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Abstract

In this paper we introduce the notion of s-extremal codes for self-dual binary codes and we

relate this notion to the existence of 1-designs or 2-designs in these codes. We extend the

classification of codes with long shadows of Elkies (Math. Res. Lett. 2(5) (1995) 643) to codes

with minimum distance 6, for which we give partial classification.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

One important parameter of binary codes is their minimum weight d: In the case
of singly even self-dual codes, only unsatisfactory bounds were known until the
notion of the shadow was introduced by Conway and Sloane in [9]. Let C be a singly
even self-dual code and C0 its doubly even subcode, then the shadow S of C is

defined as S :¼ C>
0 \C: One uses the additional information contained in the weight

enumerator of S; which is obtained by a linear transformation of the one of C: The
best achievement of this idea is the result by Rains [25] extending the well-known
bound for the minimum weight of Type II codes to Type I codes.

On the other hand, Elkies has studied in [12] the minimum weight (respectively the
minimum norm) of the shadow of self-dual codes (respectively of unimodular
lattices), especially in the cases where it attains a high value. In the case of codes, let s
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denote the minimum weight of S; then s � n
2
ðmod 4Þ; Elkies shows that spn

2
and that

s ¼ n
2
if and only if C is the direct sum of n

2
elementary ½2; 1; 2� codes. He also classifies

the self-dual codes such that s ¼ n
2
� 4; and shows in particular that their length

cannot exceed 22.
In this paper, we propose to study the parameters d and s simultaneously. We

prove that 2d þ spn
2
þ 4; except in the case n � 22ðmod 24Þ and d ¼ 4½n=24� þ 6;

where 2d þ s ¼ n
2
þ 8: We call s-extremal the codes for which 2d þ s attains the

highest possible value, according to these bounds. We prove the existence of 1-
designs and sometimes 2-designs in s-extremal codes. The cases considered by Elkies
correspond to s-extremal codes with d ¼ 2 and d ¼ 4: We study s-extremal codes for
d ¼ 6 and we show in particular that such codes can only exist for lengths
22pnp44; that there is a unique such code for lengths 40, 42 and 44 and we provide
partial classification for the other lengths. (Note that analogous results for lattices
can be found in [21].) We also construct an isodual ½42; 21; 8� code with covering
radius 6 related to a particular s-extremal code. The paper is organized as follows : in
Sections 2 and 3 we define the notion of s-extremal codes and we prove the existence
of 1-designs and sometimes 2-designs in these codes. In Sections 4 and 5 we consider
the case of s-extremal codes with s ¼ n

2
� 8; we show that their length n satisfies

22pnp44; and give partial classification results. At last in Sections 6 and 7 we give
examples of s-extremal codes and list the codes we used for the classification.
Appendices A and B give generator matrices of the codes we found. Throughout the
paper, we follow the notations of [26]. All the computations were done with
MAGMA [4].

2. s-extremal codes

Let C be a self-dual binary code, which is assumed not to be doubly even and let S

be its shadow. We denote WC and WS the weight enumerators of C and S: From [9],
there exists c0;y; c½n=8�AR such that

WCðx; yÞ ¼
P½n=8�

i¼0 ciðx2 þ y2Þ
n
2�4ifx2y2ðx2 � y2Þ2gi

WSðx; yÞ ¼
P½n=8�

i¼0 cið�1Þi2
n
2
�6iðxyÞ

n
2�4iðx4 � y4Þ2i:

8<
: ð1Þ

We denote d the minimum weight of C and s the minimum weight of its shadow.
This section is devoted to the proof of the following theorem:

Theorem 2.1. Let C be a self-dual binary code, assumed not to be doubly even, of

minimum weight d, and let S be its shadow, of minimum weight s. Then, 2d þ spn
2
þ 4;

unless n � 22 mod 24 and d ¼ 4½n=24� þ 6; in which case 2d þ s ¼ n
2
þ 8:

Definition 2.2. A code which parameters ðd; sÞ satisfy 2d þ s ¼ n
2
þ 4 or 2d þ s ¼

n
2 þ 8 is said to be s-extremal. In that case, the polynomials WC and WS are uniquely

determined.
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Remark 2.3. According to Theorem 2.1, the case 2d þ s ¼ n
2
þ 8 happens if and only

if n � 22 mod 24 and d ¼ 4½n=24� þ 6: It corresponds to the case of extremal codes
(in the sense of [25]) of length n � 22 mod 24; obtained by shortening of doubly even
extremal ones of length congruent to 0 modulo 24:

Examples. The s-extremal codes with d ¼ 4 correspond to the codes with long
shadows which have been classified in [12]. For d ¼ 6; the unique binary self-dual
½26; 13; 6� code and the two binary self-dual ½28; 14; 6� codes, from the classification of
self-dual codes [8] are examples of s-extremal codes. The following lemma provides
other examples of s-extremal codes.

Lemma 2.4. If C is a ½24mþ 8; 12mþ 4; 4mþ 4� extremal Type II code then the code

obtained by subtraction of the code ð11Þ from C is s-extremal.

Proof. By subtraction of ð11Þ from C one obtains a singly even ½24mþ 6; 12mþ 3; d�
code C0 with dX4mþ 2 such that using notation of [5]:

C ¼ f0; 0;C0
0g,f1; 1;C0

2g,f1; 0;C0
1g,f0; 1;C0

3g;

with S ¼ C0
1,C0

3 the shadow of C0 ¼ C0
0,C0

2: Hence the minimum weight s

of S has to be greater than 4mþ 3: Therefore C0 is s-extremal since
2d þ sX12mþ 7 ¼ n

2
þ 4: &

More examples of known s-extremal codes will be given in Section 7.

Proof. From (1), the weights in S are congruent to n
2
mod 4; and the weights in C are

congruent to 0 mod 2: Let us denote ai the number of codewords of weight i and bi

the number of words of weight i in S: Let us define s0 by s ¼ n
2
� 4s0: From (1), the

conditions

a0 ¼ 1;

a2i ¼ 0 for 1pipd
2
� 1;

bn
2�4j

¼ 0 for s0 þ 1pjp½n=8�

8><
>: ð2Þ

are linear and independent conditions on the ½n=8� þ 1 coefficients ci: Their number

is d
2
þ ½n=8� � s0; which is greater or equal to ½n=8� þ 1 if and only if 2d þ sX4þ n

2
:

We now assume that the inequality 2d þ sX4þ n
2
holds. From the previous

discussion, the weight enumerators of C and S are uniquely determined. Bürman–
Lagrange formula allows us to calculate the coefficients of these polynomials. Let
t :¼ 4þ n

2 � 2d: We have

WCðx; yÞ ¼ 1þ adxn�dyd þ adþ2x
n�d�2ydþ2 þ?

WSðx; yÞ ¼ btx
n�tyt þ btþ4x

n�t�4ytþ4 þ?;

(
ð3Þ

where bt is not assumed to be non-zero. The following lemma discusses this
possibility and concludes the proof of the theorem.
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Lemma 2.5. With the previous notations and assumptions, we have

ad ¼ n

d

X
j;kAN

jþk¼d
2
�1

ð�1Þj
n
2
� 2d þ j

j

� 	
d þ k � 1

k

� 	
; ð4Þ

bt ¼ ð�1Þ
d
2

n2
n
2
�3dþ6

d � 2

X
j;kAN

jþk¼d
2
�2

ð�1Þj
n
2
� 2d þ 4þ j

j

� 	
d þ k � 3

k

� 	
: ð5Þ

Moreover, the coefficient bt is positive, unless n � 22 mod 24 and d ¼ 4½n=24� þ 6; in

which case bt equals 0 and the coefficient btþ4 is positive.

Proof. We have in (1) ci ¼ 0 for all i4d
2
� 1: Setting x ¼ 1 and dividing by ð1þ y2Þ

n
2

the first equation of (1) leads to

Xd2�1

i¼0

ci
yð1� y2Þ
ð1þ y2Þ2

( )2i

¼ 1

ð1þ y2Þ
n
2

þ 1

ð1þ y2Þ
n
2

fadyd þ?g:

Let gðyÞ :¼ yð1�y2Þ
ð1þy2Þ2: From this last expression, we see that c0; c1;y; cd

2
�1
;�ad are

the first coefficients of the development of 1

ð1þy2Þ
n
2
as a series in gðyÞ: From the

Bürman–Lagrange formula, we obtain

�ad ¼ 1

d!

@d�1

@yd�1

@

@y

1

ð1þ y2Þ
n
2

 !
ð1þ y2Þ2

1� y2

 !d
0
@

1
A

y¼0

which, after simplification, becomes

ad ¼ n

d
coeff : of yd�2 in :

1

ð1þ y2Þ
n
2
�2dþ1ð1� y2Þd

( )

and, finally, leads to the announced formula.

From (3), we have bt ¼ ð�1Þ
d
2
�12

n
2
�3dþ6cd

2
�1
; and a similar calculation leads to

cd
2
�1

¼ �n

d � 2
coeff: of yd�4 in :

1

ð1þ y2Þ
n
2
�2dþ5ð1� y2Þd�2

( )
:

We have obviously

cd
2
�1

¼ �n

d � 2
coeff: of yd�4 in :

1

ð1þ y2Þ
n
2
�3dþ7ð1� y4Þd�2

( )
:

It is worth noticing that, because of the known bounds for d (see [25]), n
2 � 2d þ 5

is always positive, while n
2
� 3d þ 7 may be negative. Taking account of the bounds in
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[25], one easily sees that n
2
� 3d þ 7 ¼ 0 can only happen when n ¼ 24m þ 22 and

d ¼ 4m þ 6: If n
2
� 3d þ 7o0; the coefficients in the development of 1

ð1þy2Þ
n
2
�3dþ7ð1�y4Þd�2

are all positive numbers. If n
2
� 3d þ 740; we have

cd
2
�1

¼ �n

d � 2

X
j;kAN

jþ2k¼d
2
�2

ð�1Þj
n
2
� 3d þ 6þ j

j

� 	
d þ k � 1

k

� 	

¼ �n

d � 2
ð�1Þ

d
2

X
j;kAN

jþ2k¼d
2
�2

n
2
� 3d þ 6þ j

j

� 	
d þ k � 1

k

� 	

which shows that cd
2
�1

and hence bt cannot be zero.

In the case n ¼ 24m þ 22 and d ¼ 4m þ 6; we have bt ¼ 0; and a similar

calculation shows that btþ440: More precisely, we calculate btþ4 ¼ �25c2mþ1; and

c2mþ1 ¼ �12m þ 11

2m þ 1

X
iþ2k¼2m

5þ i

i

� 	
4m þ k þ 1

k

� 	
: &

3. Designs in s-extremal codes

In this section, we study the designs contained in the set of words of fixed weight in
an s-extremal code and in its shadow. Therefore, we make use of the harmonic

weight enumerators WC; f introduced in [2]. We recall that, if f is harmonic of

degree k; and if C is self-dual, the polynomial WC; f is divisible by ðxyÞk; and, if

ZC; f :¼ ðxyÞ�k
WC; f ; one has: if k � 0 mod 2; ZC; f AC½x2 þ y2; x2y2ðx2 � y2Þ2�

(respectively if k � 1 mod 2; ZC; f AQ8C½x2 þ y2; x2y2ðx2 � y2Þ2�; where Q8 ¼
xyðx6 � 7x4y2 þ 7x2y4 � y6Þ).

Theorem 3.1. Let C be an s-extremal code. Let Wi; respectively Si denote the set of

words of weight i in C, respectively S.

(1) For all i, Wi and Si hold a 1-design.
(2) If d ¼ nþ8

6
; for all i � d þ 2 mod 4; Wi holds a 2-design.

(3) If d ¼ nþ8
6
; and d � 2 mod 4; for all i; Wi,Si holds a 2-design.

Proof. We recall that, from the very definition of the harmonic functions, Wi is a t-

design if and only if the coefficient of xn�iyi equal 0 in WC; f ; for all harmonic

function f of degree k with 1pkpt: One can define analogously the polynomials

WS; f : The following transformation formula, where again ZS; f :¼ ðxyÞ�k
WS; f ; is

proved in [20]

ZS; f ðx; yÞ ¼ ð�iÞk
ZC; f

x þ yffiffiffi
2

p ; i
x � yffiffiffi

2
p

� 	
: ð6Þ
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One calculates Q8
xþyffiffi

2
p ; i x�yffiffi

2
p

� �
¼ iðx8 � y8Þ: Altogether, we obtain an expression

similar to (1) for ZC; f and ZS; f :

We assume k ¼ 1: There exists coefficients di; such that

ZC; f ðx; yÞ ¼ Q8

P½n�10
8

�
i¼0 diðx2 þ y2Þ

n
2
�5�4ifx2y2ðx2 � y2Þ2gi;

ZS; f ðx; yÞ ¼ ðx8 � y8Þ
P½n�10

8 �
i¼0 dið�1Þi2

n
2
�5�6iðxyÞ

n
2
�5�4iðx4 � y4Þ2i:

8><
>: ð7Þ

Clearly, since the minimum weight of C is d; di ¼ 0 for 0pipd
2
� 2; and since the

minimum weight of S is s ¼ n
2
� 4s0; di ¼ 0 for iXs0: Now the hypothesis on the s-

extremality of the code C implies that all the di are equal to 0 and hence that
ZC; f ¼ ZS; f ¼ 0:

In the case k ¼ 2; a similar argument shows that all the coefficients but one are
equal to zero. More precisely, and for later use, we have

If k ¼ 2:

ZC; f ðx; yÞ ¼ dd
2
�1
ðx2 þ y2Þ

n
2
þ2�2dfx2y2ðx2 � y2Þ2g

d
2
�1;

ZS; f ðx; yÞ ¼ dd
2
�1
ð�1Þ

d
22

n
2
þ4�3dðxyÞ

n
2þ2�2dðx4 � y4Þd�2:

8>><
>>: ð8Þ

In the case d ¼ nþ8
6
; the powers of ðx2 þ y2Þ and ðx2 � y2Þ are identical in ZC; f :

Hence, the polynomial ZC; f equals up to a multiplicative constant ðxyÞd�2ðx4 �
y4Þd�2; and the codewords of weight � d þ 2 mod 4 hold a 2-design. Moreover, we

have ZS; f ¼ ð�1Þ
d
2ZC; f : Hence, if d � 2 mod 4; ZS; f þ ZC; f ¼ 0 and the sets Wi,Si

hold 2-designs. &

Remark 3.2. A similar argument shows that, in the exceptional case of the extremal
codes of length n � 22 mod 24 and distance d ¼ 4½n=24� þ 6; the sets Wi and Si hold
3-designs (see [20]).

Let C be a singly even self-dual code, with doubly even subcode C0; then C>
0 ¼

C0,C1,C2,C3; where Ci for i ¼ 0; 1; 2; 3 are the cosets of C0 in C>
0 : We fix for

instance C ¼ C0,C2; then the shadow S of C is S ¼ C1,C3: In the case where C is
s-extremal, the preceding theorem states that C and S hold 1-designs; in the
following proposition we point out some stronger properties of these designs for
particular s-extremal codes.

Proposition 3.3. With the preceding notations, let C be a s-extremal ½24mþ 8m; 12mþ
4m; 4mþ 2� code for m ¼ 1 or 2; then the set of words of given weight in the cosets

C0;C1;C2 and C3; independently, hold 1-designs.

Proof. From Theorem 3.1, the codewords of given weight of C ¼ C0,C2 hold 1-
designs, and therefore since the weight of the codewords of C0 are congruent to 0
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modulo 4 and those of C2 are congruent to 2 mod 4; the codewords of given weight
of C0 and C2 independently hold 1-designs. Now since the length n is congruent to 0
modulo 8 and C is s-extremal, the words of S have weights congruent to 0 modulo 4
and the two doubly even neighbors of C; namely C0,C1 and C0,C3; are extremal
of minimum weight 4mþ 4: By the Assmus–Mattson theorem, these two codes hold
at least 1-designs, and since C0 holds 1-designs, C1 and C3 themselves also hold
1-designs. &

Remark 3.4. In the case of lengths 24mþ 16; the preceding proposition is partly
related to Theorem 2 of [17].

4. Codes with long shadows

In [12], the codes with shadows of minimum weight equal to n=2 and n=2� 4 are
classified. In this section, we consider the case of minimum weight n=2� 8: Such
codes are s-extremal if their minimum weight equals 6: The corresponding problem
for lattices is handled in [21]. We prove here the following theorem:

Theorem 4.1. Let C be a s-extremal code of length n and minimum distance d ¼ 6:
Then 22pnp44:

In the following, we freely identify a word x of Fn
2 and its support, and we denote

by %x the complement of x over Fn
2: From now on, we assume that C is a code of

length n; distance d ¼ 6 and of shadow S with minimum weight s ¼ n=2� 8: A direct
computation of the coefficients in (3) leads to: c1 ¼ �n=2; c2 ¼ nðn � 22Þ=8;

WS ¼ 2n=2�15nðn � 22Þxn=2þ8yn=2�8 þ 2n=2�13nð86� nÞxn=2þ4yn=2�4

þ 2n=2�14ð3n2 � 322n þ 214Þxn=2yn=2;

and

a6 ¼ nðn2 � 66n þ 1136Þ=48;

a8 ¼ nðn3 � 92n2 þ 2684n � 23248Þ=128:

Remark 4.2. The expression of WS shows already that np86: On the other hand, the
bound announced in the theorem np44 is optimal since the code of length 44 which
is the direct sum of two copies of the ½22; 11; 6� code is s-extremal.

For any yAFn
2; let

Ni; jðyÞ :¼ fx : xACi j jx-yj ¼ jg
and

ni; jðyÞ :¼ jNi; jðyÞj:
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Since the sets Ci are 1-designs, the numbers ni; jðyÞ satisfy a linear equation (see

Theorem 3 of [20])X
j

jni; jðyÞ ¼
iaiwtðyÞ

n
: ð9Þ

Let y be a word of W6: Then, for all xAW6; jx-yj ¼ 0; 2; 6; and Eq. (9) leads to

m2 :¼ n6;2ðyÞ ¼ 3ðn2 � 66n þ 1128Þ=8:

Now we assume that wtðyÞ ¼ 8: Again, for xAW6; we have jx-yj ¼ 0; 2; 4; but (9)
is not enough to calculate the values of n6; jðyÞ: From now on, we set NjðyÞ :¼ N6; jðyÞ
and njðyÞ :¼ n6; jðyÞ: Counting in two ways the number of elements of the set

fðx; yÞ : xAW6; yAW8 j jx-yj ¼ 4g

leads to the calculation of the mean value mv of n4ðyÞ:

mv ¼ 1

a8

X
yAW8

n4ðyÞ ¼
a6

a8
m2 ¼

ðn2 � 66n þ 1136Þðn2 � 66n þ 1128Þ
n3 � 92n2 þ 2684n � 23248

: ð10Þ

One notices that, if xAN4ðyÞ; also x þ yAN4ðyÞ; so n4ðyÞ is even of size say 2k with

N4ðyÞ ¼ fx1;y; xkg,fy þ x1;y; y þ xkg:

In order to prove the theorem, we first prove two lemmas.

Lemma 4.3. Let xi and xj be elements of N4ðyÞ with iaj then xi and xj do not intersect

on %y:

Proof. First xi and xj cannot intersect in their two positions on %y else xi þ y and xj

or xi and xj would intersect in at least four positions. Now if xi and xj intersect in

one position on %y then xi and xj but also xi þ y and xj must intersect only in one

position on y which is not possible. &

Lemma 4.4. The set N4ðyÞ is, up to a permutation of the coordinates, contained in the

set S4 ¼ ft1;y; t7g,ft1 þ y;y; t7 þ yg:
y 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0;

t1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0;

t2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0;

t3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0;

t4 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0;

t5 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0;

t6 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0;

t7 1 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1:

In particular, n4ðyÞp14: Moreover, if n4ðyÞ ¼ 10; 12 or 14; the set N4ðyÞ is unique

up to a permutation of the coordinates leaving y invariant.
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Proof. The set A :¼ fx-y j xAN4ðyÞg is a set of elements of F82 satisfying the

conditions:

* For all aAA; wtðaÞ ¼ 4:
* For all aAA; %aAA:
* For all a; bAA; ja-bj ¼ 0; 2;

where the last condition is a consequence of Lemma 4.3.
It is well-known (and easy to check) that, under these conditions, A is a subset of

the set of codewords of weight 4 of the extended Hamming code (which has 14
elements). More precisely, a direct computation shows that, if the cardinality of A

equals 2, 4, 10, 12 and of course 14; the set A is unique up to permutation, while
there are two possibilities for the cardinality 6 and 8: &

We now prove the theorem

Proof of Theorem 4.1. First, by the classification of self-dual codes, we have nX22
because dX6: Suppose nX46: Then, a840; so let yAW8: Then, from Lemma 4.4,
n4ðyÞp14; which gives mvp14: But, from (10),

mv � 14 ¼ ðn � 22Þðn � 44Þðn2 � 80n þ 1660Þ
ðn3 � 92n2 þ 2684n � 23248Þ

is positive for nX46; a contradiction. &

5. Classification results

We now prove some results on the classification of the s-extremal codes of
minimum distance d ¼ 6; we assume that the length n is at least equal to 34: We
introduce a few more definitions:

Definition 5.1. Let C be an s-extremal code of minimum distance 6: Let nmax
4 denote

the maximal value of n4ðyÞ when y runs over the set of codewords of weight 8, and let
Nmax

4 :¼ fy : yAW8 j n4ðyÞ ¼ nmax
4 g:

Let yAW8: We denote DðyÞ the code generated by y and N4ðyÞ; after deletion of
the zero coordinates (hence the length of DðyÞ is at most equal to 22). We denote
EðyÞ the code generated by y; N4ðyÞ; and N2ðyÞ; again after deletion of the zero
coordinates. We denote EDðyÞ the code obtained from EðyÞ by restriction to the

support of DðyÞ: Obviously we have DðyÞCEDðyÞCDðyÞ>:

We have already seen (Lemma 4.4) that nmax
4 p14: It turns out that a high value of

this number is a strong constraint on the code. We shall completely classify the codes
with nmax

4 ¼ 10; 12; 14: All the codes are given in Appendix B.
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Theorem 5.2.

* Assume nmax
4 ¼ 14: Then, n ¼ 36; 38; 44; and in each case there is a unique code up

to equivalence. In the case n ¼ 44; it is the orthogonal sum of two copies of the

shorter Golay code with parameters ½22; 11; 6�:
* Assume nmax

4 ¼ 12: Then, n ¼ 34; 36; 40; 42; and in each case there is a unique code

up to equivalence.
* Assume nmax

4 ¼ 10: Then, n ¼ 34; 36; 38; there are up to equivalence 3 codes of

length 34; and a unique code of length respectively 36 and 38:

Generating matrices are explicitly given for all these codes in Appendix B.

Before giving a proof of this theorem, we derive from it a classification of the s-
extremal codes of minimum weight 6; for the lengths 40; 42; 44:

Corollary 5.3. There is up to equivalence a unique s-extremal code of minimum weight

6 at length 44; respectively 42 and 40:

Proof. We give in Table 1 the value of mv computed from (10) for d ¼ 6 and
22pnp44:

If the length of C equals 40; 42; 44; we have nmax
4 X10: Hence Theorem 5.2

exhausts all the possibilities. &

Proof of Theorem 5.2. Case nmax
4 ¼ 14: The following lemma is easily proved by a

direct computation.

Lemma 5.4. Let D8 denote the ½22; 8; 6� code generated by the words

fy; t1; t2; t3; t4; t5; t6; t7g given in Lemma 4.4. Up to the action of the permutation

group of D8; for each dimension k ¼ 9; 10; 11; there is a unique code Dk such that

D8CDkCD>
k CD>

8 and dðDkÞ ¼ 6: Moreover, the cardinality of the set

fx : xADk j wtðxÞ ¼ 6 and jx-yj ¼ 2g equals respectively 0; 8; 24; 56 for k ¼
8; 9; 10; 11: The code D11 is equivalent to the shorter Golay code.

Now let C be an s-extremal code of distance 6 and length n; with nmax
4 ¼ 14: Let

yANmax
4 : Then, DðyÞ is equivalent to D8: Let xAN2ðyÞ; and let I :¼ x-y: We have
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Table 1

The value of mv for d ¼ 6

n mv n mv

22 14 34 2

24 7.68 36 3.36

26 4.40 38 6

28 2.67 40 9.26

30 1.82 42 12

32 1.60 44 14
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I-t ¼ ð10Þ or ð01Þ for exactly 4 of the 14 elements of N4ðyÞ: Thus, x must intersect
these t outside of y; since the t- %y are pairwise disjoint weight 2 words, we can
conclude that x is contained in the support of DðyÞ: So, EðyÞ ¼ EDðyÞ is a code
satisfying the conditions of Lemma 5.4.

But Eq. (9) calculates n2ðyÞ ¼ ðn2 � 66n þ 1136Þ=2� 2n4ðyÞ; we find n2ðyÞ ¼
�4; 0; 8; 20; 36; 56 respectively for n ¼ 34; 36; 38; 40; 42; 44: Hence, from Lemma 5.4
we can conclude that the only possible values for n are n ¼ 36; in which case
EðyÞCD8; n ¼ 38 and EðyÞCD9; and n ¼ 44 and EðyÞCD11: Since D11 is the only
self-dual code of length 22 and minimum weight 6; clearly in the case n ¼ 44 the code
C can only be the orthogonal sum of two copies of this code.

We recall a lemma on the structure of self-dual codes, which we shall apply several
times. We refer to [23] for a proof.

Lemma 5.5. Let C be a binary self-dual code of length n ¼ a þ b: Let A (respectively

B) be the code generated by the words of C which supports lie under the a first

coordinates (respectively the b last coordinates). Then, 2ðdimðAÞ � dimðBÞÞ ¼ a � b;
and C has a generating matrix of the form

A 0

0 B

D E

0
B@

1
CA;

where A> ¼ A þ D and B> ¼ B þ E:

In Section 6 and Table 2 we give the classification of maximal self-orthogonal
codes of minimum distance 6 and lengths 10pnp21: We will refer to this
classification in the rest of the section.

If n ¼ 36; we have A ¼ D8 and B has length 14; dimension 4; and distance at least
6: Moreover, since C and D8 both contain the all-one word, so does B: One shows
that these conditions leave only one possibility for B (cf. Table 2). This code B has

the following property: under the action of AutðBÞ; the quotient B>=B has two non-
trivial orbits, one consists of the classes of weight 2 and the other consists of the

classes of weight 4: The code D>
8 contains 7 words of weight 2; which are transitively

permuted by its permutation group. We can choose such a word for the first line of

D; then it must be extended by a word of weight 4 of B> in order to ensure that the
minimum weight of C is 6: Hence C contains a subcode F of length 36 and
dimension 13; obtained from D8; B and one of the equivalent words of weight 6 built
up as described before. The final step consists in the exhaustive consideration of the

maximal totally isotropic subspaces of the 10-dimensional symplectic space F>=F :
The number of such subspaces is exactly 75 735; so we could actually list them (in
fact up to the action of the group of F ). It is worth noticing that the next dimension
12 gives 4 922 775 maximal isotropic subspaces which is too big to be exhausted.

If n ¼ 38; we have A ¼ D9 and B has length 16; dimension 6; and distance at

least 6; which leaves only one possibility. If F :¼ A>B; since the space F>=F has
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dimension 8; we can directly look at the 2295 maximal totally isotropic subspaces
and find a unique code up to equivalence.

Case nmax
4 ¼ 12: We select again yANmax

4 : Then, from the proof of Lemma 4.4,

DðyÞ is equivalent to the code with parameters ½20; 7; 6� generated by y and ti for
1pip6; that we shall denote D7: It has the property that any 2-subset I of y satisfies
I-t ¼ ð10Þ or ð01Þ for either 3 or 4 of the 12 elements of N4ðyÞ: So a word xAN2ðyÞ
has at most one coordinate outside of the support of D7: Let us denote d þ 7 :¼
dimðEðyÞÞ ¼ dimðEDðyÞÞ: Hence, the length of EðyÞ cannot exceed 20þ d: Also,
from Eq. (9), we have n2ðyÞ ¼ 0; 4; 12; 24; 40 respectively for n ¼ 34; 36; 38; 40; 42:

We proceed to the classification with the following steps:

(1) List the possibilities for EDðyÞ; up to the action of AutðD7Þ; and using the

properties D7CEDðyÞCD>
7 and wtðEDðyÞÞX6� d: We find 32 possible codes.

(2) For each candidate EDðyÞ; we fix a set of d codewords which constitute a basis
together with a basis of D7; and we explore the possible extensions of them to
words of length 20þ d; such that the resulting code E is contained in its dual and
has minimum weight 6:

(3) Among these codes E; we select those who satisfy:
� cardfx : xAE6 j jx-yj ¼ 2gAf0; 4; 12; 24; 40gg;
� For all zAE8; cardfx : xAE6 j jx-zj ¼ 4gp12:

We find, up to equivalence, nine codes E which are candidates for EðyÞ;
with the following parameters, and corresponding n (which is uniquely
determined by the value of n2ðyÞ):
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Table 2

Maximal self-orthogonal codes with d ¼ 6

Code n k jAutðCÞj Weight enumerator

C10 10 2 2304 1þ 2y6 þ y8

C11 11 2 2304 1þ 2y6 þ y8

C12 12 3 1536 1þ 4y6 þ 3y8

C13;1 13 3 1296 1þ 3y6 þ 3y8 þ y10

C13;2 13 3 1536 1þ 4y6 þ 3y8

C14;1 14 4 384 1þ 6y6 þ 7y8 þ 2y10

C14;2 14 4 21 504 1þ 7y6 þ 7y8 þ y14

C15 15 5 720 1þ 10y6 þ 15y8 þ 6y10

C16 16 6 11 520 1þ 16y6 þ 30y8 þ 16y10 þ y16

C17;1 17 6 96 1þ 13y6 þ 25y8 þ 18y10 þ 6y12 þ y14

C17;2 17 6 120 1þ 12y6 þ 25y8 þ 20y10 þ 6y12

C17;3 17 6 11 520 1þ 16y6 þ 30y8 þ 16y10 þ y16

C18;1 18 7 1536 1þ 20y6 þ 46y8 þ 40y10 þ 16y12 þ 4y14 þ y16

C18;2 18 7 144 1þ 19y6 þ 45y8 þ 42y10 þ 18y12 þ 3y14

C18;3 18 7 2160 1þ 18y6 þ 45y8 þ 45y10 þ 18y12 þ y18

C19 19 8 576 1þ 28y6 þ 78y8 þ 88y10 þ 48y12 þ 12y14 þ y16

C20 20 9 3840 1þ 40y6 þ 130y8 þ 176y10 þ 120y12 þ 40y14 þ 5y16

C21 21 10 40 320 1þ 56y6 þ 210y8 þ 336y10 þ 280y12 þ 120y14 þ 21y16
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(a) ½20; 7� and n ¼ 34;
(b) ½21; 8� and n ¼ 36;
(c) ½23; 10� and n ¼ 38;
(d) ½20; 9�; ½23; 10�; ½22; 10�; ½24; 11� and n ¼ 40;
(e) ½21; 10�; ½24; 11� and n ¼ 42:

(4) Apply Lemma 5.5 with A ¼ EðyÞ for each of the nine possibilities found above.
We obtain the parameters of the putative complementary codes B: Note that we
are not sure that EðyÞ is not strictly contained in A but this would increase the
dimension of B: The putative codes are codes contained in their duals, of
minimum weight greater or equal to 6; with parameters: ½14; 4�; ½15; 5�; ½15; 6�;
½20; 9�; ½17; 7�; ½18; 8�; ½16; 7�; ½21; 10�: The classification of Section 6 shows that
there are no such codes with parameters ½15; 6�; ½17; 7�; ½18; 8�; ½16; 7�; that a
unique code exists with parameters respectively ½21; 10; 6�; ½20; 9; 6� and ½15; 5; 6�;
and that there are two codes with parameters ½14; 4; 6�:

(5) In the case n ¼ 34; A ¼ D7; which does not contain the all-one word. So B must
be equivalent to the ½14; 4� which does not either. The self-dual code C contains
as a subcode the 12-dimensional code F generated by the orthogonal sum of A

and B; and the all-one word. Since dimðF>=FÞ ¼ 10; we can look at all the
possibilities. In the other cases, B is uniquely determined and F :¼ A>B satisfies

dimðF>=FÞp10:

Case nmax
4 ¼ 10: Let yANmax

4 : Then, DðyÞ is equivalent to the code with parameters

½18; 6; 6� generated by y and ti for 1pip5; denoted D6: Any 2-subset I of y satisfies
I-t ¼ ð10Þ or ð01Þ for either 2; 3 or 4 of the 5 elements of ft1; t2; t3; t4; t5g: So a word
xAN2ðyÞ has at most two bits outside of the support of D6: Therefore, the
algorithmic procedure described in the case nmax

4 ¼ 12 cannot be directly applied here

because at Step 2, each basis vector added to D6 may increase the size of the support
by 2; so too many cases occur. We have to look at the situation more closely.

For i ¼ 0; 1; 2 we denote Ii the set of 2-subsets of y on which 4� i elements of
N4ðyÞ equal ð10Þ or ð01Þ: We have cardðI0Þ ¼ 4; cardðI1Þ ¼ 16; cardðI2Þ ¼ 8; and

AutðD6Þ permutes transitively the elements of each Ii: We denote Ni
2 :¼ fx :

xAN2ðyÞ j x-yAIig: Let xANi
2: Then x has i bits outside of the support of D6: We

again denote D6 the subcode of the same length as EðyÞ; obtained by extending the
words of D6 with enough zeroes. An easy calculation shows that: cardððD6 þ
xÞ-N2ðyÞÞ equals 8 if xAN0

2 ; 4 if xAN1
2 ; and 2 if xAN2

2 : Also, not more than two

elements of N2ðyÞ can coincide on y (otherwise two of them would have three

common bits). Moreover, one checks easily that, if two elements x; x0 of N1
2 coincide

on y; then the code generated by D6; x and x0; which is unique up to AutðD6Þ;
satisfies N4ðyÞ ¼ 12; so this situation can be excluded. We can partition the classes of

EðyÞ modulo D6 into s0 (respectively s1; s2) classes containing elements of N0
2

(respectively N1
2 ; N2

2 ), plus s�1 classes containing no elements of N2ðyÞ: From the

previous discussion, we have: 8s0 þ 4s1 þ 2s2 ¼ n2ðyÞ; 0ps0p1; 0ps1p4; 0ps2p8:
On the other hand, we have, from Eq. (1), n2ðyÞ ¼ 4; 8; 16; 28 respectively for
n ¼ 34; 36; 38; 40:
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We are now in the position to calculate all the possibilities for the code EðyÞ:
Therefore, we start with D6; and we add one by one words belonging to N2ðyÞ: At
each step, we increase the dimension by one, and calculate n2ðyÞ until we obtain one
of the values 4; 8; 16; 28:

If s0 ¼ 1; we start with xAN0
2 and there is only one choice up to equivalence. The

resulting code has n2ðyÞ ¼ 8; so it is one possibility for EðyÞ (it is equivalent to the

maximal code C18;1). Then, we can either add a word in N1
2 ; else the remaining words

belong to N2
2 : In the first case, we obtain a single code with parameters ½19; 8� and

n2ðyÞ ¼ 16; equivalent to the maximal code C19; which is not extendable; the second
case does not lead to any code.

In the case s0 ¼ 0; we calculate that at most three independent words in N1
2 can be

added and at most six independent words in N2
2 can be added.

Finally we find, up to equivalence, 19 codes E which are candidates for EðyÞ; with
the following parameters, and corresponding n (which is uniquely determined by the
value of n2ðyÞ):

(1) ½19; 7�; ½21; 8�; ½22; 8� (3 codes) and n ¼ 34;
(2) ½18; 7�; ½20; 8�; ½22; 9�; ½23; 9� (3 codes), ½26; 10�; ½25; 10�; ½24; 10� and n ¼ 36;
(3) ½19; 8�; ½21; 9�; ½25; 11�; ½26; 12� and n ¼ 38;
(4) ½25; 12� and n ¼ 40:

Then, we proceed like in the steps 4 and 5 of the case nmax
4 ¼ 12: The codes leading

to a self-dual code of length 34 have parameters ½19; 7�; ½22; 8� (two codes). The self-
dual code of length 36 is obtained from A ¼ C18;1 and B ¼ C18;2: The self-dual code
of length 38 is obtained from A ¼ B ¼ C19: &

Remark 5.6. As pointed out by A. Munemasa: the doubly even ½40; 20; 8� code with
covering radius 7 of [17], is equivalent to the two equivalent doubly even neighbors of
the unique s-extremal ½40; 20; 6� code. Analogously, the s-extremal ½34; 17; 6� codes for
nmax
4 ¼ 10; 12; have each, two equivalent isodual ½34; 17; 8� neighbors with covering

radius 6; the s-extremal ½36; 18; 6� code for nmax
4 ¼ 14 has two equivalent self-dual

½36; 18; 8� neighbors with covering radius 6; the two s-extremal ½38; 19; 6� codes for
nmax
4 ¼ 12; 14 have each two equivalent isodual ½38; 19; 8� neighbors with covering

radius 7; the s-extremal ½42; 21; 6� code for nmax
4 ¼ 10 has two equivalent isodual

½42; 21; 8� neighbors with covering radius 6 and the unique s-extremal ½44; 22; 6� code
has two equivalent self-dual ½44; 22; 8� neighbors with covering radius 7:

Remark 5.7. The unique ½40; 20; 6� code also leads to a 40-dimensional unimodular
lattice of norm 3 with a long shadow in the sense of [21]. The construction is the
standard Construction A followed by a neighboring procedure using the all-one vector.

6. The classification of maximal self-orthogonal codes of distance 6 and length up to 21

In this section we classify maximal (in term of dimension) self-orthogonal codes of
minimum distance exactly 6 and length up to 21: Unlike self-dual codes, there is no
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mass formula for these codes and we proceed by induction on the dimension. Let us
denote by XC the extension of a code C:

We first give a general algorithm to construct, for not too high parameters, all the
self-orthogonal ½n; k; d� codes. Let Si be the set of inequivalent self-orthogonal
½n � k þ i; i; d� codes. The set Siþ1 of the ½n � k þ i þ 1; i þ 1; d� codes can be
obtained from Si by the following algorithm : let C be a code of Si: Then one
considers all the inequivalent codes of minimum weight d obtained by addition to

XC of a representant x of the different orbits of the quotient ðXCÞ>=XC: All the
codes of Siþ1 are obtained this way since for any C of Siþ1; the shortened code of C

in a column for which there exists a word of weight d with a zero coordinate on this
column, is in Si:

Hence all the self-orthogonal ½n; k; d� codes are obtained starting from a ½n � k þ
1; 1; d� code.

Note that by construction the codes have a codeword of weight d:
To complete the classification one applies the preceding algorithm with different

trials on the possible dimensions. We present in Table 2 the results obtained for
d ¼ 6; lengths 10pnp21 and maximal dimension k: Note that for lengths 6pnp9
only the trivial code of dimension 1 exists. The codes obtained for lengths 19; 20 and
21 correspond to shortened codes of the self-dual ½22; 11; 6� shorter Golay code. Note
that we also used the algorithm to prove that no codes exist with the same length and
dimension with a higher minimum distance. The generator matrices are given in the
appendix.

7. Number and examples of s-extremal codes

We now consider examples of s-extremal codes. The s-extremal codes with d ¼ 4
have been classified in [12]. We now list the known s-extremal codes corresponding
to a given d: First note that from Theorem 3.1 the unique singly even ½16; 8; 4� holds
2-designs.

* d ¼ 6:

For this minimum distance, from Section 4, codes are known to exist for the lengths
22pnp44: The two codes of length 28 hold 2-designs. Existing codes are given in the
following table:

n Num Ref n Num Ref

22 1 [22] 34 X2 [9, Section 5]
24 1 [24] 36 X3 [9, Section 5]
26 1 [8] 38 X2 [9, Section 5]
28 2 [8] 40 1 [9, Section 5]
30 9 [8] 42 1 [9, Section 5]
32 19 [3] 44 1 [9, Section 5]
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* d ¼ 8:

In that case it is not known for up to which length s-extremal codes do exist. The
codes of length 40 hold 2-designs. We list known codes for d ¼ 8:

n Num Ref

32 3 [9]
36 X3 [16,19]
38 X8 [16,19]
40 X4 [7,9]
42 X17 [6,9]
44 X1 [9]

* d ¼ 10:

The codes of length 52 hold 2-designs. The code subðXQ47Þ is the code obtained by
subtraction of the ð11Þ trivial code from the extended quadratic residue code of
length 47: Codes are only known for the following lengths:

n Num Ref

46 X1 subðXQ47Þ
50 X1 [9]
52 X460 [18]
54 X166 [26, Section 3]
58 X1 [9]

* d ¼ 12:

In that case it is not known whether a s-extremal ½64; 32; 12� code exists, such a code
would hold 2-designs. For length 68; although many codes are known, none of them
is s-extremal. The only known codes are:

n Num Ref

60 X3 [10,27]
62 X8 [10]
66 X2 [9,15]

* dX14:

For d ¼ 14; two codes are known for length 76 [1,13], which contain 2-designs, and
more than 50 codes are known for length 78 from [1,14]. For d ¼ 16 only one s-
extremal code is known for length 86 from [11] and for d ¼ 18 one code is obtained for
length 102 from the extended quadratic residue code of length 104 and Lemma 2.4.

ARTICLE IN PRESS
C. Bachoc, P. Gaborit / Journal of Combinatorial Theory, Series A 105 (2004) 15–3430



Appendix A

Maximal self-orthogonal codes of weight 6 and lengths 10pnp21

C10 ¼
1000011111

0111101111

� �
; C11 ¼

11000011101

00111111101

� �
; C12 ¼

110000111010

001001100111

000110011101

2
64

3
75;

C13;1 ¼
1000101111110

0101110111001

0010101000111

2
64

3
75; C13;2 ¼

1010001100110

0101000111010

0000111011100

2
64

3
75;

C14;1 ¼

10001011111100

01001001100101

00101010001110

00010100010111

2
6664

3
7775;

C14;2 ¼

10100000110011

01010001110100

00001101000111

00000011111111

2
6664

3
7775; C15 ¼

100001110100111

010001010010101

001001101000011

000101000101110

000011001011111

2
6666664

3
7777775
;

C16 ¼

1000010010110001

0100010100101010

0010010101111001

0001010001011100

0000110010111110

0000001111111111

2
666666664

3
777777775
;

C17;1 ¼

10000101000101010

01000101001000101

00110000011110110

00001100010011001

00000011011110000

00000000101011110

2
666666664

3
777777775
; C17;2 ¼

10000101101110100

01000100100110001

00100100111001110

00010100001100110

00001101111101101

00000011011110000

2
666666664

3
777777775
;
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C17;3 ¼

10000101011011010

01000101010000110

00100100111100110

00010100001110010

00001100111001000

00000011111111110

2
666666664

3
777777775
;

C18;1 ¼

100001010001010100

010001010010001010

001100000010100011

000011000001111101

000000110010101111

000000001010111100

000000000101001111

2
666666666664

3
777777777775
; C18;2 ¼

100001010001010100

010001010010001010

001001000010111011

000101000101010111

000011000100110010

000000110111100000

000000001010111100

2
666666666664

3
777777777775
;

C18;3 ¼

100001010011110111

010001000001111101

001001000110000011

000101000011001100

000011010111000101

000000110111100000

000000001000011111

2
666666666664

3
777777777775
; C19 ¼

1000010100010101000

0100010100100010100

0010010000101110101

0001010000000110011

0000110000011111010

0000001100101011110

0000000010101111000

0000000001010011110

2
66666666666664

3
77777777777775
;

C20 ¼

10000100001101000111

01000100000000111111

00100100001011101010

00010100000001100110

00001100000111110100

00000010000010101011

00000001001000010111

00000000101011110000

00000000010100111100

2
66666666666666664

3
77777777777777775

; C21 ¼

100001000000000011011

010001000000001111110

001001000001101000001

000101000000011001100

000011000001111101000

000000100000101010110

000000010001010111011

000000001001101110101

000000000101001111000

000000000011010010101

2
6666666666666666664

3
7777777777777777775

:
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Appendix B

In this appendix we give all the codes mentioned in Theorem 5.2. To save space,
we consider the codes in the form ðI AÞ and we list only the matrices A as sequences
of their rows written in hexadecimal: 1 ¼ 0001; 2 ¼ 0010;y;F ¼ 1111: Note that
depending on the length n; the first 4� ðn

2
ðmod 4ÞÞ columns of ‘0’ have to be deleted

* nmax
4 ¼ 14:

C36 14: 3B29E; 38C0F; 36718; 358D4; 2EA9D; 2D774; 23CB4; 1015D; 08378;
04225; 023AF; 0118A; 00AF2; 004D7; 0026F; 0016C; 000E3; 0001F.

C38 14: 77833; 7143C; 6DF14; 6A800; 5D291; 5BF27; 476AD; 21B1B; 101B9;
09AA2; 0431B; 039B9; 006A2; 003BF; 003D5; 00265; 00159; 000D6; 0007F.

C44 14: 293000; 3DA000; 1ED000; 3EB800; 366800; 1B3800; 3C4000; 06C800;
1B8000; 152800; 127000; 000526; 0007B4; 0003DA; 0007D7; 0006CD; 000367;
000788; 0000D9; 000370; 0002A5; 00024E.

* nmax
4 ¼ 12:

C34 12: 1DA49; 1C653; 1B33B; 1AEB9; 174CF; 16A63; 11F34; 08198; 042B6;
0232E; 01289; 009A7; 00711; 002CF; 00136; 001C5; 001FC.

C36 12: 3B454; 38AB1; 36061; 35B30; 2EB1B; 2D42B; 23A84; 105B4; 081D5;
04461; 025AA; 011CB; 0081E; 00159; 000C7; 0026C; 0038A; 003F8.

C40 12: E6FE7; F97E7; D47E7; CBF17; ED8F0; EA000; 87800; 5C8F0; 428F0;
59800; 380F0; 004AA; 00495; 004CF; 003AB; 00354; 0020F; 001C9; 001F5; 00133.

C42 12: 1D887F; 1C107F; 1B0800; 1A587F; 17D87F; 16B07F; 11A07F; 08C87F;
04F000; 02387F; 01F87F; 00074E; 00077D; 0006A1; 0006F4; 0005C4; 0005E9;
00044B; 000266; 00011E; 0000F8.

* nmax
4 ¼ 10:

C34 10a: 1DC61; 1C330; 1B5D5; 1A99F; 1704A; 1687F; 11B2E; 0831B; 04764;
0247F; 012D0; 00EAF; 00159; 000C7; 0026C; 0038A; 003F8.

C34 10b: 1DB90; 1C0E8; 1B376; 1AF5A; 173A1; 16E29; 11ADC; 08754; 046F0;
021A4; 0119B; 0083F; 004D7; 0034C; 0013A; 00067; 0009D.

C34 10c: 1DB65; 1C231; 1B373; 1AEC1; 172F5; 16FAA; 119B9; 084E6; 0440B;
020ED; 0135A; 00BB7; 00586; 00354; 0013A; 00067; 0009D.

C36 10: 3A800; 39B18; 3794E; 350D3; 2FA56; 2D368; 233BB; 11A85; 09A26;
040A3; 038A3; 00654; 0068A; 004BB; 00557; 00532; 003E0; 000BC.

C38 10: 430E2; 4FBE9; 59147; 59800; 4C24C; 2ABE9; 262AE; 1F947; 3E24C;
23947; 3124C; 006A8; 00714; 00575; 00433; 004FA; 0035E; 00178; 0009E.
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