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NOK/STYK1 interacts with GSK-3b and mediates Ser9 phosphorylation
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a b s t r a c t

NOK (also known as STYK1) has been identified as an oncogene. However, its biochemical and bio-
logical activities as a molecular regulator are poorly defined. In the present study, we report that
NOK overexpression led to enhanced phosphorylation of GSK-3b at its Ser9 residue via Akt phos-
phorylation at Thr308. NOK could make complexes with both Akt and GSK-3b. Moreover, the expres-
sion levels of NOK, p-Akt(Thr308) and p-GSK-3b(Ser9) were positively correlated in cancerous and
non-cancerous breast cell lines. Thus, our data identified a novel functional molecular complex
formed by NOK, Akt and GSK-3b that may relay a NOK-directed tumourigenic cascade.

Structured summary of protein interactions:
GSK3B physically interacts with NOK and Akt by anti tag coimmunoprecipitation (View interaction).
GSK3B physically interacts with NOK by anti tag coimmunoprecipitation (View interaction).

� 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction cer cells acquire the mesenchymal phenotype through altered
Protein kinases, which are composed of a large number of sub-
families, play significant roles in cancer biology, such as cell prolif-
eration, differentiation, survival, tumourigenesis and metastasis
[1]. Like many other kinases, NOK (novel oncogenic kinase, also
known as STYK1 (a putative serine/threonine and tyrosine receptor
protein kianse)) contains a single transmembrane domain and an
intracellular tyrosine kinase domain, possibly for activating
downstream signalling cascades. However, this protein lacks an
extracellular domain [2]. In cancerous tissues from different
organs, including the breast, lung, ovary, endometrium and
prostate, expression of NOK is obviously higher than in adjacent
non-cancerous tissues [3–8]. Overexpression of NOK promoted cell
proliferation of BaF3 cells and also induced rapid tumourigenesis
and severe distant metastasis in nude mice [2]. The oncogenic
property of NOK critically depends on Tyr327 and Tyr356
phosphorylation [2,9]. Despite the identified physiological function
of NOK at the cellular level, its biochemical and molecular
functions, interacting partners, and positions in various signalling
cascades are largely undefined.

EMT (epithelial–mesenchymal transition) is viewed as a critical
intermediate step in tumourigenesis and gives rise to the dissem-
ination of a single cancer cell from primary tumours [10–12]. Can-
chemical Societies. Published by E
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expression of miRNA and EMT-related factors. E-cadherin is one
of the most important factors [13]. E-cadherin, as a master regula-
tor of the epithelial phenotype, mediates stable cell–cell contacts
and development of adhesive junctions [14]. In the past decade,
several transcriptional repressors responsible for the loss of E-cad-
herin have been identified, such as Snail, Slug, ZEB1 and ZEB2, of
which Snail is probably the most important repressor for E-cad-
herin [15,16]. One critical interacting partner and functional
regulator of Snail is GSK-3b. Snail can be stabilised by Ser9-
phosphorylated GSK-3b in the nucleus followed by promoter
binding to the E-cadherin gene and transcriptional repression
[17]. Although in its active form, GSK-3b generally functions as a
‘‘tumour suppressor’’, its phosphorylation at the Ser9 residue
would lead to enzymatic inactivation and reversal of tumour-
suppressive function. Consequently, the prominent oncogenic
kinase Akt directly stimulates the Ser9 phosphorylation of
GSK-3b [18]. Importantly, our previous reports demonstrated that
the PI3K/Akt pathway was activated in NOK-transformed BaF3
cells and that the PI3K inhibitor LY294002 (LY) significantly
inhibited the colony formation capacity of BaF3 cells on soft agar
[2]. In addition, we found that overexpression of NOK led to
reduced levels of E-cadherin [9]. Together, these findings
imply that the Akt-GSK-3b pathway is a potential mediator for
NOK-directed biological and physiological functions.

In this report, we tested the hypothesis that NOK is functionally
involved in Akt-GSK-3b pathway regulation. We found that
overexpression of NOK in stable cell lines led to enhanced
lsevier B.V. All rights reserved.
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GSK-3b(Ser9) phosphorylation. We further demonstrated that NOK
interacts with both GSK-3b and Akt and is required for the effective
phosphorylation of Akt(Thr308) and GSK-3b(Ser9). Additionally, the
expression levels of NOK, p-Akt(Thr308) and p-GSK-3b(Ser9) were
accordingly elevated in cancerous versus non-cancerous breast
cells. Together, our findings indicate that NOK, Akt and GSK-3b form
interacting complex in which Akt mediates NOK-dependent GSK-3b
Ser9 phosphorylation such that NOK may promote tumourigenesis
via enzymatic activation of Akt and inactivation of GSK-3b.

2. Methods and materials

2.1. Co-immunoprecipitation (co-IP) assay

The cells were cultured as described in supplementary materi-
als. HEK293T cells were transfected with the plasmids as indicated
in the figures and 36 h after transfection, cells were harvested
and lysed on ice with modified RIPA buffer (50 mmol/l Tris–HCl
pH7.4, 150 mmol/l NaCl, 1 mmol/l EDTA, 0.5% NP-40, 10% glycerol).
The detergent-soluble fraction was recovered by centrifugation
at 4 �C for 15 min at 12,000 rmp/min. The supernatant was co-
immunoprecipitated with mouse anti-HA monoclonal antibody
(ZSGB-Bio, China) followed by further incubation with Protein
A/G plus agarose beads (Santa Cruz, USA). When proteins were
expressed with flag tag, the supernatant was directly subjected
to co-IP with anti-flag M2 affinity beads (Sigma–Aldrich, USA).
After 3� washing, the products were eluted with 2 � SDS–PAGE
loading buffer and resolved for western blotting.

2.2. SiRNA transfection

Synthetic Akt siRNA corresponds with the following sequence
and position on Akt gene backbone: 208(si1208) (50-ATA-
CCGGCAAAGAAGCGATGCTGCA-30) and 306(si1306) (50-CAAGATGA
CAGCATGGAGTGT-30). The control siRNA was from GenePharma
Co., Ltd. (Genepharma, China). HeLa-HA and HeLa-NOK-HA stable
cell lines (30 � 104 cells/well) plated in 6-well plates were transfec-
ted with RNAi using Lipofectamine 2000 (Invitrogen, USA) according
to the instructions. Briefly, the siRNA-Lipofectamine 2000 mixture
was added into a culture medium for 6 h. The medium was subse-
quently replaced for 48 h of further incubation before being
harvested.

2.3. Western blotting

Proteins were resolved on 12% SDS–PAGE and then transferred
onto a nitrocellulose membrane in a semi-dry condition. These
blots were blotted with 5% skim milk powder or 5% BSA for 1 h
at room temperature followed by incubation with primary anti-
body overnight at 4 �C. After 3� washing, blots were incubated
with HRP-conjugated secondary antibody (ZSGB-Bio, China) for
1 h at room temperature. The primary antibodies used are the fol-
lowing: anti-Akt, anti-p-Akt(Thr308) and anti-p-GSK-3b(Ser9)
(Cell Signalling, USA), anti-p-Akt (Ser473) (Beyotime, China),
anti-GSK-3b (BD, USA), anti-NOK (Sigma–Aldrich, USA), anti-HA
(ZSGB-Bio, China), anti-myc, anti-b-actin and anti-GAPDH (YTHX
Biotechnology, China). Proteasome inhibitor, MG132 (Selleck,
USA), was used to block the protein degradation.

3. Results

3.1. NOK increases GSK-3b Ser9 phosphorylation

As previously mentioned, GSK-3b is a downstream effecter of
the PI3K/Akt pathway. GSK-3b is constitutively active in resting
cells and functionally inhibits the EMT process [19]. However,
the enzymatically inactivated form of GSK-3b (phosphorylated at
Ser9 by Akt) markedly increases in both human and murine tu-
mours [20]. In NOK-overexpressing cells, we found increased
PI3K activity and decreased E-cadherin expression [2,9], with the
latter being regulated by Ser9-phosphorylated GSK-3b. To study
if NOK regulates GSK-3b activity, we established HeLa stable cell
lines overexpressing HA-tagged NOK (HeLa-NOK-HA) and HA vec-
tor (HeLa-HA) respectively (Fig. S1, Fig. 1). Western blotting based
on the total proteins from the stable cell lines indicated that nor-
malised p-GSK-3b(Ser9) expression was significantly higher in
the HeLa-NOK-HA cells than that in the HeLa-HA cells (Fig. 1A
and B). When GSK-3 (Ser9) degradation was blocked by protea-
some inhibitor (MG132), the increased amount of phosphorylated
GSK-3 (Ser9) in responding to NOK was more clearly observed in
the HeLa-NOK-HA cells (Fig. 1C). These findings suggest that NOK
can stimulate GSK-3b (Ser9) phosphorylation.

3.2. NOK interacts with GSK-3b and forms a complex with Akt-GSK-3b

Next, we used Co-IP analysis to determine if NOK induces
p-GSK-3b(Ser9) via direct interactions. These assays were carried
out using both full-length NOK and truncated forms of NOK to
identify potential interacting domains. As shown in Fig. 2A, Myc-
his-tagged full length NOK (NOK-myc-his) was co-transfected with
HA-tagged GSK-3b (GSK-3b-HA) followed by co-IP with an anti-HA
antibody. With both anti-his and anti-myc antibodies, the results
indicated that full-length NOK was co-immunoprecipitated with
GSK-3b-HA but not with the pCDNA3-HA control vector (Fig. 2B;
Fig. S2A). Furthermore, two NOK truncation mutants (NOK4ECD:
missing the N-terminal ectodomain; NOK-ICD: missing both the
N-terminal ectodomain and transmembrane domain) were
co-immunoprecipitated by GSK-3b-HA. The NOK4ECD construct
produced a lowest yield (Fig. 2B), suggesting that missing both
the N-terminal ectodomain and transmembrane domain affects
the interaction between NOK and GSK-3b.

To confirm the interaction between NOK and GSK-3b further,
we performed additional experiments by introducing Akt into the
tests, knowing that PI3K/Akt serves as GSK-3b kinase and can be
enhanced by NOK overexpression [2]. We started the testes by
co-transfecting NOK-myc-his and GSK-3b-HA into HEK293T cells
for co-IP using the anti-HA antibody. The products were examined
for the presence of exogenous NOK-myc-his and endogenous Akt.
As shown in Fig. 2C, both NOK-myc-his and endogenous Akt were
readily detected by GSK-3b-HA-directed co-IP. Moreover, HA-Akt
and NOK-HA could be also pulled down by 3flag-GSK-3b
(Fig. S2B). For complimentary experiments, we repeated the co-IP
analysis using 3flag-NOK to immunoprecipitate GSK-3b-HA and
Akt-HA. The results indicated that both GSK-3b-HA and Akt-HA
bands were identified (they have different molecular weight) in
3flag-NOK-immunoprecipited product (Fig. 2D). Together, our
studies demonstrated that NOK-Akt-GSK-3b can form a 3-way
complex and may serve as a molecular complex in vitro and in vivo.

3.3. NOK enhances the phosphorylation of GSK-3b (Ser9) via the
induction of p-Akt kinase (Thr308)

It is well documented that Akt is recruited to the membrane and
its phosphorylation at Thr308 and Ser473 is critical for Akt activa-
tion [21]. In addition, Akt mediates the phosphorylation of GSK-3b
on Ser9 [22,23]. Next, we undertook a mechanistic study to address
which one of the two Akt phosphorylation sites mediates
NOK-dependent GSK-3b Ser9 phosphorylation. As shown in
Fig. 3A, transient expression of wild-type Akt led to the increase in
p-GSK-3b(Ser9) expression in both the HeLa-HA and HeLa-NOK-HA
stable cell lines. The extent of the increase of p-GSK-3b(Ser9) in
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the HeLa-NOK-HA cell line was greater than that observed in the
HeLa-HA cells (Fig. 3A and B). Importantly, Akt phosphorylation at
the Thr308 residue was obviously higher in the HeLa-NOK-HA cells
than that in the HeLa-HA cells; however, these two cell lines exhibited
no difference in the phosphorylation of Akt at Ser473 (Fig. 3C). These
results suggest that NOK stimulates GSK-3b Ser9 phosphorylation
by increasing Akt Thr308 phosphorylation. Thus, NOK and Akt
function cooperatively to up-regulate GSK-3b Ser9 phosphorylation.
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3.4. Down-regulation of either NOK or Akt decreases p-GSK-3b(Ser9)

To validate further the findings that both NOK and Akt are in-
volved in GSK-3b Ser9 phosphorylation, we carried out RNA inter-
ference-based knockdown assays. These tests were performed in
transfected HeLa cells in which NOK and Akt were individually tar-
geted for down-regulation. Synthetic siRNA (si208 and si360) tar-
geted Akt and vector-based shRNA plasmid (pSilencer3.1–si1137)
targeted NOK for down-regulation. As shown in Fig. S2 and
Fig. 4A, both exogenous and endogenous NOK protein expression
was effectively disrupted by RNA interference and importantly,
the reduction in NOK was correlated with a decline in expression
of both p-Akt(Thr308) and p-GSK-3b(Ser9). Furthermore, upon
repression of endogenous Akt expression by RNA interference,
the expression of p-GSK-3b(Ser9) decreased in both NOK-overex-
pressed cell lines (HeLa-NOK-HA) and control lines (HeLa-HA)
(Fig. 4B). It is significant that GSK-3b Ser9 phosphorylation was
also similar between HeLa-NOK-HA and HeLa-HA cells when Akt
expression was disrupted (Fig. 4B), implying that Akt is the critical
mediator for NOK-dependent GSK-3b Ser9 phosphorylation.

3.5. The expression levels of NOK, p-GSK-3b(Ser9) and Akt(Thr308) are
positively correlated in breast cell lines

Our abovementioned findings pointed toward a tripartite
molecular complex formed among NOK, Akt and GSK-3b that
may lead to GSK-3b functional inactivation and tumourigenesis.
To study this proposal in physiological settings, we compared the
expression of NOK, p-Akt(Thr308), p-GSK-3b(Ser9) and two down-
stream factors, Snail and E-cadherin, in cancerous (MCF7) versus
non-cancerous breast epithelial cells (MCF10A). As shown in
Fig. 4C, the level of endogenous NOK in cancerous MCF7 cells
was much higher than in non-cancerous MCF10A cells. It is also
significant that the activated forms of Akt (p-Akt(Thr308)), inacti-
vated forms of GSK-3b (p-GSK-3b(Ser9)) and Snail were more
abundant in MCF7 than in non-cancerous MCF10A cells. The
expression level of E-cadherin was lower in MCF7 than in non-can-
cerous MCF10A cells. All the results were further confirmed in
HeLa-NOK-HA and HeLa-HA cells (Fig. 4C). Taken together, the re-
sults suggest that the expression levels of NOK, p-GSK-3b(Ser9)
and p-Akt(Thr308) are positively correlated in vivo. To this end,
we proposed a model to explain our findings (Fig. 4D), which will
be further discussed.
4. Discussion

Our own previous studies and studies from other groups have
demonstrated that NOK has potent tumourigenic activity, which
has not been fully defined mechanistically. All experimental efforts
have suggested that NOK has minimal enzymatic activity [7,9], which
is a finding that presents an additional obstacle in understanding this
protein’s functions. In this report, we determined that overexpressed
NOK could cause GSK-3b (Ser9) phosphorylation, which can relay a
signal cascade for E-cadherin suppression and tumourigenesis. More
extensive study at the molecular level led to the identification of a
functional complex formed by NOK, Akt and GSK-3b and showed that
within this tripartite complex, Akt mediates NOK-dependent GSK-3b
phosphorylation. Additional study in cancerous versus non-cancerous
breast cell lines suggests that this regulatory complex functions
in vivo and has physiological relevance.

As an important inhibitor of the EMT process, active GSK-3b can
phosphorylate transcriptional repressors of E-cadherin, such as
Snail, and promote their nuclear export and further proteolysis
[17]. Phosphorylation of GSK-3b at Ser9 results in its enzymatic inac-
tivation and may thus reverse the protein’s capacity to induce EMT
and tumourigenesis. Indeed, p-GSK-3b(Ser9) expression is fre-
quently associated with higher grades of cancers [24–26]. This re-
port was initiated by our observations in HeLa cells that NOK
overexpression increased p-GSK-3b(Ser9) expression, suggesting a
novel function for NOK that would provide an explanation for its tu-
mour-promoting activity. The next mechanistic study was focused
on Akt, a direct GSK-3b kinase that could be activated by overexpres-
sed NOK. Using co-IP assays, we found that NOK can complex with
Akt and GSK-3b, in vitro and in vivo, leading to the formation of a tri-
partite molecular model. Additional tests indicated that NOK-
dependent GSK-3b Ser9 phosphorylation is mediated by Akt in its
Thr308 (but not Ser473)-phosphorylated forms. Finally, a study in
cancerous versus non-cancerous breast epithelial cell lines indi-
cated the existence of such a module in physiological settings.

Our findings uncovered additional layers of NOK function at the
biochemical, biological and physiological levels. However, it re-
mains undetermined how NOK increases Akt phosphorylation at
Thr308 to activate it. Structural analysis indicated that NOK has a
DGF motif deficiency that would limit its kinase activity [7]. NOK
was also predicted to have multiple protein binding motifs (data
not shown), indicating that there are two possible ways for NOK
to participate in the phosphorylation of Akt and GSK-3b: 1. NOK di-
rectly phosphorylates Akt through its own weak kinase activity; 2.
NOK functions as a scaffold protein to phosphorylate Akt indirectly
by bringing other kinases, such as PDK1, to Akt and subsequently
linking Akt to GSK-3b. Generally, full activation of Akt activity de-
pends on the phosphorylation of both Thr308 and Ser473 residues,
which are located within the activation T-loop and regulation mo-
tif, respectively [27]. Akt binds to PIP3 (phosphatidylinositol
(3,4,5)-trisphosphate) via its pleckstrin homology (PH) domain in
the plasma membrane, where it can be phosphorylated at Thr308
by PDK1 [28–31]. Meanwhile, the NOK molecule contains an intra-
membrane domain, leading to its localisation at the cell membrane
(including inner membrane) and its high tendency to form aggre-
gates [8]. It is conceivable that membrane localisation can bring
NOK and Akt into proximity with each other and that NOK may
interfere with Akt’s interaction with other partners, including its
Thr308 kinase PDK1 and its substrate GSK-3b.

Our findings were summarised in a model (Fig. 4D) to propose
that in a tripartite molecular model, NOK interacts with Akt and
stimulates phosphorylation of its Thr308 residue. The activated
Akt relays the stimulatory effects to GSK-3b, leading to its Ser9
phosphorylation and functional inactivation. The identification of
this regulatory pathway provides an explanation for NOK-directed
tumourigenesis.
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