4 ; \frac{\partial^{n}}{\partial v_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=1,2, \ldots, k, m=1, \ldots, n, j \in\{1,2,3,4\}\right\} \tag{1}
\end{equation*}
$$

be a set of degrees of freedom defined on K, where $\frac{\partial}{\partial \nu_{j l}}$ denotes the normal derivative relative to the side $A_{j} A_{l}$.
Proposition 3. $\# \mathcal{L}_{k}=4(k+1)^{2}$.
Proof. It suffices to do a simple count.
We recall that the purpose is to construct a function S in $C^{k}(K)$ which interpolate degree of freedom at data given on K. First of all we construct three functions s_{1}, s_{2} and s_{3} which belong to $\mathbb{P}_{2 k+1}(k, 0,0,0, k)$ such as:
s_{1} satisfies

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\partial^{\alpha} s_{1}\left(A_{1}\right)=\partial^{\alpha} f\left(A_{1}\right) \\
\partial^{\alpha} s_{1}\left(A_{2}\right)=\partial^{\alpha} f\left(A_{2}\right) \\
\partial^{\alpha} s_{1}\left(A_{3}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant k, \\
\frac{\partial^{j}}{\partial v_{12}^{j}} s_{1}\left(Q_{12}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{12}^{j}} f\left(Q_{12}^{j, m}\right) \\
\frac{\partial^{j}}{\partial v_{23}^{j}} s_{1}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{23}^{j}} f\left(Q_{23}^{j, m}\right) \\
\frac{\partial^{j}}{\partial v_{13}^{j}} s_{1}\left(Q_{13}^{j, m}\right)=0
\end{array}\right\}, \quad j=1,2, \ldots, k, m=1, \ldots, j
$$

and s_{2} satisfies

$$
\left.\begin{array}{l}
\partial^{\alpha} s_{2}\left(A_{3}\right)=\partial^{\alpha} f\left(A_{3}\right) \\
\partial^{\alpha} s_{2}\left(A_{2}\right)=\partial^{\alpha} s_{2}\left(A_{4}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant k
$$

$$
\left.\begin{array}{l}
\frac{\partial^{j}}{\partial \nu_{34}^{j}} s_{2}\left(Q_{34}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{34}^{j}} f\left(Q_{34}^{j, m}\right)-\frac{\partial^{j}}{\partial \nu_{34}^{j}} s_{1}\left(Q_{34}^{j, m}\right) \\
\frac{\partial^{j}}{\partial \nu_{23}^{j}} s_{2}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{24}^{j}} s_{2}\left(Q_{24}^{j, m}\right)=0
\end{array}\right\}, \quad j=1,2, \ldots, k, m=1, \ldots, j
$$

and s_{3} to verify

$$
\left.\begin{array}{l}
\partial^{\alpha} s_{3}\left(A_{4}\right)=\partial^{\alpha} f\left(A_{4}\right)-\partial^{\alpha} s_{1}\left(A_{4}\right) \\
\partial^{\alpha} s_{3}\left(A_{1}\right)=\partial^{\alpha} s_{3}\left(A_{3}\right)=0, \quad|\alpha| \leqslant k, \\
\frac{\partial^{j}}{\partial \nu_{14}^{j}} s_{3}\left(Q_{14}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{14}^{j}} f\left(Q_{14}^{j, m}\right)-\frac{\partial^{j}}{\partial \nu_{14}^{j}} s_{1}\left(Q_{14}^{j, m}\right) \\
\frac{\partial^{j}}{\partial \nu_{13}^{j}} s_{3}\left(Q_{13}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{34}^{j}} s_{3}\left(Q_{34}^{j, m}\right)=0
\end{array}\right\}, \quad j=1,2, \ldots, k, m=1, \ldots, j .
$$

Let us define the following space of functions:

$$
\begin{align*}
\mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}= & \left\{S \in C^{k}(K), \exists s_{1}, s_{2}, s_{3} \in \mathbb{P R}_{2 k+1}(k, 0,0,0, k) ;\left.S\right|_{K_{1}}=s_{1},\right. \\
& \left.\left.S\right|_{K_{2}}=s_{1}+s_{2},\left.s\right|_{K_{3}}=s_{1}+s_{2}+s_{3},\left.S\right|_{K_{4}}=s_{1}+s_{3}\right\} . \tag{2}
\end{align*}
$$

We have
Proposition 4. $\operatorname{dim} \mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}=4(k+1)^{2}$.
Proof. It suffices to note that the number of coefficients nonzero to determine explicitly, respectively s_{1}, s_{2} and s_{3}, are $2(k+1)^{2},(k+1)^{2}$ and $(k+1)^{2}$.

Proposition 5. The set of degrees of freedom \mathcal{L}_{k} is $\mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}$-unisolvent and $\left(K, \mathcal{R} \mathcal{Q P}_{0, k, k}^{0}, \mathcal{L}_{k}\right)$ is a finite element of class C^{k}.
Proof. First we note that $\operatorname{dim} \mathcal{P}_{k}=4(k+1)^{2}=\# \mathcal{L}_{k}$. Therefore to prove that \mathcal{L}_{k} is $\mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}$-unisolvent, it suffices to prove that if $S \in \mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}$ then:

$$
l(S)=0, \quad \forall l \in \mathcal{L}_{k} \quad \Longrightarrow \quad S \equiv 0 .
$$

So we have to prove that for $S \in \mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}$ which satisfies

$$
\begin{align*}
& \partial^{\alpha} S\left(A_{i}\right)=0, \quad|\alpha| \leqslant k, \quad i=1,2,3,4, \tag{3}\\
& \frac{\partial^{n}}{\partial \nu_{j j+1}^{n}} S\left(Q_{j j+1}^{n, m}\right)=0, \quad j \in\{1,2,3,4\}, n=1,2, \ldots, k, m=1, \ldots, n, \tag{4}
\end{align*}
$$

it comes $S=0$.
The result derives immediately from the construction. Actually, relations (3), (4) lead to $s_{1} \equiv 0, s_{2} \equiv 0$ and $s_{3} \equiv 0$. Thus $S \equiv 0$. So, we conclude that \mathcal{L}_{k} is $\mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}$-unisolvent.

It remains to prove that S is in $C^{k}(K)$. The result is obtained if we prove that, for all $\alpha \in \mathbb{N}^{2}$, with $|\alpha| \leqslant k$, we have

$$
\begin{align*}
& \left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{3} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{3} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{1} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{2}}=\left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{1} \cap K_{2}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{2} \cap K_{3}}=\left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{2} \cap K_{3}} . \tag{5}
\end{align*}
$$

These relations yield

$$
\begin{align*}
& \left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{3} \cap K_{4}}-\left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{3} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{3} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{1} \cap K_{4}}-\left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{3}\right)\right|_{K_{1} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{1} \cap K_{2}}-\left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{2}}=\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{1} \cap K_{2}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{2} \cap K_{3}}-\left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{2} \cap K_{3}}=\left.\partial^{\alpha}\left(s_{3}\right)\right|_{K_{2} \cap K_{3}} . \tag{6}
\end{align*}
$$

So, it suffices to prove that

$$
\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{3} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{3}\right)\right|_{K_{1} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{1} \cap K_{2}}=\left.\partial^{\alpha}\left(s_{3}\right)\right|_{K_{2} \cap K_{3}}=0
$$

to get the result.
In fact, $K_{3} \cap K_{4}$ and $K_{1} \cap K_{2}$ are both included in [A_{2}, A_{4}], and s_{2} restricted to [A_{2}, A_{4}], is a polynomial of degree $2 k+1$ in a variable t, with the following degree of freedom:

$$
\left\{\begin{array}{l}
\frac{\partial^{j}}{\partial t^{j}} s_{2}\left(A_{i}\right)=0, \quad i=2,4, j=0,1, \ldots, k \\
\frac{\partial^{m}}{\partial \nu_{24}^{m}} s_{2}\left(Q_{24}^{m, n}\right)=0, \quad m=1,2, \ldots, k, n=1, \ldots, m
\end{array}\right.
$$

Therefore, s_{2} and $\frac{\partial^{m} s_{2}}{\partial \nu_{24}^{m}}, m=1,2, \ldots, k$, vanish along the side $\left[A_{2}, A_{4}\right]$.
So, it comes immediately

$$
\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{1} \cap K_{2}}=\left.\partial^{\alpha}\left(s_{2}\right)\right|_{K_{3} \cap K_{4}}=0 .
$$

In a similar manner, we note that $K_{2} \cap K_{3}$ and $K_{1} \cap K_{4}$ are both included in [A_{1}, A_{3}], and s_{3} restricted to [A_{1}, A_{3}], is also a polynomial of degree $2 k+1$ in a variable u, with the following degree of freedom:

$$
\left\{\begin{array}{l}
\frac{\partial^{j}}{\partial u^{j}} s_{3}\left(A_{i}\right)=0, \quad i=1,3, j=0,1, \ldots, k \\
\frac{\partial^{m}}{\partial v_{13}^{m}} s_{3}\left(Q_{13}^{m, n}\right)=0, \quad m=1,2, \ldots, k, n=1, \ldots, m
\end{array}\right.
$$

we conclude that s_{3} and $\frac{\partial^{m} s_{3}}{\partial \nu_{24}^{m m}}, m=1,2, \ldots, k$, vanish along the side $\left[A_{1}, A_{3}\right]$.
The following relations come immediately:

$$
\begin{align*}
& \left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{3} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{3} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{3}\right)\right|_{K_{1} \cap K_{4}}=\left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{4}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{1} \cap K_{2}}=\left.\partial^{\alpha}\left(s_{1}\right)\right|_{K_{1} \cap K_{2}}, \\
& \left.\partial^{\alpha}\left(s_{1}+s_{2}+s_{3}\right)\right|_{K_{2} \cap K_{3}}=\left.\partial^{\alpha}\left(s_{1}+s_{2}\right)\right|_{K_{2} \cap K_{3}} . \tag{7}
\end{align*}
$$

Consequently, it comes that S is in $C^{k}(K)$.
As shown in this section the functions S constructed lead to the definition of the space

$$
\mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond)=\left\{S \in C^{k}(\Omega),\left.S\right|_{T} \in \mathcal{R} \mathcal{Q} \mathcal{P}_{0, k, k}^{0}, \forall T \in \diamond\right\}
$$

Thus, for all quadrangulation \diamond one can define a set of bivariate rational splines S as follows

$$
\mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond)=\left\{S \in C^{k}(\Omega),\left.S\right|_{Q} \in \mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond), \forall Q \in \diamond\right\}
$$

Proposition 6. Given a quadrangulation \diamond of Ω, every function S defined on each quadrilateral \diamond of \diamond such as $\left.S\right|_{\diamond}$ is an element of $\mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond)$, which itself is an element of $\mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond)$.

Proposition 7. The space $\mathcal{R} \mathcal{S}_{k, k}^{0,0}(\diamond)$ is of dimension $\frac{(k+2)(k+1)}{2} \times \# \mathcal{V}+\frac{(k+1) k}{2} \times \# \mathcal{E}$.

3.3. Rational quadrilateral finite element of class C^{1}

Let

$$
\mathcal{L}_{1}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant 1, i=1,2,3,4 ; \frac{\partial}{\partial v_{j j+1}} f\left(Q_{j j+1}^{1,1}\right), j \in\{1,2,3,4\}\right\}
$$

be a set of degrees of freedom defined on K, where $\frac{\partial}{\partial \nu_{j l}}$ denotes the normal derivative relative to the side $A_{j} A_{l}$.
Our aim is to construct a function S in $C^{1}(K)$ which interpolates degree of freedom at data given on K.
First of all we construct three functions s_{1}, s_{2} and s_{3} which belong to $\mathbb{P}_{3}(1,0,0,0,1)$ such as:
s_{1} satisfies

$$
\left.\begin{array}{l}
\partial^{\alpha} s_{1}\left(A_{1}\right)=\partial^{\alpha} f\left(A_{1}\right) \\
\partial^{\alpha} s_{1}\left(A_{2}\right)=\partial^{\alpha} f\left(A_{2}\right) \\
\partial^{\alpha} s_{1}\left(A_{3}\right)=0, \quad|\alpha| \leqslant 1, \\
\frac{\partial}{\partial v_{12}} s_{1}\left(Q_{12}^{1,1}\right)=\frac{\partial}{\partial v_{12}} f\left(Q_{12}^{1,1}\right) \\
\frac{\partial}{\partial \nu_{23}} s_{1}\left(Q_{23}^{1,1}\right)=\frac{\partial}{\partial v_{23}} f\left(Q_{23}^{1,1}\right) \\
\frac{\partial}{\partial \nu_{13}} s_{1}\left(Q_{13}^{1,1}\right)=0
\end{array}\right\} .
$$

The following degree of freedom is associated with s_{2} :

$$
\left.\begin{array}{l}
\partial^{\alpha} s_{2}\left(A_{3}\right)=\partial^{\alpha} f\left(A_{3}\right) \\
\partial^{\alpha} s_{2}\left(A_{2}\right)=\partial^{\alpha} s_{2}\left(A_{4}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant 1, ~ \begin{aligned}
& \frac{\partial}{\partial \nu_{34}} s_{2}\left(Q_{34}^{1,1}\right)=\frac{\partial}{\partial \nu_{34}} f\left(Q_{34}^{1,1}\right)-\frac{\partial}{\partial \nu_{34}} s_{1}\left(Q_{34}^{1,1}\right) \\
& \frac{\partial}{\partial \nu_{23}} s_{2}\left(Q_{23}^{1,1}\right)=\frac{\partial}{\partial \nu_{24}} s_{2}\left(Q_{24}^{1,1}\right)=0
\end{aligned}
$$

and s_{3} satisfies

$$
\begin{aligned}
& \partial^{\alpha} s_{3}\left(A_{4}\right)=\partial^{\alpha} f\left(A_{4}\right)-\partial^{\alpha} s_{1}\left(A_{4}\right) \\
& \partial^{\alpha} S_{3}\left(A_{1}\right)=\partial^{\alpha} S_{3}\left(A_{3}\right)=0, \quad|\alpha| \leqslant 1 \\
& \frac{\partial}{\partial \nu_{14}} s_{3}\left(Q_{14}^{1,1}\right)=\frac{\partial}{\partial v_{14}} f\left(Q_{14}^{1,1}\right)-\frac{\partial}{\partial v_{14}} s_{1}\left(Q_{14}^{1,1}\right), \\
& \frac{\partial}{\partial v_{34}} s_{3}\left(Q_{34}^{1,1}\right)=0=\frac{\partial}{\partial v_{13}} s_{3}\left(Q_{13}^{1,1}\right) .
\end{aligned}
$$

Functions s_{1}, s_{2} and s_{3} have the following expressions:

$$
\begin{align*}
s_{1}= & C_{1}(3,0,0) \lambda_{1,1}^{3}+C_{1}(0,3,0) \lambda_{2,1}^{3}+3 C_{1}(2,0,1) \lambda_{1,1}^{2} \lambda_{3,1}+3 C_{1}(2,1,0) \lambda_{1,1}^{2} \lambda_{2,1} \\
& +3 C_{1}(1,0,2) \lambda_{1,1} \lambda_{3,1}^{2}+3 C_{1}(0,1,2) \lambda_{1,1} \lambda_{3,1}^{2}+D_{1}(2) r_{2,1}^{1,1,1}+D_{1}(3) r_{3,1}^{1,1,1} \\
s_{2}= & C_{2}(0,3,0) \lambda_{2,2}^{3}+3 C_{2}(1,2,0) \lambda_{1,2} \lambda_{2,2}^{2}+3 C_{2}(0,2,1) \lambda_{2,2}^{2} \lambda_{3,2}+D_{2}(1) r_{1,2}^{1,1,1} \\
s s_{3}= & C_{3}(0,3,0) \lambda_{2,3}^{3}+3 C_{3}(1,2,0) \lambda_{1,3} \lambda_{2,3}^{2}+3 C_{3}(0,2,1) \lambda_{2,3}^{2} \lambda_{3,3}+D_{3}(1) r_{1,3}^{1,1,1} \tag{8}
\end{align*}
$$

Where $C_{l}(\alpha)$ and $D_{l}(i)$ denote the coefficients relatively to Σ_{l}. We also let $r_{i, l}$ be the functions r_{i} relative to Σ_{l}. Let us define the following space

$$
\begin{align*}
\mathcal{R} \mathcal{Q} \mathcal{P}_{0,1,1}^{0}= & \left\{S \in C^{1}(K), \exists s_{1}, s_{2}, s_{3} \in \mathbb{P R}_{3}(1,0,0,0,1) ;\left.S\right|_{K_{1}}=s_{1},\right. \\
& \left.\left.S\right|_{K_{2}}=s_{1}+s_{2},\left.S\right|_{K_{3}}=s_{1}+s_{2}+s_{3},\left.S\right|_{K_{4}}=s_{1}+s_{3}\right\} . \tag{9}
\end{align*}
$$

We have
Proposition 8. The set of degrees of freedom \mathcal{L}_{1} is $\mathcal{R} \mathcal{Q} \mathcal{P}_{0,1,1}^{0}$-unisolvent and $\left(K, \mathcal{R} \mathcal{Q} \mathcal{P}_{0,1,1}^{0}, \mathcal{L}_{1}\right)$ is a finite element of class C^{1}.
3.4. Rational quadrilateral finite element of class C^{2}

Let

$$
\begin{equation*}
\mathcal{L}_{2}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant 2, i=1,2,3,4 ; \frac{\partial^{n}}{\partial v_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=1,2, m=1, \ldots, n, j \in\{1,2,3,4\}\right\} \tag{10}
\end{equation*}
$$

be a set of degrees of freedom defined on K, where $\frac{\partial}{\partial \nu_{j l}}$ denotes the normal derivative relative to the side $A_{j} A_{l}$.
Our aim is to construct a function S in $C^{2}(K)$ which interpolates degree of freedom at data given on K.
First of all we construct three functions s_{1}, s_{2} and s_{3} which belong to $\mathbb{P}_{5}(2,0,0,0,2)$ such as:
s_{1} satisfies

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\partial^{\alpha} s_{1}\left(A_{1}\right)=\partial^{\alpha} f\left(A_{1}\right) \\
\partial^{\alpha} s_{1}\left(A_{2}\right)=\partial^{\alpha} f\left(A_{2}\right) \\
\partial^{\alpha} s_{1}\left(A_{3}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant 2, \\
\frac{\partial^{j}}{\partial \nu_{12}^{j}} s_{1}\left(Q_{12}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{12}^{j}} f\left(Q_{12}^{j, m}\right) \\
\frac{\partial^{j}}{\partial \nu_{23}^{j}} s_{1}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{23}^{j}} f\left(Q_{23}^{j, m}\right) \\
\frac{\partial^{j}}{\partial v_{13}^{j}} s_{1}\left(Q_{13}^{j, m}\right)=0
\end{array}\right\}, \quad j=1,2, m=1, \ldots, j,
$$

s_{2} satisfies

$$
\left.\begin{array}{l}
\partial^{\alpha} s_{2}\left(A_{3}\right)=\partial^{\alpha} f\left(A_{3}\right) \\
\partial^{\alpha} s_{2}\left(A_{2}\right)=\partial^{\alpha} s_{2}\left(A_{4}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant 2, ~ \begin{aligned}
& \frac{\partial^{j}}{\partial v_{34}^{j}} s_{2}\left(Q_{34}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{34}^{j}} f\left(Q_{34}^{j, m}\right)-\frac{\partial^{j}}{\partial v_{34}^{j}} s_{1}\left(Q_{34}^{j, m}\right) \\
& \frac{\partial^{j}}{\partial v_{23}^{j}} s_{2}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{24}^{j}} s_{2}\left(Q_{24}^{j, m}\right)=0
\end{aligned}
$$

and s_{3} satisfies

$$
\begin{aligned}
& \partial^{\alpha} s_{3}\left(A_{4}\right)=\partial^{\alpha} f\left(A_{4}\right)-\partial^{\alpha} s_{1}\left(A_{4}\right) \\
& \partial^{\alpha} s_{3}\left(A_{1}\right)=\partial^{\alpha} s_{3}\left(A_{3}\right)=0, \quad|\alpha| \leqslant 2 \\
& \frac{\partial^{j}}{\partial v_{14}^{j}} s_{3}\left(Q_{14}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{14}^{j}} f\left(Q_{14}^{j, m}\right)-\frac{\partial^{j}}{\partial v_{14}^{j}} s_{1}\left(Q_{14}^{j, m}\right) \\
& \frac{\partial^{j}}{\partial v_{13}^{j}} s_{3}\left(Q_{13}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{34}^{j}} s_{3}\left(Q_{34}^{j, m}\right)=0
\end{aligned}
$$

Functions s_{1}, s_{2} and s_{3} have the following expressions:

$$
\begin{align*}
s_{1}= & C_{1}(5,0,0) \lambda_{1,1}^{5}+5 C_{1}(4,0,1) \lambda_{1,1}^{4} \lambda_{3,1}+5 C_{1}(4,1,0) \lambda_{1,1}^{4} \lambda_{2,1} \\
& +10 C_{1}(3,0,2) \lambda_{1,1}^{3} \lambda_{3,1}^{2}+20 C_{1}(3,1,1) \lambda_{1,1}^{3} \lambda_{2,1} \lambda_{3,1}+10 C_{1}(3,2,0) \lambda_{1,1}^{3} \lambda_{2,1}^{2} \\
& +C_{1}(0,5,0) \lambda_{2,1}^{5}+5 C_{1}(1,4,0) \lambda_{1,1} \lambda_{2,1}^{4}+5 C_{1}(0,4,1) \lambda_{2,1}^{4} \lambda_{3,1} \\
& +10 C_{1}(2,3,0) \lambda_{1,1}^{2} \lambda_{2,1}^{3}+20 C_{1}(1,3,1) \lambda_{1,1} \lambda_{2,1}^{3} \lambda_{3,1}+10 C_{1}(0,3,2) \lambda_{2,1}^{3} \lambda_{3,1}^{2} \\
& +D_{1}(3,1,1) r_{3,1}^{(1), 1,2,0}+D_{1}(3,2,1) r_{3,1}^{(1), 2,2,0}+D_{1}(3,2,2) r_{3,2}^{(1), 2,2,0} \\
& +D_{1}(1,1,1) r_{1,1}^{(1), 1,2,0}+D_{1}(1,2,1) r_{1,2}^{(1), 2,2,0}+D_{1}(1,2,2) r_{1,3}^{(1), 2,2,0}, \\
s_{2}= & C_{2}(0,5,0) \lambda_{2,2}^{5}+5 C_{2}(1,4,0) \lambda_{1,2} \lambda_{2,2}^{4}+5 C_{2}(0,4,1) \lambda_{2,2}^{4} \lambda_{3,2} \\
& +10 C_{2}(2,3,0) \lambda_{1,2}^{2} \lambda_{2,2}^{3}+20 C_{2}(1,3,1) \lambda_{1,2} \lambda_{2,2}^{3} \lambda_{3,2}+10 C_{2}(0,3,2) \lambda_{2,2}^{3} \lambda_{3,2}^{2} \\
& +D_{2}(1,1,1) r_{1,1}^{(2), 1,2,0}+D_{2}(1,2,1) r_{1,2}^{(2), 2,2,0}+D_{2}(1,2,2) r_{1,3}^{(2), 2,2,0}, \\
s_{3}= & C_{3}(0,5,0) \lambda_{2,3}^{5}+5 C_{3}(1,4,0) \lambda_{1,3} \lambda_{2,3}^{4}+5 C_{3}(0,4,1) \lambda_{2,3}^{4} \lambda_{3,3} \\
& +10 C_{3}(2,3,0) \lambda_{1,3}^{2} \lambda_{2,3}^{3}+20 C_{3}(1,3,1) \lambda_{1,3} \lambda_{2,3}^{3} \lambda_{3,3}+10 C_{3}(0,3,2) \lambda_{2,3}^{3} \lambda_{3,3}^{2} \\
& +D_{3}(1,1,1) r_{1,1}^{(3), 1,2,0}+D_{3}(1,2,1) r_{1,2}^{(3), 2,2,0}+D_{3}(1,2,2) r_{1,3}^{(3), 2,2,0}, \tag{11}
\end{align*}
$$

where $C_{l}(\alpha)$ and $D_{l}(i, s, n)$ denote the coefficients relatively to Σ_{l}. We also let $r_{i, s}^{(l), n, 2,0}$ be the functions $r_{i, s}^{n, 2,0}$ relative to Σ_{l}.

Let us define the space

$$
\begin{align*}
\mathcal{R} \mathcal{Q} \mathcal{P}_{0,2,2}^{0}= & \left\{S \in C^{2}(K), \exists s_{1}, s_{2}, s_{3} \in \mathbb{P R}_{5}(2,0,0,0,2) ;\left.S\right|_{K_{1}}=s_{1},\right. \\
& \left.\left.S\right|_{K_{2}}=s_{1}+s_{2},\left.S\right|_{K_{3}}=s_{1}+s_{2}+s_{3},\left.S\right|_{K_{4}}=s_{1}+{ }_{3}\right\} . \tag{12}
\end{align*}
$$

Proposition 9. The set of degrees of freedom \mathcal{L}_{2} is $\mathcal{R Q P} \mathcal{P}_{0,2,2}^{0}$-unisolvent and $\left(K, \mathcal{R} \mathcal{Q} \mathcal{P}_{0,2,2}^{0}, \mathcal{L}_{2}\right)$ is a finite element of class C^{2}.

3.5. Generalization

3.5.1. Introduction

In the previous section, the polynomials used for constructing finite element of class C^{k}, are all of odd degree $2 k+1$. Furthermore, having at our disposal derivatives up to k in each vertex, we systematically have constructed finite elements of class C^{k}. In this section, we show how to construct finite elements of class C^{q} in the same way, if we have derivatives up to order k on the edges, with $1 \leqslant q \leqslant k$, and at the same time we generalize the construction by the use of polynomials of even degree.

3.5.2. Construction of finite elements

Suppose given three positive integers k, q and p such as $q \leqslant k$.
Then we consider the set $\mathcal{L}_{p, q, k}$ of the following degrees of freedom defined on the quadrilateral K with vertices A_{1}, A_{2}, A_{3} and A_{4}. Let us define

$$
\begin{equation*}
\mathcal{L}_{p, q, k}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant k, i=1,2,3,4 ; \frac{\partial^{n}}{\partial v_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=0,1,2, \ldots, q, m=1, \ldots, n+p, j \in\{1,2,3,4\}\right\} \tag{13}
\end{equation*}
$$

where for any $n=0,1,2, \ldots, k$ and for $m=1, \ldots, n+p, Q_{i j}^{n, m}$ denote $n+p$ interior distinct points of the side $A_{i} A_{j}$, for i, j fixed in $\{1,2,3,4\}$, with $i<j$. In fact, one needs only that if $n_{1} \neq n_{2}$, it implies $Q_{i j}^{n_{1}, m_{1}} \neq Q_{i j}^{n_{2}, m_{1}}$.

For convenience we define for any nonnegative integer t, the subset $\mathcal{L}_{p, q, k}^{t}$ of $\mathcal{L}_{p, q, k}$, dedicated to the rational part in the construction, by:

$$
\begin{equation*}
\mathcal{L}_{p, q, k}^{t}=\left\{\frac{\partial^{n}}{\partial v_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=t+1, t+2, \ldots, q, m=1, \ldots, n+p, j \in\{1,2,3,4\}\right\} \tag{14}
\end{equation*}
$$

Now we are going to construct a function S of $C^{q}(K)$ such as restricted to the sub-triangles $K_{i}, i=1,2,3$, 4, it belongs to the space $\mathbb{P R}_{2 k+p+1}(k, p, t, 0, q)$.

The functions s_{1}, s_{2} and s_{3} used in the construction of S are defined as follows:
s_{1} satisfies the following relations

$$
\begin{aligned}
& \left.\begin{array}{l}
\partial^{\alpha} s_{1}\left(A_{1}\right)=\partial^{\alpha} f\left(A_{1}\right) \\
\partial^{\alpha} s_{1}\left(A_{2}\right)=\partial^{\alpha} f\left(A_{2}\right) \\
\partial^{\alpha} s_{1}\left(A_{3}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant k, \\
& \left.\frac{\partial^{j}}{\partial \nu_{12}^{j}} s_{1}\left(Q_{12}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{12}^{j}} f\left(Q_{12}^{j, m}\right)\right) \\
& \left.\begin{array}{l}
\frac{\partial^{j}}{\partial \nu_{23}^{j}} s_{1}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{23}^{j}} f\left(Q_{23}^{j, m}\right) \\
\frac{\partial^{j}}{\partial \nu_{13}^{j}} s_{1}\left(Q_{13}^{j, m}\right)=0
\end{array}\right\}, \quad j=0,1,2, \ldots, q, m=1, \ldots, j+p,
\end{aligned}
$$

and s_{2} is such as

$$
\left.\left.\begin{array}{l}
\partial^{\alpha} s_{2}\left(A_{3}\right)=\partial^{\alpha} f\left(A_{3}\right) \\
\partial^{\alpha} s_{2}\left(A_{2}\right)=\partial^{\alpha} s_{2}\left(A_{4}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant k, \quad \begin{array}{l}
\frac{\partial^{j}}{\partial \nu_{34}^{j}} s_{2}\left(Q_{34}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{34}^{j}} f\left(Q_{34}^{j, m}\right)-\frac{\partial^{j}}{\partial \nu_{34}^{j}} s_{1}\left(Q_{34}^{j, m}\right) \\
\frac{\partial^{j}}{\partial \nu_{23}^{j}} s_{2}\left(Q_{23}^{j, m}\right)=\frac{\partial^{j}}{\partial \nu_{24}^{j}} s_{2}\left(Q_{24}^{j, m}\right)=0
\end{array}\right\}, \quad j=0,1,2, \ldots, q, m=1, \ldots, j+p,
$$

and s_{3} satisfies

$$
\left.\begin{array}{l}
\left.\begin{array}{l}
\partial^{\alpha} s_{3}\left(A_{4}\right)=\partial^{\alpha} f\left(A_{4}\right)-\partial^{\alpha} s_{1}\left(A_{4}\right) \\
\partial^{\alpha} s_{3}\left(A_{1}\right)=\partial^{\alpha} s_{3}\left(A_{3}\right)=0
\end{array}\right\}, \quad|\alpha| \leqslant k, \\
\frac{\partial^{j}}{\partial v_{14}^{j}} s_{3}\left(Q_{14}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{14}^{j}} f\left(Q_{14}^{j, m}\right)-\frac{\partial^{j}}{\partial v_{14}^{j}} s_{1}\left(Q_{14}^{j, m}\right) \\
\frac{\partial^{j}}{\partial v_{13}^{j}} s_{3}\left(Q_{13}^{j, m}\right)=\frac{\partial^{j}}{\partial v_{34}^{j}} s_{3}\left(Q_{34}^{j, m}\right)=0
\end{array}\right\}, \quad j=0,1,2, \ldots, q, m=1, \ldots, j+p .
$$

Definition 10. Let us define the function S to be an element of the following space

$$
\begin{align*}
\mathcal{R} \mathcal{Q} \mathcal{P}_{p, q, k}^{t}= & \left\{S \in C^{q}(K), \exists s_{1}, s_{2}, s_{3} \in \mathbb{P R}_{2 k+p+1}(k, p, t, 0, q) ;\left.S\right|_{K_{1}}=s_{1},\right. \\
& \left.\left.S\right|_{K_{2}}=s_{1}+s_{2},\left.S\right|_{K_{3}}=s_{1}+s_{2}+s_{3},\left.S\right|_{K_{4}}=s_{1}+s_{3}\right\} \tag{15}
\end{align*}
$$

with t a nonnegative integer such as $t<q$.
This function S corresponds to our expectation. It is easy to show that, following the same technique of the previous section, S verifies the degree of freedom defined on K.

Furthermore, we have the following propositions.
Proposition 11. We have $\operatorname{dim} \mathcal{R} \mathcal{Q P}_{p, q, k}^{t}=2[(q+1)(q+2 p)+(k+2)(k+1)]$.

Proposition 12. The set of degrees of freedom $\mathcal{L}_{p, q, k}$ is $\mathcal{R} \mathcal{Q} \mathcal{P}_{p, q, k}^{t}$-unisolvent and the triple ($K, \mathcal{R} \mathcal{Q P}_{p, q, k}^{t}, \mathcal{L}_{p, q, k}$) is a finite element of class C^{q}.

Remark 13. The construction of the previous section has been generalized here and we obtain the result of this section with $p=0, q=k$ and $t=0$.

So, we have constructed the following space:

$$
\mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond)=\left\{S \in C^{q}(\Omega),\left.S\right|_{T} \in \mathcal{R} \mathcal{Q} \mathcal{P}_{2 k+p+1}^{t}, \forall T \in \diamond\right\}
$$

We are now in a position to define for all quadrangulation \diamond the set of rational bivariate splines S :

$$
\mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond)=\left\{S \in C^{q}(\Omega),\left.S\right|_{Q} \in \mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond), \forall Q \in \diamond\right\}
$$

Proposition 14. Given a quadrangulation \diamond of Ω, all function S defined on each quadrilateral \diamond of \diamond such as $\left.S\right|_{\diamond}$ is an element of $\mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond)$, which itself is an element of $\mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond)$.

Proposition 15. The dimension of the space $\mathcal{R} \mathcal{S}_{k, q}^{p, t}(\diamond)$ is $\frac{(k+2)(k+1)}{2} \times \# \mathcal{V}+\frac{(q+1)(q+2 p)}{2} \times \# \mathcal{E}$.

3.5.3. Examples

We illustrate the construction with the three following examples.
Example 3.1. For $p=q=k=1$ and $t=0$, we construct an element of class C^{1}. In this case the dimension of the space $\mathcal{R} \mathcal{S}_{1,1}^{1,0}(\triangleleft)$ is equal to 24 and we use as set of degrees of freedom $\mathcal{L}_{1,1,1}$ and for the subset dedicated to the rational part the set $\mathcal{L}_{1,1,1}^{0}$ where

$$
\mathcal{L}_{1,1,1}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant 1, i=1,2,3,4 ; \frac{\partial^{n}}{\partial \nu_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=0,1, m=1, \ldots, n+1, j \in\{1,2,3,4\}\right\}
$$

and

$$
\mathcal{L}_{1,1,1}^{0}=\left\{\frac{\partial}{\partial v_{j j+1}} f\left(Q_{j}^{1, m}{ }_{j+1}\right), m=1,2, j \in\{1,2,3,4\}\right\} .
$$

The functions s_{1}, s_{2} and s_{3} which define the function S are of the form:

$$
\begin{align*}
s_{1}= & C_{1}(4,0,0) \lambda_{1,1}^{4}+4 C_{1}(3,1,0) \lambda_{1,1}^{3} \lambda_{2,1}+6 C_{1}(2,2,0) \lambda_{1,1}^{2} \lambda_{2,1}^{2}+4 C_{1}(1,3,0) \lambda_{1,1} \lambda_{2,1}^{3}+C_{1}(0,4,0) \lambda_{2,1}^{4} \\
& +4 C_{1}(0,3,1) \lambda_{2,1}^{3} \lambda_{3,1}+6 C_{1}(0,2,2) \lambda_{2,1}^{2} \lambda_{3,1}^{2}+4 C_{1}(3,0,1) \lambda_{1,1}^{3} \lambda_{3,1}+D_{1}(1,1,1) r_{1,1,1}^{1,1,1} \\
& +D_{1}(1,1,2) r_{1,2,1}^{1,1,1}+D_{1}(3,1,1) r_{3,1,1}^{1,1,1}+D_{1}(3,1,2) r_{3,2,1}^{1,1,1} \\
s_{2}= & 4 C_{2}(1,3,0) \lambda_{1,2} \lambda_{2,2}^{3}+C_{2}(0,4,0) \lambda_{2,2}^{4}+4 C_{2}(0,3,1) \lambda_{2,2}^{3} \lambda_{3,2} \\
& +6 C_{2}(0,2,2) \lambda_{1,2}^{2} \lambda_{2,2}^{2}+D_{2}(1,1,1) r_{1,1,2}^{1,1,1}+D_{2}(1,1,2) r_{1,2,2}^{1,1,1} \\
s_{3}= & 4 C_{3}(1,3,0) \lambda_{1,3} \lambda_{2,3}^{3}+C_{3}(0,4,0) \lambda_{2,3}^{4}+4 C_{3}(0,3,1) \lambda_{2,3}^{3} \lambda_{3,3} \\
& +6 C_{3}(0,2,2) \lambda_{1,3}^{2} \lambda_{2,3}^{2}+D_{3}(1,1,1) r_{1,1,3}^{1,1,1}+D_{3}(1,1,2) r_{1,2,3}^{1,1,1} . \tag{16}
\end{align*}
$$

Example 3.2. Now let $p=0, q=1, k=2$ and $t=0$, we also obtain an element of class C^{1}. The space $\mathcal{R} \mathcal{S}_{2,1}^{0,0}(\triangleleft)$ used is of dimension 28 and the sets of degrees of freedom are the following $\mathcal{L}_{0,1,2}$ and $\mathcal{L}_{0,1,2}^{0}$ for the subset dedicated to the rational part, where

$$
\mathcal{L}_{0,1,2}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant 2, i=1,2,3,4 ; \frac{\partial^{n}}{\partial v_{j j+1}^{n}} f\left(Q_{j j+1}^{n, 1}\right), n=0,1, m=1, \ldots, n+1, j \in\{1,2,3,4\}\right\}
$$

and

$$
\mathcal{L}_{0,1,2}^{0}=\left\{\frac{\partial}{\partial v_{j j+1}} f\left(Q_{j j+1}^{1, m}\right), m=1,2, j \in\{1,2,3,4\}\right\} .
$$

The functions s_{1}, s_{2} and s_{3} which determine the function S have the following expressions:

$$
\begin{align*}
s_{1}= & C_{1}(5,0,0) \lambda_{1,1}^{5}+5 C_{1}(4,1,0) \lambda_{1,1}^{4} \lambda_{2,1}+10 C_{1}(3,2,0) \lambda_{1,1}^{3} \lambda_{2,1}^{2}+5 C_{1}(1,4,0) \lambda_{1,1} \lambda_{2,1}^{4}+C_{1}(0,5,0) \lambda_{2,1}^{5} \\
& +5 C_{1}(0,4,1) \lambda_{2,1}^{4} \lambda_{3,1}+10 C_{1}(0,3,2) \lambda_{2,1}^{3} \lambda_{3,1}^{2}+20 C_{1}(1,3,1) \lambda_{1,1} \lambda_{2,1}^{3} \lambda_{3,1} \\
& +5 C_{1}(4,0,1) \lambda_{1,1}^{4} \lambda_{3,1}+10 C_{1}(3,0,2) \lambda_{1,1}^{3} \lambda_{3,1}^{2}+20 C_{1}(3,1,1) \lambda_{1,1}^{3} \lambda_{2,1} \lambda_{3,1} \\
& +D_{1}(1,1,1) r_{1,1,1}^{1,2,1}+D_{1}(3,1,1) r_{3,1,1}^{1,2,1}, \\
s_{2}= & 10 C_{2}(2,3,0) \lambda_{1,2}^{2} \lambda_{2,2}^{3}+C_{2}(1,4,0) \lambda_{1,2} \lambda_{2,2}^{4}+C_{2}(0,5,0) \lambda_{2,2}^{5}+5 C_{2}(0,4,1) \lambda_{2,2}^{4} \lambda_{3,2} \\
& +10 C_{2}(0,3,2) \lambda_{2,2}^{3} \lambda_{3,2}^{2}+20 C_{2}(1,3,1) \lambda_{1,2} \lambda_{2,2}^{3} \lambda_{3,2}+D_{2}(1,1,1) r_{1,1,2}^{1,2,0} \\
s_{3}= & 10 C_{3}(2,3,0) \lambda_{1,3}^{2} \lambda_{2,3}^{3}+C_{3}(1,4,0) \lambda_{1,3} \lambda_{2,3}^{4}+C_{3}(0,5,0) \lambda_{2,3}^{5}+5 C_{3}(0,4,1) \lambda_{2,3}^{4} \lambda_{3,3} \\
& +10 C_{3}(0,3,2) \lambda_{2,3}^{3} \lambda_{3,3}^{2}+20 C_{3}(1,3,1) \lambda_{1,3} \lambda_{2,3}^{3} \lambda_{3,3}+D_{3}(1,1,1) r_{1,1,3}^{1,2,0} . \tag{17}
\end{align*}
$$

Example 3.3. When we choose $p=1, q=2, k=2$ and $t=0$, the finite element obtained is of class C^{2}. It is constructed while considering a polynomial finite element of class C^{0}. In this case the dimension of the space $\mathcal{R} \mathcal{S}_{2,2}^{1,0}(\diamond)$ is 48 and we use as set of degrees of freedom $\mathcal{L}_{1,2,2}$ and for the subset dedicated to the rational part the set $\mathcal{L}_{1,2,2}^{0}$ with

$$
\mathcal{L}_{1,2,2}=\left\{\partial^{\alpha} f\left(A_{i}\right),|\alpha| \leqslant 2, i=1,2,3,4 ; \frac{\partial^{n}}{\partial \nu_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=0,1,2, m=1, \ldots, n, j \in\{1,2,3,4\}\right\}
$$

and

$$
\mathcal{L}_{1,2,2}^{0}=\left\{\frac{\partial^{n}}{\partial \nu_{j j+1}^{n}} f\left(Q_{j j+1}^{n, m}\right), n=1,2, m=1, \ldots, n+1, j \in\{1,2,3,4\}\right\}
$$

The function S is defined with the help of the functions s_{1}, s_{2} and s_{3} whose expressions are:

$$
\begin{aligned}
s_{1}= & C_{1}(6,0,0) \lambda_{1,1}^{6}+6 C_{1}(5,1,0) \lambda_{1,1}^{5} \lambda_{2,1}+15 C_{1}(4,2,0) \lambda_{1,1}^{4} \lambda_{2,1}^{2}+20 C_{1}(3,3,0) \lambda_{1,1}^{3} \lambda_{2,1}^{3} \\
& +15 C_{1}(2,4,0) \lambda_{1,1}^{2} \lambda_{2,1}^{4}+6 C_{1}(1,5,0) \lambda_{1,1} \lambda_{2,1}^{5}+C_{1}(0,6,0) \lambda_{2,1}^{6}+6 C_{1}(0,5,1) \lambda_{2,1}^{5} \lambda_{3,1} \\
& +15 C_{1}(0,4,2) \lambda_{2,1}^{4} \lambda_{3,1}^{2}+30 C_{1}(1,4,1) \lambda_{1,1} \lambda_{2,1}^{4} \lambda_{3,1}+20 C_{1}(0,3,3) \lambda_{2,1}^{3} \lambda_{3,1}^{3}+6 C_{1}(5,0,1) \lambda_{1,1}^{5} \lambda_{3,1} \\
& +15 C_{1}(4,0,2) \lambda_{1,1}^{4} \lambda_{3,1}^{2}+30 C_{1}(4,1,1) \lambda_{1,1}^{4} \lambda_{2,1} \lambda_{3,1}+D_{1}(1,1,1) r_{1,1,1}^{1,2,1} \\
& +D_{1}(1,1,2) r_{1,2,1}^{1,2,1}+D_{1}(3,1,1) r r_{3,1,1}^{1,2,1}+D_{1}(3,1,2) r_{3,2,1}^{1,2,1}+D_{1}(1,2,1) r_{1,1,1}^{2,2,1} \\
& +D_{1}(1,2,2) r_{1,2,1}^{2,2,1}+D_{1}(3,2,1) r_{3,1,1}^{2,2,1}+D_{1}(3,2,2) r_{3,2,1}^{2,2,1}+D_{1}(3,2,2) r_{3,3,1}^{2,2,1}
\end{aligned}
$$

$$
\begin{align*}
s_{2}= & 15 C_{2}(2,4,0) \lambda_{1,2}^{2} \lambda_{2,2}^{4}+C_{2}(0,6,0) \lambda_{2,2}^{6}+6 C_{2}(0,5,1) \lambda_{2,2}^{5} \lambda_{3,2}+15 C_{2}(0,4,2) \lambda_{1,2}^{4} \lambda_{2,2}^{2} \\
& +30 C_{2}(1,4,1) \lambda_{1,2} \lambda_{2,2}^{4} \lambda_{3,2}+20 C_{2}(0,3,3) \lambda_{2,2}^{3} \lambda_{3,2}^{3}+6 C_{2}(1,5,0) \lambda_{1,2} \lambda_{2,2}^{5}+D_{2}(1,1,1) r_{11,2}^{1,2,1} \\
& +D_{2}(1,1,2) r_{12,2}^{1,2,1}+D_{2}(1,2,1) r_{1,1,2}^{2,2,1}+D_{2}(1,2,2) r_{1,2,2}^{2,2,1}+D_{2}(1,2,3) r_{1,3,2}^{2,2,1} \\
s_{3}= & 15 C_{3}(2,4,0) \lambda_{1,3}^{2} \lambda_{2,3}^{4}+C_{3}(0,6,0) \lambda_{2,3}^{6}+6 C_{3}(0,5,1) \lambda_{2,3}^{5} \lambda_{3,3}+15 C_{3}(0,4,2) \lambda_{1,3}^{4} \lambda_{2,3}^{2} \\
& +30 C_{3}(1,4,1) \lambda_{1,3} \lambda_{2,3}^{4} \lambda_{3,3}+20 C_{3}(0,3,3) \lambda_{2,3}^{3} \lambda_{3,3}^{3}+6 C_{3}(1,5,0) \lambda_{1,3} \lambda_{2,3}^{5}+D_{3}(1,1,1) r_{11,3}^{1,2,1} \\
& +D_{3}(1,1,2) r_{12,3}^{1,2,1}+D_{3}(1,2,1) r_{1,1,3}^{2,2,1}+D_{3}(1,2,2) r_{1,2,3}^{2,2,1}+D_{3}(1,2,3) r_{1,3,3}^{2,2,1} . \tag{18}
\end{align*}
$$

4. Concluding remarks

a) Rational finite elements over triangulated quadrilaterals are better than rational finite elements over triangulations. Suppose Δ is a triangulation based on the same vertices \mathcal{V} and let us denote by \mathcal{E}_{T} the set of edges of this triangulation. As mentioned in [5] the dimension of the space $\mathcal{R} \mathcal{S}_{2 k+1}^{k}(\Delta)$ is $\frac{(k+2)(k+1)}{2} \times \# \mathcal{V}+\frac{(k+1) k}{2} \times \# \mathcal{E}_{T}$. While, for $p=0$ and $q=k$, the dimension of the space $\mathcal{R} \mathcal{S}_{k, k}^{0, t}(\diamond)$ is $\frac{(k+2)(k+1)}{2} \times \# \mathcal{V}+\frac{(k+1) k}{2} \times \# \mathcal{E}$. So, as the cardinal of \mathcal{E} is smaller than the cardinal of \mathcal{E}_{T}, we have $\operatorname{dim} \mathcal{R} \mathcal{S}_{k, k}^{0, t}(\diamond) \leqslant \operatorname{dim} \mathcal{R} \mathcal{S}_{2 k+1}^{k}(\Delta)$.
b) Notice that these constructions of rational quadrilateral finite elements and the rational triangular finite elements are compatible among themselves. Moreover, if it is possible to make up a triangulation \diamond, it is better to use quadrilateral finite elements instead of triangles taken separately.

Acknowledgments

The first author would like to thank the Département de Mathématiques de l'Université de Nantes, and in particular F. Jauberteau, for their kindness and their availability during the period in which this work was done.

References

[1] K.N. Agbeve, Éléments finis triangulaires rationnels de classe C^{k}, Thèse Université de Nantes, France, 1993.
[2] P.G. Ciarlet, Numerical Analysis of the Finite Element Method, Les Presses de l'Université de Montréal, 1976.
[3] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.
[4] J.F. Ciavaldini, J.C. Nedelec, Sur l'élément de Fraeijs de Veubeke et Sander, RAIRO Oper. Res. 2 (1974) 29-45.
[5] J.C. Koua Brou, A. Le Méhauté, C^{k} rational spline over a triangulation, J. Math. Anal. Appl. 356 (2) (2009) 429-440.
[6] M. Laghchim-Lahlou, Un schéma d'interpolation sur un quadrilatère de classe C², ESAIM: M2AN, Math. Model. Numer. Anal. 34 (5) (2000) $913-922$.
[7] M. Laghchim-Lahlou, P. Sablonnière, Composite quadrilateral finite element of C^{r}, in: Mathematical Methods in Computer Aided Geometric Design, Oslo, 1988, Academic Press, Boston, MA, 1989, pp. 413-418.
[8] M. Laghchim-Lahlou, Paul Sablonnière, Quadrilateral finite element of FVS type and class C ${ }^{\rho}$, Numer. Math. 70 (1995) 229-243.
[9] M.J. Lai, L.L. Schumaker, On the approximation power of splines on triangulated quadrangulations, SIAM J. Numer. Anal. 36 (1) (1999) 143-159.
[10] M.J. Lai, L.L. Schumaker, A quadrilateral macro-elements, SIAM J. Math. Anal. 33 (2002) 1107-1116.
[11] M.J. Lai, L.L. Schumaker, Macro-elements and stable local bases for splines on Powell-Sabin triangulations, Math. Comp. 72 (2003) $335-354$.
[12] M.J. Lai, L.L. Schumaker, Splines Functions on Triangulations, Cambridge University Press, 2007.
[13] C.J. Li, R.H. Wang, A new 8-node quadrilateral spline finite element, J. Comput. Appl. Math. 195 (2006) 54-65.
[14] P. Sablonnière, M. Laghchim-Lahlou, Eléments finis polynomiaux composés de classe C ${ }^{r}$, C. R. Math. Acad. Sci. Paris 316 (5) (1993) 503-508.
[15] G. Nürnberger, L.L. Schumaker, F. Zeilfelder, Lagrange interpolation by C^{1} cubic splines on triangulated quadrangulations, Adv. Comput. Math. 21 (2004) 357-380.
[16] Zhong-Xuan Luo, Ren Hong Wang, Rational shape functions for C^{1}-interpolation on quadrilaterals, Comput. Math. Appl. 32 (9) (1996) 55-66.

[^0]: * Corresponding author.

 E-mail addresses: k_brou@hotmail.com, brou.koua@univ-cocody.ci (J.C. Koua Brou).

