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SUMMARY

Vascular endothelial growth factor C (VEGF-C) is a
potent lymphangiogenic cytokine that signals via
the coordinated action of two cell surface receptors,
Neuropilin-2 (Nrp2) and VEGFR-3. Diseases associ-
atedwith both loss and gain of VEGF-C function, lym-
phedema and cancer, respectively, motivate studies
of VEGF-C/Nrp2 binding and inhibition. Here, we de-
monstrate that VEGF-C binding to Nrp2 is regulated
by C-terminal proteolytic maturation. The structure
of the VEGF-C C terminus in complex with the ligand
binding domains of Nrp2 demonstrates that a cryptic
Nrp2 binding motif is released upon proteolysis, al-
lowing specific engagement with the b1 domain of
Nrp2. Based on the identified structural requirements
for Nrp2 binding to VEGF-C, we hypothesized that
the endogenous secreted splice form of Nrp2,
s9Nrp2, may function as a selective inhibitor of
VEGF-C. We find that s9Nrp2 forms a stable dimer
that potently inhibits VEGF-C/Nrp2 binding and
cellular signaling. These data provide critical insight
into VEGF-C/Nrp2 binding and inhibition.

INTRODUCTION

The vascular endothelial growth factor (VEGF) family of cytokines

are critical regulators of endothelial cell function. There are five

VEGF family members: VEGF-A, -B, -C, -D, and placental growth

factor (PlGF). Of these five, VEGF-C and VEGF-D selectively con-

trol lymphangiogenesis. While they show partially overlapping

biological activity and physical properties, VEGF-C is essential

for viability, whereas VEGF-D is not (Baldwin et al., 2005; Kark-

kainen et al., 2004). Endothelial cells of homozygous VEGF-C

knockoutmice do not sprout to form lymphatic vessels, which re-

sults in an alymphatic embryo and embryonic lethality (Karkkai-

nen et al., 2004). Overexpression of VEGF-C results in selective

induction of lymphatic but not vascular endothelial cell prolifera-

tion and lymphatic vessel enlargement (Jeltsch et al., 1997). In

addition to its critical physiological role, VEGF-C signaling is

also important for pathological lymphangiogenesis, which is
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associated with both aberrant loss of function in lymphedema

(Saaristo et al., 2002) and gain of function in tumorigenesis and

metastasis (Caunt et al., 2008; Ellis, 2006; Stacker et al., 2002).

VEGF-C signals via the coordinated activity of two families of

endothelial cell surface receptors, the VEGF receptor (VEGFR)

family of receptor tyrosine kinases (RTK) (reviewed in Stuttfeld

and Ballmer-Hofer, 2009) and the Neuropilin (Nrp) family of cor-

eceptors (reviewed in Parker et al., 2012a). VEGF-C function is

specifically mediated through VEGFR-2/3 (Joukov et al., 1996;

Kukk et al., 1996; Lymboussaki et al., 1999) and Nrp2 (Karkkai-

nen et al., 2001; Xu et al., 2010), with VEGF-C capable of simul-

taneously engaging both families of receptors (Favier et al.,

2006). VEGFR-2/3 have dual functionality in both angiogenesis

and lymphangiogenesis (reviewed in Lohela et al., 2009). In

contrast, Nrp2 knockout mice display normal angiogenesis but

abnormal lymphatic vessel development (Yuan et al., 2002),

similar to the tissue-specific function observed in the VEGF-C

knockout (Karkkainen et al., 2004). Intriguingly, it has also been

demonstrated that Nrp2 can function in VEGF-C signaling inde-

pendent of its role as a coreceptor for VEGFR (Caunt et al., 2008).

Eachmember of the VEGF family of ligands is produced inmul-

tiple forms by either alternative splicing (e.g., VEGF-A, -B, and

PlGF) or proteolytic processing (e.g., VEGF-C and -D) (Holmes

and Zachary, 2005). In all cases, an invariant core cystine-knot

domain, which specifically interacts with VEGFR, is combined

with a variable C-terminal domain. VEGF-C is synthesized as a

proprotein with N- and C-terminal domains flanking the central

core cystine-knot domain. Prior to secretion, the C-terminal pro-

peptide is cleaved followed by extracellular cleavage of the N ter-

minus (Joukov et al., 1997). These processing events critically

alter both the physiological and pathological bioactivity of

VEGF-C (Siegfried et al., 2003). The mature dual-processed

VEGF-C shows dramatically enhanced stimulatory activity

in situ (McColl et al., 2003) and loss of C-terminal processing ab-

lates function in vivo (Khatib et al., 2010). However, the physical

basis for the enhanced activity of the mature form of VEGF-C re-

mains unclear and has been connected to different properties,

including differential receptor binding and interactions with hep-

arin/extracellular matrix (ECM) (Harris et al., 2013; Joukov et al.,

1997; Karpanen et al., 2006). The role of VEGF-C proteolytic

maturation in regulating Nrp2 binding is unknown.

The structural basis for VEGF-C binding to VEGFR-2/3 has

recently been elucidated and was shown to involve the invariant

cystine-knot domain of VEGF-C binding to the N-terminal
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Figure 1. Crystal Structure of the VEGF-C/Nrp2 Complex Reveals the Basis for Proteolytic-Dependent Binding

(A) Organization of the VEGF-C proprotein and site of C-terminal processing (black arrow).

(B) Peptides corresponding to processed (green circle) and unprocessed (black triangle) VEGF-C were assayed for the ability to bind Nrp2-b1b2 as measured by

DSF thermal shift assay. Peptides were added to Nrp2-b1b2 to a final concentration of 0.5 mM and melting was monitored between 20�C and 90�C. All samples

were measured in triplicate, and a representative melting curve is shown for each. RFU, relative fluorescence units.

(C) Processed VEGF-C dose-dependently enhances the Nrp2-b1b2 Tm. Error bars indicate the SD of the three measurements.

(D) Structure of Nrp2-b1b2 (blue) in complex with the C terminus of VEGF-C (green).

(E) Cross-section of the Nrp2 binding pocket demonstrates that the free carboxy terminus of VEGF-C is buried against the Nrp2 C-wall, which is formed by the

third coagulation factor loop.
domains of VEGFR-2 and VEGFR-3 (Leppanen et al., 2010,

2013). However, the structural basis for VEGF-C binding to

Nrp2 remains to be determined. Alternative splicing and proteol-

ysis modify the C-terminal variable region of VEGF and regulate

Nrp binding (Makinen et al., 1999; Parker et al., 2012c; Soker

et al., 1998). It has been demonstrated that Nrp1 binds the C-ter-

minal basic domain of the Semaphorin-3 (Sema3) and VEGF

family of ligands (He and Tessier-Lavigne, 1997; Soker et al.,

1996), utilizing a binding pocket for ligands that contain a C-ter-

minal arginine (Parker et al., 2010, 2012c; Vander Kooi et al.,

2007; von Wronski et al., 2006). Importantly, the Sema3 family

of ligands undergo furin-dependent proteolytic maturation within

their C-terminal domain, a process that liberates an extended

basic sequence and directly regulates bioactivity and Nrp bind-

ing (Adams et al., 1997; Parker et al., 2010, 2013).

Nrp2-dependent VEGF-C signaling is important in a variety

of tumors and overexpression of these factors is correlated

with advanced-stage disease and poor prognosis (Ellis, 2006;

Stacker et al., 2002). Thus, specific Nrp2/VEGF-C inhibitors are

of clinical interest. Soluble receptor fragments are common

endogenous inhibitors (Albuquerque et al., 2009; Ambati et al.,

2006; Kendall and Thomas, 1993; Rose-John and Heinrich,

1994). A soluble Nrp1 isoform was first identified as an endoge-

nous inhibitor of prostate cancer in vivo (Gagnon et al., 2000).

Soluble extracellular domain fragments can also be engineered

for use clinically, including VEGF-trap (Aflibercept), a chimeric

VEGFR-1/2-Fc fusion, which is an inhibitor of VEGF-A (Holash

et al., 2002). A soluble splice form of Nrp2, s9Nrp2, has been

identified at the transcript level (Rossignol et al., 2000). s9Nrp2

is produced by intron inclusion, which contains an in-frame

stop codon. This stop codon is located prior to the transmem-

brane domain and is thus predicted to produce a secreted

form of Nrp2. Interestingly, the insertion occurs in the middle of

the second coagulation factor domain (b2), rather than in an in-
678 Structure 23, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights
terdomain region. The two Nrp2 coagulation factor domains

(b1b2) form an integral unit (Appleton et al., 2007), and thus,

the nature of the production and function of s9Nrp2 is unclear.

Further, domains b1b2 of Nrp2 have been demonstrated to

bind VEGF-C (Karpanen et al., 2006), bringing into question

whether this soluble splice form contains the structural require-

ments necessary to bind and sequester its ligands.

Here, we demonstrate that removal of the VEGF-C C-terminal

propeptide directly regulates binding to Nrp2. The structure of

the mature VEGF-C C terminus in complex with Nrp2 demon-

strates that a cryptic Nrp2-binding motif is liberated upon C-ter-

minal processing. This offers the first structural insight into the

physical basis for VEGF-C binding to Nrp2, showing that the pro-

teolytically liberatedC-terminal arginine of VEGF-Cdirectly binds

the Nrp2 b1 domain. Mutagenesis of both VEGF-C and Nrp2

confirms the critical nature of the VEGF-C C-terminal sequence

in Nrp2-b1 binding. Understanding the physical interactions un-

derlying VEGF-C/Nrp2 binding led us to consider mechanisms

for VEGF-C inhibition. The secreted Nrp2 splice form, s9Nrp2,

contains an intact Nrp2 b1 domain but a subsequent stop codon,

and we assessed its function as a pathway-specific inhibitor.

Strikingly, this soluble receptor forms a disulfide-linked dimer

with two tightly integrated b1 domains and functions as a potent

inhibitor of VEGF-C binding to Nrp2.

RESULTS

Structural Basis for Proteolytic-Dependent VEGF-C
Binding to Nrp2
VEGF-C is synthesized as a proprotein with N- and C-terminal

propeptides. Removal of the VEGF-C C-terminal propeptide crit-

ically regulates its bioactivity. C-terminal processing of VEGF-C

liberates a polypeptide stretch rich in basic amino acids that ter-

minates with a diarginine sequence (Figure 1A), a structural motif
reserved



Table 1. Data Collection and Refinement Statistics

Construct Nrp2-VEGF-C Nrp2-T319R s9Nrp2
B

Data Collection

Beamline APS 22-ID APS 22-BM APS 22-ID

Wavelength 1.0000 1.0000 1.0000

Space group P21 P212121 P21212

Cell dimensions (Å) 41.05, 120.81, 69.84 34.90, 70.76, 122.97 69.36, 91.39, 67.33

Cell dimensions (�) 90.0, 103.29, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Unique reflections 44,081 12,223 16,303

Completeness (%) 90.6 (82.0) 96.4 (83.2) 94.1 (79.8)

Resolution (Å) 1.95 (2.02–1.95) 2.40 (2.49–2.40) 2.40 (2.49–2.40)

Rmerge (%) 9.9 (46.6) 8.0 (29.2) 9.9 (32.7)

Redundancy 5.1 (4.2) 6.8 (5.9) 4.4 (4.1)

I/s(I) 13.1 (3.0) 29.4 (5.1) 12.3 (3.2)

Refinement

Resolution limits (Å) 20.00 (1.95) 20.00 (2.40) 20.00 (2.40)

No. reflections/no. to compute Rfree 41,511/2,140 11,490/586 15,439/821

R(Rfree) 21.0 (24.1) 20.1 (25.5) 21.0 (26.4)

No. protein residues 632 313 361

No. solvent/ion molecules 333 123 107

Root-mean-square deviation bond (Å) 0.006 0.008 0.006

Root-mean-square deviation angle (�) 1.11 1.19 1.04

Protein Geometry

Ramachandran outlier/favored (%) 0/96.7 0/96.1 0/96.7

Residues with bad bonds/angles 0/0 0/0 0/0

Rotamer outliers 0 0 0
conserved across the VEGF and Sema3 family of ligands and

known to be important for Nrp1 binding. Thus, we hypothesized

that processing of VEGF-Cmay directly regulate a physical inter-

action with Nrp2. To test this hypothesis, we produced peptides

corresponding to the unprocessed (215-RQVHSIIRRSLPA-227)

and processed (215-RQVHSIIRR-223) VEGF-C C terminus and

measured the ability of each peptide to bind Nrp2 domains

b1b2 using a differential scanning fluorimetry (DSF) thermal shift

assay (Figure 1B). Processed VEGF-C significantly stabilized

Nrp2-b1b2 (Tm 48.8�C ± 0.06�C to 50.3�C ± 0.05�C), while un-

processed VEGF-C showed no effect (Tm 48.4�C ± 0.04�C).
Further, the processed VEGF-C peptide showed dose-depen-

dent saturable binding to Nrp2-b1b2 with an apparent dissocia-

tion constant KD = 199 mM ± 71 mM (Figure 1C). These data

demonstrate that C-terminal proteolytic maturation directly reg-

ulates VEGF-C binding to Nrp2.

To define the physical basis for proteolytic-dependent binding

of VEGF-C to Nrp2, we determined the crystal structure of the

processed VEGF-C C terminus in complex with Nrp2 domains

b1b2. The C-terminal five amino acids of mature VEGF-C (219-

SIIRR-223), which are strictly conserved across species and

also with VEGF-D, were fused to the C terminus of human Nrp2

domains b1b2 (residues 276–595). The fusion protein was ex-

pressed in Escherichia coli, purified, and crystallized. The struc-

ture was solved by molecular replacement and was refined to

a resolution of 1.9 Å (Figure 1D; Table 1). There were two mole-

cules in the asymmetric unit oriented in an antiparallel fashion
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(Figure S1A). Both molecules demonstrated specific binding of

the VEGF-C encoded residues via an intermolecular interaction

with a symmetry-related molecule.

Analysis of the structure reveals that VEGF-C (green) engages

a binding pocket formed by the Nrp2-b1 (blue) coagulation factor

loops (Figures 1D, S1B, and S1C). Indeed, this interloop cleft

uniquely accommodates the C-terminal residue of processed

VEGF-C (Figure 1E). The free carboxy terminus of VEGF-C is in-

tegrated into the binding pocket through interactions with resi-

dues from the third coagulation factor loop (L3) of Nrp2-b1,

which form a wall at one side of the binding pocket (C-wall). Spe-

cifically, an extensive hydrogen bond network forms between

the VEGF-C-free C-terminal carboxylate and the side chains of

the C-wall residues S349, T352, and Y356 (Figure 1E). Impor-

tantly, the position of the C-wall would preclude binding of

the unprocessed protein, providing a physical mechanism

for the observed proteolytic-dependent binding of VEGF-C to

Nrp2-b1b2.

Characterization of the VEGF-C/Nrp2 Interaction
Clear electron density for the VEGF-C-encoded region was

observed, permitting modeling of both the VEGF-C polypeptide

and interfacing solvent that bridge the twomolecules (Figure 2A).

Analysis of the VEGF-C/Nrp2 interface reveals direct interactions

between VEGF-C and residues within the L1, L5, and L3 loops of

Nrp2-b1 (Figure 2B), the regions that show the largest conforma-

tional changes when comparing the bound structure with the
, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights reserved 679



Figure 2. Mechanism of VEGF-C Binding to Nrp2

(A) Zoom of the intermolecular interface between Nrp2 (blue) and VEGF-C (green) with the 2Fo � Fc electron density map for VEGF-C contoured at 1.0s.

Interfacing water is shown as gray spheres.

(B) Ligplot+ generated representation of the interaction between VEGF-C (green) and Nrp2 (blue). Bond distances (Å) are labeled in black, and water is shown

as gray spheres.

(C) Nrp2 binding was compared between VEGF-C and VEGF-C R223E. Binding was measured in triplicate and is reported as mean ± SD (*p < 0.05). WT,

wild-type.

(D) Superimposition of the VEGF-A HBD/Nrp1 complex (PDB 4DEQ) and the tuftsin/Nrp1 complex (PDB 2ORZ) onto the structure of the VEGF-C/Nrp2 complex

demonstrates the shared and unique modes of engagement within this ligand/receptor family.
previously reported apo structure (Figure S2) (Appleton et al.,

2007). In addition to the hydrogen bond network formed be-

tween the VEGF-C free carboxy terminus and the Nrp2 L3

loop, the side chain of the VEGF-C C-terminal arginine, R223,

forms extensive interactions with the Nrp2 binding pocket. The

guanidinium of VEGF-C R223 forms a salt bridge with the

Nrp2-b1 L5 loop residue D323. In addition, the aliphatic portion

of the R223 side chain displays extensive van der Waals interac-

tions with two tyrosine residues of Nrp2-b1 that demarcate the

sides of the binding pocket, Y299 (L1 loop) and Y356 (L3 loop).

In addition to interactions mediated by VEGF-C R223, there is

a hydrogen bond between the backbone carbonyl of I221 and

the aromatic hydroxyl of Nrp2 Y299.

While protein-protein binding is primarily mediated by direct

interactions between polypeptide chains, interfacing solvent

also plays a critical role in stabilizing protein-protein complexes

(Janin, 1999; Karplus and Faerman, 1994). Three water mole-

cules, two of which bridge the interaction between VEGF-C

and Nrp2, are observed in the binding site. One solvent molecule

facilitates a water-mediated hydrogen bond between the side

chain hydroxyl of Nrp2 T319, located at the base of the binding

pocket, and the side chain guanidinium of VEGF-C R223 (Fig-

ure 2B). Likewise, a second solvent molecule bridges the side

chain carboxylate of Nrp2 E351 and the free carboxylate of

VEGF-C. These solvent-mediated interactions appear to further

stabilize the position of the VEGF-C C terminus within the

Nrp2-b1 binding pocket.

To confirm the critical role of the VEGF-C C terminus, we

mutated the C-terminal arginine of VEGF-C to glutamate

(R223E) and compared the ability of alkaline phosphatase (AP)-

tagged VEGF-C and VEGF-C R223E to bind Nrp2-b1b2 affinity

plates (Figure 2C). Robust binding was observed between AP-

VEGF-C and Nrp2-b1b2, but R223E binding was reduced by

>95%. These data demonstrate that the C-terminal arginine of

mature VEGF-C is necessary for high-affinity Nrp2-b1b2 binding

and confirm the importance of C-terminal propeptide processing
680 Structure 23, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights
within VEGF-C to produce a C-terminal arginine that allows avid

engagement of Nrp2.

The interaction observed between Nrp2-b1 and VEGF-C bur-

ies 374 Å2 surface area of the VEGF-C C terminus. This is com-

parable with that observed for the exon 8 encoded residues of

VEGF-A (338 Å2 buried surface area) (Figure 2D, dark gray)

(Parker et al., 2012c) and tuftsin (328 Å2 buried surface area) (Fig-

ure 2D, light gray) (Vander Kooi et al., 2007) which complex with

an equivalent binding site on Nrp1-b1. Importantly, these li-

gands, like VEGF-C, also contain a C-terminal arginine. All three

ligands traverse the L1 loop, an orientation that is maintained by

the engagement of the carboxy terminus by the C-wall. Collec-

tively, the shared use of a C-terminal arginine in VEGF-A and

VEGF-C explains their ability to bind both Nrp receptors (Karpa-

nen et al., 2006; Parker et al., 2012b), while electrostatic repul-

sion by the L1 loop and adjacent regions account for receptor

selectivity (Figure 2D) (Parker et al., 2012b, 2012c).

Occluding the Nrp2 Interloop Cleft Abolishes Binding
The structure of VEGF-C in complex with Nrp2 reveals a critical

role for the Nrp2-b1 interloop cleft, which forms the VEGF-C

binding pocket. To confirm that the Nrp2 binding pocket is

responsible for VEGF-C binding, we carried out site-directed

mutagenesis of Nrp2-b1b2 to generate a construct with an

occluded binding pocket. Specifically, T319, a residue at the

base of the Nrp2-b1 interloop cleft, was mutated to arginine

(Nrp2-T319R). We determined the crystal structure of Nrp2-

T319R to a resolution of 2.4 Å (Figure 3A; Table 1). The R319

side chain showed clear electron density extending into the inter-

loop cleft between the two binding pocket tyrosines, Y299 and

Y356 (Figure 3B). Superimposing the VEGF-C/Nrp2 complex

onto Nrp2-T319R demonstrates that the binding site occupied

by VEGF-C is occluded in the Nrp2 mutant (Figure 3C). The

Nrp2-T319R mutant was then used to analyze the contribution

of the interloop cleft to VEGF-C binding. We compared the bind-

ing of VEGF-C with Nrp2-b1b2 and Nrp2-T319R (Figure 3D).
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Figure 3. Crystal Structure and VEGF-C Binding Properties of Nrp2-

T319R

(A) Structure of Nrp2-T319R with the stick representation for T319R shown in

red.

(B) Zoom of the Nrp2-T319R binding pocket. The blue mesh illustrates the

2Fo � Fc electron density map for R319 contoured at 1.0s.

(C) Superimposition of VEGF-C (green) onto the structure of Nrp2-T319R

demonstrates that the binding pocket normally occupied by VEGF-C is

blocked in the mutant.

(D) VEGF-C binding was compared between Nrp2-b1b2 and Nrp2-T319R.

Binding was measured in triplicate and is reported as mean ± SD (*p < 0.05).
While robust binding was observed between AP-VEGF-C and

Nrp2-b1b2, binding to Nrp2-T319R was completely abolished.

These data confirm that the interloop cleft, formed by the

Nrp2-b1 coagulation factor loops, forms a structure that uniquely

accommodates the C terminus of VEGF-C to mediate binding of

the C-terminally processed ligand.

A Dimeric Soluble Nrp2 Splice Form
Based on the specific binding of VEGF-C to the Nrp2 b1 domain,

we hypothesized that the previously identified splice form of

Nrp2, s9Nrp2, could function as a selective inhibitor of VEGF-C.

s9Nrp2 is an alternative Nrp2 splice form that arises from intron

inclusion in the b2 domain (Figure 4A). An in-frame stop codon

encoded within the intron is predicted to result in termination

of translation prior to the transmembrane domain, and thus pro-

duction of a secreted Nrp2 receptor that contains the first two

CUB domains (a1 and a2) and the first coagulation factor domain

(b1), but only a portion of the coding sequence for the second

coagulation factor domain (b2). Given that the b1 domain of

Nrp2 is solely responsible for VEGF-C binding, we hypothesized

that s9Nrp2 may be able to effectively sequester VEGF-C,

thereby functioning as an inhibitor. However, it is unknown
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whether the s9Nrp2 transcript produces a functional protein,

since s9Nrp2 retains residues coding only a portion of the b2

domain (114 of 159 residues). Indeed, s9Nrp2 lacks the coding

region for three of the eight core b strands that normally integrate

to form the distorted jelly-roll fold that typifies the b1 and b2 do-

mains of Nrp. In addition, it was unknown whether s9Nrp2 could

accommodate the loss of the canonical C-terminal capping

cysteine of the b2 domain. To investigate the physical and func-

tional activity of s9Nrp2, we tested the ability of this isoform to be

secreted from eukaryotic cells. We produced s9Nrp2 and a

construct containing solely the ligand binding coagulation factor

domains, s9Nrp2
B (Figure 4A), as a human growth hormone

(Hgh)-fusion in Chinese hamster ovary (CHO) cells. Western

blot analysis demonstrated that both constructs were efficiently

produced and secreted (Figure 4B). We next produced s9Nrp2
B

protein in bacteria. Analysis of s9Nrp2
B by reducing SDS-PAGE

revealed that purified s9Nrp2
B, while running with a larger

apparent molecular weight (MW) than Nrp2-b1 alone, was

smaller than expected from its primary sequence (Figure 4C,

observed MW = 22 kDa, expected MW = 34 kDa). Mass spec-

trometry confirmed that s9Nrp2
B is an essentially homogeneous

single species with MW = 22,775 Da ± 20 Da. These data,

together with the observed intact N-terminal His-tag, indicate

that s9Nrp2
B is cleaved C-terminal to E457 (predicted MW =

22,792 Da). Thus, the proteolyzed s9Nrp2
B contains only a single

cysteine residue from the b2 domain (C434), which normally

forms an intradomain disulfide. Surprisingly, under nonreducing

conditions, s9Nrp2
B ran with an apparent MW = 38 kDa, indi-

cating the formation of a disulfide-linked intermolecular dimer

via the free b2 domain cysteine (Figure 4C). Predominantly disul-

fide-linked dimeric protein is also observed in s9Nrp2
B protein

purified from CHO-cell conditioned media (Figure S3A). The dif-

ference in oligomeric state was evident from size exclusion

chromatography (SEC) (Figure 4D). Nrp2-b1 eluted off SEC

with an apparent MW = 16 kDa (gray line), while s9Nrp2
B had

an apparent MW = 38 kDa (black line), consistent with the

SDS-PAGE analysis.

s9Nrp2
B Is a Uniquely Potent Inhibitor of VEGF-C/Nrp2

Binding
To understand the structural arrangement of the s9Nrp2

B dimer,

we determined the crystal structure of s9Nrp2
B to a resolution of

2.4 Å (Figure 5A; Table 1). Continuous electron density was

observed from F275 to S453, consistent with the C terminus

defined using mass spectrometry. A single dimer was present

in the asymmetric unit, with the base of each b1 domain apposed

to the other, thus forming an extended antiparallel dimer. The

orientation of the dimer is stabilized by both the intermolecular

disulfide and, unexpectedly, a unique dimeric helical bundle

formed by residues from the b1-b2 linker and b2 domain (Fig-

ure 5B). The residues that form this unique helix (residues 428–

453) display dramatic structural reorganization relative to that

observed in the intact b2-domain, where they form an extended

sheet and loop motif (Figure 5C). The C-terminal helix runs

approximately 20� off parallel from the base of the b1 domain,

an angle that is maintained by a cluster of hydrophobic residues

at the hinge region between the helix and domain b1. The helix

both caps the b1 domain and mediates the intermolecular inter-

action interface with the other monomer of the s9Nrp2
B dimer.
, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights reserved 681



Figure 4. s9Nrp2
B Forms a Disulfide-Linked

Dimer

(A) Domain organization of Nrp2, s9Nrp2, and the

protein fragment used for our studies, s9Nrp2
B.

The intron 9-encoded sequence is indicated,

which includes the in-frame stop codon (*).

(B) Western blot analysis of Hgh-tagged s9Nrp2

and s9Nrp2
B expressed in CHO cells.

(C) Nonreducing and reducing SDS-PAGE anal-

ysis of Nrp2-b1 and s9Nrp2
B.

(D) The oligomeric state of s9Nrp2
B (black line) was

analyzed by size exclusion chromatography.

Nrp2-b1 was run as a reference (gray line).
The intermolecular interface is composed of both helix-helix in-

teractions, which are mostly hydrophobic in nature (Figure 5B),

and helix-b1 interactions, which are mostly hydrophilic in nature.

Truncation of the helix decreased the amount of dimeric species

formed, demonstrating a role for the helix in the formation of a

stable disulfide-linked dimer (Figure S3B).

The two binding pockets within the s9Nrp2
B dimer are posi-

tioned 71 Å apart, suggesting that it could simultaneously

engage both subunits of the VEGF-C dimer, which is 68 Å wide

(Leppanen et al., 2010). Thus, we hypothesized that coengage-

ment of both VEGF-C monomers by s9Nrp2
B would allow the

dimer to function as a uniquely potent inhibitor of VEGF-C/

Nrp2 binding. To test this hypothesis, we compared the inhibi-

tory potency of ATWLPPR, an optimized peptide inhibitor of

Nrp that functions by competitive binding (Parker and Vander

Kooi, 2014; Starzec et al., 2007), with Nrp2-b1 and s9Nrp2
B,

both of which function as soluble competitors through seques-

tration of VEGF-C (Figure 5D). ATWLPPR showed dose-depen-

dent inhibition of VEGF-C binding to Nrp2 with an inhibitory

concentration 50% (IC50) = 10 mM (gray line), consistent with

its modest reported potency. Next, we examined the ability of

Nrp2-b1 to inhibit binding (blue line). Nrp2-b1 sequestered

VEGF-C with improved potency compared with the peptide in-

hibitor, with an IC50 = 1.5 mM. As expected for a monomeric

competitive inhibitor, the Hill slope was approximately –1

(ATWLPPR = –1.08 andNrp2-b1 = –0.97). These data are consis-

tent with independent engagement of each VEGF-C monomer

by a single Nrp2-b1. Next, we measured the inhibitory potency

of s9Nrp2
B (orange line). Strikingly, s9Nrp2

B potently seques-

tered VEGF-C with an IC50 = 250 nM, a significant improvement

in potency from both the peptide inhibitor and Nrp2-b1. In addi-

tion, the Hill slope for s9Nrp2
B was –1.5. Thus, the enhanced po-

tency of s9Nrp2
B is due to its ability to synergistically sequester
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the VEGF-C dimer through simultaneous

and cooperative engagement of the two

VEGF-C monomers.

VEGF-C signaling requires the coordi-

natedaction ofNrp2and theRTKVEGFR3

(Xu et al., 2010). Nrp2 enhances signaling

via VEGF-C through both a direct interac-

tion with VEGF-C and via coupling with

VEGFR3 (Favier et al., 2006). Thus, while

s9Nrp2
B could inhibit VEGF-C signaling

by sequestering VEGF-C ligand from

Nrp2, it is also possible that s9Nrp2
B

could interact with VEGFR3 and actually enhance VEGF-C bind-

ing and signaling. Therefore, we tested the effect of s9Nrp2
B on

VEGF-C binding to VEGFR3. While s9Nrp2
B blocked VEGF-C

binding to Nrp2, it showed no effect on VEGF-C binding to

VEGFR3, indicating that the binding events are independent

(Figure 5E).

We extended our studies to assess the efficacy of s9Nrp2
B

as an inhibitor of Nrp2 signaling in prostate cancer. Nrp2 and

VEGF-C expression have both been reported to function in the

survival and aggressiveness of prostate cancer (Goel et al.,

2012; Muders et al., 2009). We assessed the ability of Nrp inhibi-

tion to reduce the formation of prostatospheres by C4-2 cells.

Incubation with s9Nrp2
B resulted in a significant decrease in

prostatosphere formation (Figure 5F). Incubation with the spe-

cific Nrp inhibitor C-furSema (Goel et al., 2013; Parker et al.,

2010) likewise significantly reduced prostatosphere formation,

whereas the control C-Sema did not, demonstrating the specific

role for Nrp in prostatosphere formation. These data demon-

strate that s9Nrp2
B can effectively sequester VEGF-C and raises

the exciting possibility of using engineered Nrp ectodomains as

inhibitors of pathological Nrp-dependent signaling (Figure 5G).

DISCUSSION

Structural characterization of the mechanism for VEGF-C bind-

ing to Nrp2 represents an important step for understanding the

physiological and pathological activity of VEGF-C. These data

also inform the rational design of specific VEGF-C/D antago-

nists, including s9Nrp2
B, which potently inhibits VEGF-C/Nrp2

binding and represents a potential therapeutic avenue. Collec-

tively, these results have important implications for interpreting

both the aberrant loss and gain of function in the VEGF-C/Nrp2

signaling axis that critically underlies a number of disease states.



Figure 5. Crystal Structure and Inhibitory Properties of s9Nrp2
B

(A) Crystal structure of the s9Nrp2
B dimer (chain A, light orange; chain B, dark orange). The intermolecular disulfide is shown in black and the Nrp2-b1 binding

pockets are labeled with arrows.

(B) Zoom of the dimeric helical bundle with the 2Fo � Fc electron density map contoured at 1s.

(C) The residues of the Nrp2 b1-b2 linker and b2 domain show a dramatic structural reorganization from an extended loop in the b1b2 sequence (blue) to an

extended helix in the s9Nrp2
B dimer (orange).

(D) ATWLPPR (gray), Nrp2-b1 (blue), and s9Nrp2
B (orange) were assayed for the ability to inhibit VEGF-C binding to Nrp2. ATWLPPR inhibited binding with

an IC50 = 10 mM (log[IC50] =�4.98 ± 0.03), Nrp2-b1 inhibited binding with an IC50 = 1.5 mM (log[IC50] =�5.82 ± 0.09), and s9Nrp2
B inhibited binding with an IC50 =

250 nM (log[IC50] = �6.60 ± 0.08).

(E) s9Nrp2
Bwas assayed for the ability to alter VEGF-C binding to VEGFR3. Addition of 4 mMs9Nrp2

B fully inhibited VEGF-C/Nrp2 binding but showed no effect on

VEGF-C/VEGFR3 binding.

(F) Inhibition of C4-2 cell prostatosphere formation was used to assess the biological activity of s9Nrp2
B. Prostatosphere formation was compared in the absence

and presence of s9Nrp2
B, as well as with C-furSema (positive control) and C-Sema (negative control).

(G) Model illustrating the mechanism of action for s9Nrp2
B. s9Nrp2

B sequesters VEGF-C and prevents activation of the VEGFR3/Nrp2 signaling complex. All

inhibition experiments were measured in triplicate and reported as mean ± SD (*p < 0.05).
With complementary biochemical and structural approaches,

we show that VEGF-C C-terminal proteolysis is required for Nrp2

binding. The requirement for proteolytic processing is deter-

mined by the position of the Nrp2 C-wall, formed by the L3 coag-

ulation factor loop residues, which specifically engages the

VEGF-C free carboxy terminus, precluding binding of unpro-

cessed protein. These results provide critical insight for inter-

preting the altered in vitro and in vivo functionality of alternative

VEGF-C forms. While both N- and C-terminal processing regu-

late VEGF-C activity (Joukov et al., 1997; McColl et al., 2003),

processing at these sites is not functionally equivalent. Indeed,

loss of C-terminal processing is uniquely detrimental, fully

ablating VEGF-C function in vivo (Khatib et al., 2010), which we

demonstrate blocks Nrp2 binding.
Structure 23
The loss of VEGF-C binding to Nrp2-T319R, a mutant with an

occluded binding pocket, demonstrates the use of a C-terminal

arginine for ligand engagement. Indeed, the VEGF-C C-terminal

arginine side chain and free carboxylate form extensive interac-

tions with the Nrp2-b1 binding pocket. Interestingly, VEGF-C is

not the only VEGF family member that, in the absence of post-

translational modification, lacks a C-terminal arginine. Of the

five VEGF family members, three contain Nrp binding domains

that lack this structural motif (VEGF-C, VEGF-D, and VEGF-

B186). VEGF-D, a close structural and functional homolog of

VEGF-C, is processed at an equivalent site in its C terminus to

produce a C-terminal arginine (Stacker et al., 1999) and thus

likely utilizes a similar binding mode to Nrp2. This observation

provides additional functional insight, as loss of VEGF-D
, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights reserved 683



C-terminal processing also ablates function in vivo (Harris et al.,

2013). There are three VEGF-B isoforms, VEGF-B167, VEGF-

B127, and VEGF-B186, all of which differ in their C-terminal

domain (Olofsson et al., 1996a, 1996b). Characterization of

VEGF-B186 demonstrated that it exhibited proteolytic-depen-

dent binding to Nrp1 and identified the site of proteolysis as

R227 (Makinen et al., 1999). Thus, the mechanism of proteo-

lytic-dependent VEGF-C binding to Nrp2 has broad explanatory

power for understanding Nrp binding across the VEGF family.

Determining the structural basis for VEGF-C signaling via Nrp2

informs ongoing studies to describe the effect of signaling defi-

ciency on human disease. Deficient VEGF-C signaling via Nrp2

has significant implications for both primary and secondary lym-

phedema. Mutations in both VEGFR-3 (Karkkainen et al., 2000)

and VEGF-C (Gordon et al., 2013) have been demonstrated to

underlie hereditary lymphedema and Nrp2 has been identified

as an additional candidate gene (Ferrell et al., 2008; Karkkainen

et al., 2001). In addition, both VEGF-C and Nrp2 have recently

been identified as candidate genes for the development of sec-

ondary lymphedema following surgery in breast cancer (Mia-

skowski et al., 2013). The structural insights gleaned from the

VEGF-C/Nrp2 complex also provide an important molecular ba-

sis for interpreting emerging exome sequencing data that has

identified Nrp2 variants in close proximity to the ligand binding

interface. Intriguingly, a stringent examination of exome se-

quencing data has reported both common and rare Nrp2 vari-

ants in human populations (Tennessen et al., 2012). Several of

these variants are located in the coagulation factor loops of

Nrp2-b1, the region to which VEGF-C binds. Specifically, there

are two reported variants in the L5 loop (N321I and L322M),

which are located proximal to the critical salt bridge formed by

D323, and two in the L3 loop (Q353H and N354K). The structural

data presented here provide a rationale for examining specific

coagulation factor loop variants for loss of function on both a

physical and functional level.

As opposed to aberrant VEGF-C loss of function in lymphe-

dema, aberrant activation of VEGF-C signaling via Nrp2 is asso-

ciated with cancer initiation, survival, and progression (Ellis,

2006; Stacker et al., 2002). The Nrp2/VEGF-C signaling axis con-

tributes to tumorigenesis via multiple mechanisms. Mimicking its

physiological function, VEGF-C signaling via Nrp2 stimulates

lymphatic vessel recruitment to tumors and directly contributes

to cancer metastasis (Caunt et al., 2008). Importantly, the role

of VEGF-C and Nrp2 in tumorigenesis is not exclusively associ-

ated with aberrant lymphangiogenesis. Indeed, in situ studies

have demonstrated that autocrine VEGF-C signaling in breast

cancer cells stimulates cellular motility (Timoshenko et al.,

2007). Further, recent reports indicate that cancer cell survival

is enhanced through VEGF-C/Nrp2-dependent autophagy

(Stanton et al., 2012) and that autocrine Nrp2 signaling maintains

the population of cancer stem cells (Goel et al., 2013). VEGF-C

also functions to protect prostate cancer cells from oxidative

stress in an Nrp2-dependent fashion (Muders et al., 2009).

Thus, selective inhibition of Nrp2 represents a promising, multi-

pronged anticancer therapeutic strategy.

Secreted splice forms of angiogenic receptors have essential

roles in vivo (Albuquerque et al., 2009; Ambati et al., 2006; Ken-

dall and Thomas, 1993) and have been engineered to serve as

therapeutic inhibitors that block aberrant pathway activation by
684 Structure 23, 677–687, April 7, 2015 ª2015 Elsevier Ltd All rights
ligand sequestration (Stewart, 2012). Here, we demonstrate

that the alternative Nrp2 splice form, s9Nrp2
B, potently seques-

ters VEGF-C and inhibits binding to Nrp2. The biological function

and localized tissue-specific expression of s9Nrp2 are of sig-

nificant interest. Indeed, s9Nrp2 may be analogous or comple-

mentary to sVEGFR-2, the secreted splice form of VEGFR-2

that functions as an endogenous lymphangiogenesis inhibitor

(Albuquerque et al., 2009). VEGF-D also functions in lymphatic

angiogenesis and has been shown to have partially overlapping

biological functionwith VEGF-C and important pathological func-

tions (Haiko et al., 2008; Harris et al., 2013; Karpanen et al., 2006).

The conservation of Nrp2-interacting residues between VEGF-C

and VEGF-D strongly suggests that s9Nrp2
B will equivalently

sequester both VEGF-C and VEGF-D. In contrast, the heparin-

binding domain of VEGF-A contains specificity determinants

that limit binding to Nrp2 (Parker et al., 2012b, 2012c). Thus,

s9Nrp2
B is likely to selectively sequester the lymphangiogenic-

specific VEGF family members, VEGF-C and VEGF-D.

The practice of engineering inhibitormultimerization to increase

potency is well established for soluble receptor fragments. Most

commonly, soluble receptors are dimerized by expression as an

Fc fusion protein (e.g., VEGF-trap). s9Nrp2
B represents a unique

mechanism for generation of a multimeric protein that maintains

the benefits of avidity but does not require introduction of an

exogenous polypeptide sequence. Additional optimization of

s9Nrp2
B potency, selectivity, and stability is an important future

direction for the development of a therapeutically useful inhibitor.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Human Nrp2-b1b2 (residues 276–595), human Nrp2-b1 (residues 276–430),

human Nrp2-T319R (residues 276–595 with T319R mutation), s9Nrp2
B (resi-

dues 275–555: isoform O60462-6), s9Nrp2
B-D-helix (residues 276–436), and

the Nrp2-b1b2/VEGF-C fusion were expressed in E. coli as His-tag fusion pro-

teins from pET28b (Merck). Proteins were purified via immobilizedmetal ion af-

finity chromatography (IMAC) and either heparin affinity or SEC. AP-VEGF-C

(residues 108–223) wild-type and mutant and Hgh-tagged proteins were pro-

duced by transient transfection of CHO cells (Aricescu et al., 2006). The

VEGFR-3 extracellular domain was produced via baculovirus-mediated

expression (residues 21–776) and purified by IMAC and SEC.

Structure Determination

Purified Nrp2-b1b2-VEGF-C fusion, Nrp2-T319R, and s9Nrp2
B were concen-

trated to 2.0 mg/ml, 2.1 mg/ml, and 3.5 mg/ml, respectively, and crystals

grown by hanging-drop vapor-diffusion experiments. Fusion protein crystals

were obtained in 2 weeks at room temperature (RT) in 0.1 M MES (pH 6.5),

0.5 M ammonium sulfate. Nrp2-T319R crystals were obtained in 5 days at

RT in 0.1 M HEPES (pH 7), 18% (w/v) PEG 12000. s9Nrp2
B crystals were ob-

tained in 2 weeks at RT in 10% PEG 1000/10% PEG 8000. Crystals were

passed through mother liquor supplemented with 10% glycerol and then flash

frozen in liquid nitrogen. Diffraction data were collected at the SER-CAT 22-ID

and 22-BM beamlines of the Advanced Photon Source, Argonne National Lab-

oratories and processed using HKL2000 (Otwinowski and Minor, 1997). Struc-

tures were solved by molecular replacement using Nrp2-b1b2 (PDB 2QQJ)

followed by iterative modeling building and refinement using COOT (Emsley

et al., 2010) and Refmac5 (Murshudov, 1997) to generate a final refined model

(Table 1).

DSF

Peptides corresponding to processed and unprocessed VEGF-C were pro-

duced with an N-terminal tryptophan to allow accurate quantitation by UV280

absorbance (LifeTein LLC). Peptides were resuspended and combined with
reserved



2 mM of Nrp2-b1b2 and 5x SYPRO Orange Protein Gel Stain (Life Technolo-

gies) in PBS. Nrp2-b1b2 melting was monitored on a CFX96 Real-Time PCR

system (Bio-Rad) from 20�C to 90�C at a rate of 1�C/50 swith fluorescent read-

ings taken every 1�C.

Binding and Inhibition Assays

Plate binding and soluble Nrp competition assays were performed by

measuring the binding of AP-tagged VEGF-C to Nrp2-b1b2, Nrp2-T319R, or

VEGFR3 affinity plates. For direct binding assays, ligand was directly added

to Nrp2-affinity plates, incubated for 1 hr at RT, washed, and developed using

p-nitrophenyl phosphate AP substrate. For competition experiments, ligand

was premixed with inhibitor and then added to affinity plates as with binding.

Prostatosphere Assays

Prostatosphere cultures used C4-2 prostate cancer cells (UroCor) (Cao et al.,

2011). 5,000 cells/well were cultured in suspension in serum-free DMEM-F12

(Life Technologies), supplementedwith B27 (1:50, Life Technologies), 20 ng/ml

epidermal growth factor (Peprotech), and 4 mg/ml insulin (Sigma-Aldrich) in

6-well ultralow attachment plates (Corning). s9Nrp2
B, C-furSema, or C-Sema

inhibitors were added at a concentration of 5.0 mM while plating the cells.

The prostatospheres were cultured for 6 days, and 1 ml of culture medium

was added every other day. Spheres larger than 100 mm were counted.
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