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Abstract A systematic methodology including a computational pilot model and a pattern recog-

nition method is presented to identify the boundary of the flight performance margin for quantify-

ing the human factors. The pilot model is proposed to correlate a set of quantitative human factors

which represent the attributes and characteristics of a group of pilots. Three information processing

components which are influenced by human factors are modeled: information perception, decision

making, and action execution. By treating the human factors as stochastic variables that follow

appropriate probability density functions, the effects of human factors on flight performance can

be investigated through Monte Carlo (MC) simulation. Kernel density estimation algorithm is

selected to find and rank the influential human factors. Subsequently, human factors are quantified

through identifying the boundary of the flight performance margin by the k-nearest neighbor

(k-NN) classifier. Simulation-based analysis shows that flight performance can be dramatically

improved with the quantitative human factors.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

The safety of aviation activities, a critical issue in the aviation

domain, is influenced by multiple potential factors and interac-
tions between these factors. Human factors play an essential
role in these factors that lead to poor flight performance,
aviation incidents, and even disasters.1,2 Thus, study of the
relationship between human factors and flight performance
or safety related activities is important for aircraft design,
selection of pilots and operational environments.

Human factors analysis methods3 such as task analysis
techniques, cognitive task analysis techniques, and mental
workload assessment analysis techniques are used to assess

various aspects of operator behavior. These time consuming
methods generally lead to subjective and qualitative results.
In the last few decades, several computational human factors

models have been developed to evaluate the effects of human
factors such as physical limitations and cognitive constraints
on pilot behaviors and flight performance. McRuer and Jex4

have developed a crossover model which is expressed by two

human factor parameters: the gain, which is the ratio of output
velocity to perceived error, and the effective time delay,
described as the continuous analog of the human operator’s
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discrete reaction time. This model expressed by transfer func-
tion has been proved successful in analyzing the dynamic sta-
bility and handling quality of piloted aircraft. An optimal

control model, restricted by two kinds of human factors: time
delay and noise, is introduced to account for different operator
strategies performance.5 Recently, Hess and Marchesi6,7 devel-

ops a pilot model that takes visual, proprioceptive, and vestib-
ular limitations into account to simulate the operator’s pursuit
control. The model can be used for the analytical assessment of

flight simulator fidelity. A multichannel perception and control
human model that mainly includes parameters on vestibular,
visual and neuromuscular activities is introduced.8 Five pilot
performance models are applied to predict pilot performance

and behaviors in the National Aeronautics and Space Admin-
istration Human Performance Modeling (NASA HPM) Pro-
ject.9 These five models are built under the limitations of

human information processing, such as biases, memory deficits
and scan patterns. All of these models have emerged as power-
ful tools for evaluation of human factors on the human-

machine interface.
A critical drawback of these models is that they are only

developed to account for the sensitiveness of human factors,

namely, investigating the effects of human factors on flight
safety related criteria. However, there are many situations in
which we are more interested in the value range of a set of
human factors under certain criteria of human-aircraft perfor-

mance. For example, in order to reach 10�9 accident rate, it is
a normal practice to consider what kind of pilots should be
selected for the newly designed system or what skill levels a

pilot should acquire in training. If the allowable ranges of
these human factors which greatly influence the flight perfor-
mance are identified and quantified, the criteria for pilot selec-

tion and training will be defined more precisely, and the design
of human-machine interface and flight control system will also
be enhanced.

The present paper attempts to explore a novel method that
directly quantifies the human factors based on the flight per-
formance margin––a threshold value to reflect the quality of
flight performance that is typically measured in terms of error.

Two critical procedures are included in this method, namely,
Fig. 1 Schematic representatio
building a pilot model that rigorously represents the character-
istics of a group of pilots, and identifying and quantifying the
influential human factors by using the classical Monte Carlo

(MC) simulation10 and pattern recognition method. MC simu-
lation is one of the most powerful nonintrusive uncertainty
analysis tools for fast data generation that reflects the influ-

ences of various combinations of uncertain input parameters.
The pilot model in this research mainly emphasizes the model-
ing approaches that unify many kinds of human factors into

one single computational model. Three critical components
are incorporated into the pilot model to represent the process
of information perception, decision making, and action execu-
tion. A set of human factors that represent the characteristics

of human pilots are selected and coupled with these three com-
ponents. These human factors affect each phase of information
processing and ultimately will influence human behavior. By

choosing a suitable probability density function (PDF) for
each human factor, the characteristics and attributes of a
group of pilots can be incorporated in one model. Once the

pilot model is integrated with an external environment model
consisting of an aircraft dynamic model, human-machine dis-
play, and automation equipment, the influences of human

factors on flight performance can be fast simulated. Two trac-
table pattern recognition algorithms, kernel density estimation
(KDE) algorithm11 and k-nearest neighbor (k-NN) classifica-
tion algorithm,12 are combined to rank and quantify the

influential human factor parameters through boundary
identification of the flight performance margin.
2. Specification of proposed pilot model

As previously mentioned, the pilot model has three primary
components: information perception, decision making, and

action execution. These three components are integrated with
a set of human factors, which specify the characteristics of a
group of pilots, to form a tight cognitive loop. A block dia-

gram of the model is shown in Fig. 1. This section will describe
each component, the integration of these components with
human factors, and how these human factors influence each
n of the pilot-aircraft model.
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of the information processing components. The definition of
flight performance is given at the end of this section.

2.1. Selection of human factors

When faced with a dynamic environment, individual natural
reaction is often constrained or affected by a set of human fac-

tors. Research and experiments on human factors in aviation
are increasingly carried out, and some major aspects of human
factors with significant impacts on flight safety are identi-

fied.3,13–15 Human factors influencing flight performance and
safety include but are not limited to the following:

(1) Pilot’s control time and control precision.
(2) Visual scene of cockpit and out-of-window area.
(3) Pilot’s scan pattern and dwell time.
(4) Pilot’s fatigue and fatigue related error.

(5) Pilot’s prediction on parameter variation.
(6) Pilot’s situation awareness.
(7) Pilot’s fast recognition on unacceptable conditions.

(8) Pilot’s detection and isolation of state transition.

Literature review indicates that a great many human factors

can be classified according to their effects on the flight perfor-
mance. However, from the view of computer simulation, it is
not practical to consider more than a handful of human fac-
tors; consequently, a limited number of factors with explicit

definition should be selected. Three rules are used to guide
the selection of human factors in this research. Firstly, the
human factor should play a tangible role in affecting the pilot

behavior. Accordingly, those factors having indirect influences
on the pilot’s response are excluded. Secondly, each factor can
be easily quantified and precisely interpreted into computer

rules that govern the pilot behavior in different contexts. As
a result, those descriptive and qualitative factors are excluded,
for example, fatigue is a crucial factor affecting the operator’s

performance, but the difficulties in quantification of such a fac-
tor make it impossible to be simulated. Finally, with the con-
sideration of validation, these factors should be easily
obtained from flight or simulator experiments.

Due to time and resource limitations, this research does not
attempt to implement all the human factors in the current pilot
model. Instead, a small subset of factors that represent limita-

tions and constraints of the operator are selected. Namely,
indicator-dwell-time (IDT), observation-error (OE), motor-
error (ME), perceptive-criticality-threshold (PCT), indicator-

scanning-sequence (ISS), and reaction-time (RT). All these
human factors are coupled with the information processing
components to influence the pilot behavior.

2.2. Information perception model

The information perception of the pilot model handles the
continual maintenance of situation awareness. For the pilot

in a flying environment, information perception critically
focuses on awareness of the state of the aircraft. In particular,
the pilot samples the information on subsets of cockpit instru-

ments such as the attitude indicator, altimeter, vertical speed
indicator, etc.

The process of visual scanning consists of saccades such as

the jerky eye movements when the eye fixation jumps from one
indicator to the other. Location and dwell time are character-
istics associated with eye fixation.16 Fixation sequence and
dwell time used by the pilot in information perception are

given by

Q ¼ f d1; d2; � � � ; dn g ð1Þ

TIDT ¼ f td1 ; td2 ; � � � ; tdn g ð2Þ

where Q is indicator-scanning-sequence, TIDT is the indicator-

dwell-time sequence associated with Q, di is each scanned indi-
cator, and tdi is the indicator-dwell-time of di.

During visual sampling, the pilot moves his attention to get

the flight states. Each indicator consists of several flight states,
which is given by

di ¼ fxi;1; xi;2; � � � ; xi;m g ð3Þ

where xi,j is the jth flight state on indicator di.
During the interval of indicator-dwell-time, the operator

does not exert any control on the aircraft besides ‘‘looking’’

at the associated indicator. After the visual sampling of one
indicator, the pilot might repeat the scanning activity or make
a decision based on the perceived flight state.

Due to display resolution, calibration or human sensitive-
ness, there are various sources of error when the pilot inter-
prets the states of the aircraft from the indicators.

Additionally, there are some other latent or unmolded errors
induced by the external dynamic environment. To sufficiently
represent these errors, a random variable called observation-

error is modeled in the pilot model. Each observed parameter
on a different indicator is associated with an observation-error.
The observation-error set of each indicator can be defined as

Edi ¼ f exi;1 ; exi;2 ; � � � ; exi;m g ð4Þ

As a matter of fact, the perceived flight state xpec
i;j is given by

xpec
i;j ¼ xi;j þ exi;j ð5Þ

The process of information perception is a discrete event in
the simulation; an implementation algorithm of this process on
one display is given as follows:

Algorithm: information perception

1. select a display di from Q

2. create a timer with interval tdi , named as ipTimer
3. void ipTimer_Tick(){
4. for each xi,j on di {
5. xi,j ‹ :current flight state on di
6. xpeci;j  : xi;j þ exi;j ;}
7. select next display diþ1 for scanning according to Q;
8. ipTimer. interval  : tdiþ1 ¼ IDTdiþ1; T IDT}

As explained previously, this process is influenced by three
human factors: indicator-scanning-sequence, observation-

error, and indicator-dwell-time. These three human factors will
have a significant impact on pilot behavior. First of all, the
higher is the value setting of TIDT, the longer time will the pilot
use to get the dynamic aircraft state; as a result, the output will

no longer line up with the input. The induced error between
input and output will grow with the increase of TIDT. Often
more seriously, this time delay of TIDT might lead to instability

in the pilot-aircraft system. Secondly, indicator-scanning-
sequence enables the frequency and order of scanned
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indicators to be different from each other; ultimately this will
have an effect on the result of information perception. Finally,
the observation-error exerts influences on the decision making

through affecting the precision of the perceived information.

2.3. Decision making model

The decision making component of the pilot model uses the
information gathered in information perception and the
expected aircraft state mentally to determine whether any deci-

sions should be made. During the actual flight task, a common
decision making opportunity arises in the determination of
whether to change the flight routine, configure the aircraft,

and control the attitude. To simplify the process of decision
making, the decision of the current pilot model only involves
the changes of altitude. Specifically, the pilot determines
whether to adjust the control surface of the aircraft according

to the perceived difference of the current and expected state.
Two human factors, reaction-time and perceptive-critical-

ity-threshold, influence the process of decision making. In

the real piloted aircraft flight, the perceived flight states will
be translated by the operator into a control response in a finite
amount of time. During this period of time, perceived signals

from the displays are sent to the brain for information process-
ing and decision making. Such information processing time
and decision making time are approximated in the pilot model
by a reaction-time, TRT. The influence of TRT on pilot

behavior is the same as TIDT. Another human factor percep-
tive-criticality-threshold establishes the sensitive threshold for
detecting the criticality of the system state. The difference

between the pilot perceived information value and expected
information value is calculated in each cognitive loop; if the
difference excesses the perceptive-criticality-threshold, the

pilot will conclude that a transition of system state occurs.
The setting value of perceptive-criticality-threshold will signif-
icantly influence the pilot behavior. For example, the pilot

might not quickly feel the transition of aircraft state and hence
delay the action execution if perceptive-criticality-threshold is
denoted with a high value.

The decision making process can be expressed by the fol-

lowing simple equation:

fDM xpec
i ; xexp

i ; PCTið Þ ¼
1 jxpec

i � xexp
i jP PCTi

0 Otherwise

�
ð6Þ

where fDMðxpec
i ; xexp

i ;PCTiÞ is the decision making function,
PCTi is perceptive-criticality-threshold of the flight state xi,
xpec
i and xexp

i are respectively the perceived and expected flight

state. If the result of decision making is 1, the pilot will take
action; otherwise, the pilot will keep scanning the indicators.

2.4. Action execution model

The action execution of the pilot model maps the perceived
information gained from information perception and expected
information in mind to quantitatively control the output. As

the aim of the pilot model is trying to build a linkage between
human factors and flight performance, mimicking the actual
and real pilot behavior is not within the scope of this study.

Consequently, a basic compensatory control model is chosen
to represent and simulate the pilot control strategy. Since only
altitude tracking task is simulated in the model, the pilot
simply performs the elevator deflection to change the aircraft
altitude through scanning the attitude indicator and altimeter.
The following equation governing the pilot control rules shows

in which way the elevator is computed from the perceived alti-
tude (hpec) and pitch angle (hpec):

deexp ¼ Kph
ðhpec � hcÞ þ Kihðh

pec � hcÞTRT ð7Þ
hc ¼ Kphðh

pec � hexpÞ þ Kih ðh
pec � hexpÞTRT ð8Þ

where Kph
;Kih ;Kph , and Kih are gains, deexp is implies the

expected elevator deflection, and hexp is expected altitude.
The actual output of elevator deflection will be constrained

by the human neuromuscular dynamic system and motor-
error. The neuromuscular dynamic system is used to reflect
the position characteristic of hand movement due to the accel-

eration of the mass of the hand, and the spring stiffness and
damping of muscular response. When faced with the same
flight condition, each pilot will have his or her own way of

responses. For example, a pilot may adopt different control
strategies, smooth or hard, to complete a height tracking task.
To represent such effects, it is necessary to build a neuromus-
cular dynamic system in the pilot model. A first order system

with a time constant of 0.1–0.2 is used in the pilot model to
simulate the muscular response.5,17 The mathematical model
of the neuromuscular system can be expressed by the following

transfer equation:

1

sNSsþ 1
ð9Þ

where sNS is the time constant of the neuromuscular dynamic
system, and s is the Laplace variable.

Additionally, motor-error represents the natural factors

such as physical instability and mental distraction that affect
pilot action execution. This type of error may cause the
response of the neuromuscular system to overshoot or under-

shoot. This error occurs when the pilot tries to move the stick
to adjust the deflection of the control surface. The actual ele-
vator deflection is governed by the following equation:

de ¼ fNSðdeexpÞ þ ede ð10Þ

where fNS(Æ) is the neuromuscular dynamic system expressed by
Eq. (9), and ede denotes the motor-error of elevator deflection

is a deterministic variable specified by certain PDF.
In simulation, the pilot directly deflects the elevator to

change the aircraft altitude. So far, in our study, the pilot

model has been accomplished by coupling three information
processing components with a set of human factors,
indicator-scanning-sequence, observation-error, motor-error,

reaction-time, perceptive-criticality-threshold, and indicator-
dwell-time.

2.5. Definition of flight performance

As the flight task only involves the altitude tracking, root mean
square error (RMSE) of trajectory deviation can be used as the
flight performance index (FPI):16,18

FPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1
ðhpilot;i � href;iÞ2

s

N
ð11Þ

where hpilot,i and href,i are actual and reference altitudes in each
sample point, respectively. N is the total sample number.



Fig. 2 Flight scenario for MC simulation.
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It is necessary to determine the flight performance level
(FPL) for the human factor quantification procedure. With
the definition of FPI, the FPL can be defined as

FPL ¼
Good 0 6 FPI 6 FPM

Poor Otherwise

�
ð12Þ

where FPM is a threshold value to reflect the quality of flight
performance.

3. MC Simulation

To investigate and ultimately quantify the effects of human

factors on flight performance, the pilot is placed in an altitude
tracking scenario. This section will discuss the setting of
human factors in MC simulation, and the selected scenario.

3.1. Setting of human factor variables

As mentioned before, a probabilistic approach denoting the
quantitative human factors as random variables with a suitable

PDF can be used to study the flight performance due to the
interactions of these factors.

However, it is impossible to use the same PDF to specify

these variables in simulation due to the different attributes of
human factors. For example, the reaction-time has the follow-
ing characteristics. The smaller the parameter is, the better the

pilot is considered to be as he will take less time to make a deci-
sion. However, in the real life, the probability of finding the
best or worst performing pilot is small. To truly reflect this

characteristic, a shifted version of Rayleigh distribution19

instead of a Gaussian distribution is used to specify the time
variables. The PDF of the shifted Rayleigh is

fðxÞ ¼ x� x0

r2
exp

x� x0

2r2

� �
uðx� x0Þ ð13Þ

where u(x) denotes the unit step function, whose value is 1 for
x P 0 and 0 for x < 0, and x0 is the amount of shift. As the

equation indicates, the shifted Rayleigh PDF is determined
by two variables, x0 and r.

By similar arguments, a shifted Rayleigh PDF is used to

represent the probabilistic distribution of indicator-dwell-time,
and Rayleigh PDF is selected to specify the probabilistic distri-
bution of perceptive-criticality-threshold. Observation-error
and motor-error are considered as noise variables denoted by

Gaussian distribution.
The setting values of the human factor variables in the MC

simulation are listed in Table 1. These values of random

variables are chosen based on the results available in the
literature or the intuition of authors.19,20 For example, the
indicator-dwell-time (TIDT) of each indicator and reaction-

time (TRT) of the pilot are denoted by a shifted Rayleigh
Table 1 Setting values of human factors of pilot model in MC sim

Human factor parameter Distribution type

td (s) Shifted Rayleigh

eh (rad) Normal

eh (m) Normal

PCTh (m) Rayleigh

TRT (s) Shifted Rayleigh

ede (�) Normal
distribution, which corresponds to the reported values 0.5
and 0.15–0.3 in Refs.21,5 It is noted that the indicator-dwell-time
of indicators tdi are set with same distribution td during

simulation. Observation-error (eh, eh) and motor-error (ede)
are assumed to be Gaussian random variables with a zero
mean that generates values within the confidence intervals of

95%. Specifically, the variances of the observation noise in
the pitch angle and height are selected such that the maximum
deviations are equal to 0.04 rad and 4 m, which are possible

cases in actual flight tasks. Perceptive-criticality-threshold for
height (PCTh) is denoted by a Rayleigh distribution with a
scalar value of 5 m such that its mean value is about 6 m. In
simulations, human factor variables are set with larger regions

such that different extreme conditions are considered to exam-
ine the consequences. No attempt has been made to determine
the true probabilistic nature of these parameters in the current

work and this is left as a topic for future study.
It is noted that the pilot scans the indicators with a fixed

indicator-scanning-sequence, Q= {Attitude, Altimeter, Atti-

tude, Airspeed, Attitude}, which corresponds with the scan-
ning sequence pilots are taught in a training school.21

Although the airspeed indicator is part of the scanning cycle

and the time is reserved in the MC simulation, it will not be
used to perform any velocity correcting action since the veloc-
ity is controlled by the autothrottle during the simulation. The
airspeed scanning activity is just used to mimic the real scan-

ning sequence used by a pilot during the altitude tracking task.
The time constant sNS of the neuromuscular dynamic system is
set to 0.2.

3.2. Flight scenario

A typical flight scenario is shown in Fig. 2. The pilot is com-

manded to track a reference trajectory in this scenario. The
experiment begins at A where the aircraft is balanced with
ulation.

Shift value Deviation

0.05 0.2

0 0.02

0 2

0 5

0.05 0.1369

0 2



Table 2 Setting values of human factors in sensitivity analysis

simulations.

Human factor parameter Low value Baseline High value

td (s) 0.4 0.5 0.6

eh (rad) 0.016 0.020 0.024

eh (m) 1.6 2.0 2.4

PCTh (m) 3.2 4.0 4.8

TRT (s) 0.24 0.30 0.36

ede (�) 1.6 2.0 2.4
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velocity of 263 m/s and altitude of 3000 m. Before reaching B,
the aircraft is controlled by the autothrottle and autopilot. On
the location of B, the autopilot is disengaged and the human

pilot is required to control the deflection of the elevator so
as to track the reference trajectory. After reaching C, the pilot
is commanded to hold a level flight. Finally, the MC simula-

tion ends when the aircraft is at D. It is noted that the auto-
throttle is engaged during the task.

3.3. Aircraft model

A 6-DOF rigid-body aircraft model is used in this research.22

This model consists of 13 first-order nonlinear equations gov-

erning the engine dynamics, saturation and rate limits of the
actuators. Additionally, this model is equipped with an auto-
throttle and altitude hold control system, and it is assumed
that the real-time aircraft state is displayed on six indicators

without time delay and distortion.

4. Results and discussion

Several typical results of 500 MC simulation are illustrated in
Fig. 2 with the parameters setting in Section 3. Because of the
randomness and uncertainty of input human factors, each

flight trajectory is different with the other. Although the rela-
tionship between input and output can be investigated through
analyzing a series of trajectories, the results are often qualita-

tive. This section will discuss how to use the pattern recogni-
tion method to analyze the large amount of recorded data
for establishing an objective and quantitative relationship
between input human factors and flight performance.

4.1. Sensitivity analysis

Variations of FPI due to the human factor variables are pre-

sented in the form of a Tornado diagram and displayed with
increasing order in Fig. 3. The diagram is developed based
on baseline ±20% of the human factors, as shown in Table 2.

Fig. 3 shows that all of these six human factors are sensitive
to the flight performance in different degrees. In particular, eh
is the most influential one, while PCTh is the least sensitive one.
Fig. 3 Variations of flight performance indices due to variations

of human factors.
These relationships successfully indicate the effectiveness of
the selections of human factors and thus make the quantifica-
tion of human factors possible.

4.2. MC simulation results analysis

All the rewards come from the analysis of the large number of

results generated by the MC simulation. The selection of the
analysis method is a critical step for analyzing the effects of
human factors on flight performance. Traditionally, statistical

methods23 like modern design of experiment (MDOE), analy-
sis of variance (ANOVA), are mainly used as sensitivity anal-
ysis of all the output parameters in contrast to input
parameters; however, these methods are unable to reveal the

quantitative relationship between the input variables and out-
put variables. A pattern recognition method which combines
KDE and k-NN classifier provides a systemic way to con-

cretely rank and quantify the influential factors that directly
influences the flight performance in this research.

KDE is a non-parametric density estimation method to

estimate the PDF of any design variables and it indicates that
all the variables can be compared without normalizing the raw
data or manipulating the data in any way. This method is use-

ful for understanding the MC simulation results when the
KDE is calculated for the two levels of performance data.
Fig. 4 shows the co-plotting and both curves can easily high-
light which human factors are the best discriminators between

poor and good performance runs. Similar trends of density
estimation curves indicate that these factors, such as TRT

and eh, have very similar effects on the two classes of flight per-

formance, whereas the factors that have significantly different
curves imply the inconsistent contributions to the flight perfor-
mance and are usually our main concern. The factors are then

ranked according to the difference between the two curves.
Fig. 4 shows the selected human factors in the order of their
rankings. Obviously, the single most influential factor is eh.
However, contributions of eh to these two flight performance

classes are almost equal. Although the result is encouraging,
there is still no clear boundary between the good and poor per-
formance data with respect to each single human factor. In

other words, we still cannot get the quantitative human fac-
tors. However, the combination of these factors contains a
relatively discernible boundary. Fig. 5 shows the flight perfor-

mance region with respect to the first three influential human
factors in the spatial coordinates; fortunately, there is a specific
spatial pattern in this case. There is a spatial boundary

between the good performance region labeled by dots and
poor performance region labeled by circles. This boundary is
the exact boundary of flight performance margin. When the
human factors are limited into this boundary, the performance



Fig. 4 Kernel density estimation for each single human factor.

Human factors quantification via boundary identification of flight performance margin 983
is considered to be good. Thus, the problem of human factors

quantification is simplified into the identification of this
boundary.

Subsequently, the k-NN algorithm is used to determine the
boundary between the good and poor performance data. For

these six human factors, the first three influential factors are
selected to illustrate the process of boundary quantification
and the overall process is shown in Figs. 6 and 7. Fig. 6(a)

and Fig. 7(a) show the MC data in 2D projection view from
Fig. 5. The classification typically involves partitioning sam-
ples into training and testing categories. Let the MC data be

the training sample and then create a map of 2D region as
the testing sample. The detailed process of k-NN algorithm
is discussed in Ref.12. Fig. 6(b) and Fig. 7(b) illustrate the
results of classification. In these figures, good performance

regions are labeled with dots, and poor performance regions
are labeled with circles, and the boundary regions are labeled
with asterisks. Hence, the good performance region is com-

pletely separated from the poor performance region. The plot
clearly points out the boundary of the human factors when the
Fig. 5 Flight performance region with respect to the first three

influential human factors.
flight performance is considered to be good. For example,

Fig. 7(b) shows that if the human factors are constrained in
Fig. 6 Flight performance region with eh and ede.



Fig. 7 Flight performance region with eh and td.

Fig. 8 Results of validation simulation and the boundary of

input human factors.
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the boundary, the contributions of eh and td to poor perfor-
mance will be dramatically diminished. So far, the quantifica-

tion of human factors that greatly influence the flight
performance has been accomplished through building a pilot
model, simulating by MC simulation, and recognizing the

boundary of the flight performance margin by using the pat-
tern recognition method.

4.3. Experiment of validation

Given the goal of the research is to quantify the human factors
with consideration of the flight performance margin; the
method requires validation with the analysis results. We here

select a sub-region from the dot region in Fig. 6(b) and
Fig. 7(b), for example, eh e [0, 2] rad, td e [0.05, 0.45] s, ede e

[�0.08�, 0.08�], and set up a new MC simulation using these

specific limitations of the above three human factors as inputs,
illustrated by the cuboid in Fig. 8. The other random input
human factor variables are still expected to follow the setting

in Table 1. The results of 500 MC simulations and the input
boundary of the three human factors are shown in Fig. 8. It
is seen that only six simulation labeled circles are in the region

of poor performance. The appearance of unexpected simula-
tions is mainly due to the fact that the limitations are only
applied to the three most influential human factors and the
‘‘good’’ region is only effective in statistics. The dramatical
improvement of good performance ratio indicates the effec-
tiveness of this approach.

5. Conclusions

(1) A novel approach is proposed to quantify the human

factors based on flight performance margin. Two proce-
dures are included in this approach: building a pilot
model, and analyzing the MC data by a pattern recogni-
tion method that combines KDE algorithm and k-NN

algorithm.
(2) An implementation of the pilot model for a simple alti-

tude tracking task is used to demonstrate its effective-

ness and practicability. The results indicate that all
these human factors are influential to the flight perfor-
mance. Furthermore, three factors are the best discrim-

inators between poor and good performance. The
problem of human factors quantification is simplified
into the identification of the flight performance margin
by pattern recognition method.

(3) The new method is validated through a new MC simula-
tion experiment with the setting of human factors in the
‘‘good’’ range. This method can be used to quickly ana-

lyze human factor related activities such as the objective
and quantitative evaluation on the handling quality,
flight safety, and ergonomics.
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