# Designs and self-dual codes with long shadows 

Christine Bachoc ${ }^{\text {a }}$ and Philippe Gaborit ${ }^{\text {b }}$,*<br>${ }^{\text {a }}$ Laboratoire A2X, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence, France<br>${ }^{\mathrm{b}}$ LACO, Université de Limoges, 123, av A. Thomas, 87000 Limoges, France

Received 5 November 2002
Communicated by Vera Pless


#### Abstract

In this paper we introduce the notion of $s$-extremal codes for self-dual binary codes and we relate this notion to the existence of 1-designs or 2-designs in these codes. We extend the classification of codes with long shadows of Elkies (Math. Res. Lett. 2(5) (1995) 643) to codes with minimum distance 6 , for which we give partial classification.


(C) 2003 Elsevier Inc. All rights reserved.

Keywords: Self-dual codes; Designs; Classification; Shadow

## 1. Introduction

One important parameter of binary codes is their minimum weight $d$. In the case of singly even self-dual codes, only unsatisfactory bounds were known until the notion of the shadow was introduced by Conway and Sloane in [9]. Let $C$ be a singly even self-dual code and $C_{0}$ its doubly even subcode, then the shadow $S$ of $C$ is defined as $S:=C_{0}^{\perp} \backslash C$. One uses the additional information contained in the weight enumerator of $S$, which is obtained by a linear transformation of the one of $C$. The best achievement of this idea is the result by Rains [25] extending the well-known bound for the minimum weight of Type II codes to Type I codes.

On the other hand, Elkies has studied in [12] the minimum weight (respectively the minimum norm) of the shadow of self-dual codes (respectively of unimodular lattices), especially in the cases where it attains a high value. In the case of codes, let $s$

[^0]denote the minimum weight of $S$, then $s \equiv \frac{n}{2}(\bmod 4)$; Elkies shows that $s \leqslant \frac{n}{2}$ and that $s=\frac{n}{2}$ if and only if $C$ is the direct sum of $\frac{n}{2}$ elementary $[2,1,2]$ codes. He also classifies the self-dual codes such that $s=\frac{n}{2}-4$, and shows in particular that their length cannot exceed 22.

In this paper, we propose to study the parameters $d$ and $s$ simultaneously. We prove that $2 d+s \leqslant \frac{n}{2}+4$, except in the case $n \equiv 22(\bmod 24)$ and $d=4[n / 24]+6$, where $2 d+s=\frac{n}{2}+8$. We call $s$-extremal the codes for which $2 d+s$ attains the highest possible value, according to these bounds. We prove the existence of 1designs and sometimes 2-designs in $s$-extremal codes. The cases considered by Elkies correspond to $s$-extremal codes with $d=2$ and $d=4$. We study $s$-extremal codes for $d=6$ and we show in particular that such codes can only exist for lengths $22 \leqslant n \leqslant 44$, that there is a unique such code for lengths 40,42 and 44 and we provide partial classification for the other lengths. (Note that analogous results for lattices can be found in [21].) We also construct an isodual [42,21,8] code with covering radius 6 related to a particular $s$-extremal code. The paper is organized as follows : in Sections 2 and 3 we define the notion of $s$-extremal codes and we prove the existence of 1-designs and sometimes 2-designs in these codes. In Sections 4 and 5 we consider the case of $s$-extremal codes with $s=\frac{n}{2}-8$; we show that their length $n$ satisfies $22 \leqslant n \leqslant 44$, and give partial classification results. At last in Sections 6 and 7 we give examples of $s$-extremal codes and list the codes we used for the classification. Appendices A and B give generator matrices of the codes we found. Throughout the paper, we follow the notations of [26]. All the computations were done with MAGMA [4].

## 2. $s$-extremal codes

Let $C$ be a self-dual binary code, which is assumed not to be doubly even and let $S$ be its shadow. We denote $W_{C}$ and $W_{S}$ the weight enumerators of $C$ and $S$. From [9], there exists $c_{0}, \ldots, c_{[n / 8]} \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
W_{C}(x, y)=\sum_{i=0}^{[n / 8]} c_{i}\left(x^{2}+y^{2}\right)^{\frac{n}{2}-4 i}\left\{x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right\}^{i}  \tag{1}\\
W_{S}(x, y)=\sum_{i=0}^{[n / 8]} c_{i}(-1)^{i} 2^{\frac{n}{2}-6 i}(x y)^{\frac{n}{2}-4 i}\left(x^{4}-y^{4}\right)^{2 i}
\end{array}\right.
$$

We denote $d$ the minimum weight of $C$ and $s$ the minimum weight of its shadow. This section is devoted to the proof of the following theorem:

Theorem 2.1. Let $C$ be a self-dual binary code, assumed not to be doubly even, of minimum weight $d$, and let $S$ be its shadow, of minimum weight $s$. Then, $2 d+s \leqslant \frac{n}{2}+4$, unless $n \equiv 22 \bmod 24$ and $d=4[n / 24]+6$, in which case $2 d+s=\frac{n}{2}+8$.

Definition 2.2. A code which parameters $(d, s)$ satisfy $2 d+s=\frac{n}{2}+4$ or $2 d+s=$ $\frac{n}{2}+8$ is said to be $s$-extremal. In that case, the polynomials $W_{C}$ and $W_{S}$ are uniquely determined.

Remark 2.3. According to Theorem 2.1, the case $2 d+s=\frac{n}{2}+8$ happens if and only if $n \equiv 22 \bmod 24$ and $d=4[n / 24]+6$. It corresponds to the case of extremal codes (in the sense of [25]) of length $n \equiv 22 \bmod 24$, obtained by shortening of doubly even extremal ones of length congruent to 0 modulo 24 .

Examples. The $s$-extremal codes with $d=4$ correspond to the codes with long shadows which have been classified in [12]. For $d=6$, the unique binary self-dual $[26,13,6]$ code and the two binary self-dual $[28,14,6]$ codes, from the classification of self-dual codes [8] are examples of $s$-extremal codes. The following lemma provides other examples of $s$-extremal codes.

Lemma 2.4. If $C$ is $a[24 \mu+8,12 \mu+4,4 \mu+4]$ extremal Type II code then the code obtained by subtraction of the code (11) from $C$ is s-extremal.

Proof. By subtraction of (11) from $C$ one obtains a singly even $[24 \mu+6,12 \mu+3, d]$ code $C^{\prime}$ with $d \geqslant 4 \mu+2$ such that using notation of [5]:

$$
C=\left\{0,0, C_{0}^{\prime}\right\} \cup\left\{1,1, C_{2}^{\prime}\right\} \cup\left\{1,0, C_{1}^{\prime}\right\} \cup\left\{0,1, C_{3}^{\prime}\right\}
$$

with $S=C_{1}^{\prime} \cup C_{3}^{\prime}$ the shadow of $C^{\prime}=C_{0}^{\prime} \cup C_{2}^{\prime}$. Hence the minimum weight $s$ of $S$ has to be greater than $4 \mu+3$. Therefore $C^{\prime}$ is $s$-extremal since $2 d+s \geqslant 12 \mu+7=\frac{n}{2}+4$.

More examples of known $s$-extremal codes will be given in Section 7.
Proof. From (1), the weights in $S$ are congruent to $\frac{n}{2} \bmod 4$, and the weights in $C$ are congruent to $0 \bmod 2$. Let us denote $a_{i}$ the number of codewords of weight $i$ and $b_{i}$ the number of words of weight $i$ in $S$. Let us define $s^{\prime}$ by $s=\frac{n}{2}-4 s^{\prime}$. From (1), the conditions

$$
\left\{\begin{array}{l}
a_{0}=1  \tag{2}\\
a_{2 i}=0 \text { for } 1 \leqslant i \leqslant \frac{d}{2}-1 \\
b_{\frac{n}{2}-4 j}=0 \text { for } s^{\prime}+1 \leqslant j \leqslant[n / 8]
\end{array}\right.
$$

are linear and independent conditions on the $[n / 8]+1$ coefficients $c_{i}$. Their number is $\frac{d}{2}+[n / 8]-s^{\prime}$, which is greater or equal to $[n / 8]+1$ if and only if $2 d+s \geqslant 4+\frac{n}{2}$.

We now assume that the inequality $2 d+s \geqslant 4+\frac{n}{2}$ holds. From the previous discussion, the weight enumerators of $C$ and $S$ are uniquely determined. BürmanLagrange formula allows us to calculate the coefficients of these polynomials. Let $t:=4+\frac{n}{2}-2 d$. We have

$$
\left\{\begin{array}{l}
W_{C}(x, y)=1+a_{d} x^{n-d} y^{d}+a_{d+2} x^{n-d-2} y^{d+2}+\cdots  \tag{3}\\
W_{S}(x, y)=b_{t} x^{n-t} y^{t}+b_{t+4} x^{n-t-4} y^{t+4}+\cdots
\end{array}\right.
$$

where $b_{t}$ is not assumed to be non-zero. The following lemma discusses this possibility and concludes the proof of the theorem.

Lemma 2.5. With the previous notations and assumptions, we have

$$
\begin{align*}
& a_{d}=\frac{n}{d} \sum_{\substack{j, k \in \mathbb{N} \\
j+k=\frac{d}{2}-1}}(-1)^{j}\binom{\frac{n}{2}-2 d+j}{j}\binom{d+k-1}{k},  \tag{4}\\
& b_{t}=(-1)^{\frac{d}{2}} \frac{n 2^{\frac{n}{2}-3 d+6}}{d-2} \sum_{\substack{j, k \in \mathbb{N} \\
j+k=\frac{d}{2}-2}}(-1)^{j}\binom{\frac{n}{2}-2 d+4+j}{j}\binom{d+k-3}{k} .
\end{align*}
$$

Moreover, the coefficient $b_{t}$ is positive, unless $n \equiv 22 \bmod 24$ and $d=4[n / 24]+6$, in which case $b_{t}$ equals 0 and the coefficient $b_{t+4}$ is positive.

Proof. We have in (1) $c_{i}=0$ for all $i>\frac{d}{2}-1$. Setting $x=1$ and dividing by $\left(1+y^{2}\right)^{\frac{n}{2}}$ the first equation of (1) leads to

$$
\sum_{i=0}^{\frac{d}{2}-1} c_{i}\left\{\frac{y\left(1-y^{2}\right)}{\left(1+y^{2}\right)^{2}}\right\}^{2 i}=\frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}}}+\frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}}}\left\{a_{d} y^{d}+\cdots\right\}
$$

Let $g(y):=\frac{y\left(1-y^{2}\right)}{\left(1+y^{2}\right)^{2}}$. From this last expression, we see that $c_{0}, c_{1}, \ldots, c_{\frac{d}{2}-1},-a_{d}$ are the first coefficients of the development of $\frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}}}$ as a series in $g(y)$. From the Bürman-Lagrange formula, we obtain

$$
-a_{d}=\frac{1}{d!} \frac{\partial^{d-1}}{\partial y^{d-1}}\left(\frac{\partial}{\partial y}\left(\frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}}}\right)\left(\frac{\left(1+y^{2}\right)^{2}}{1-y^{2}}\right)^{d}\right)_{y=0}
$$

which, after simplification, becomes

$$
a_{d}=\frac{n}{d}\left\{\text { coeff. of } y^{d-2} \text { in }: \frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}-2 d+1}\left(1-y^{2}\right)^{d}}\right\}
$$

and, finally, leads to the announced formula.
From (3), we have $b_{t}=(-1)^{\frac{d}{2}-1} 2^{\frac{n}{2}-3 d+6} c_{\frac{d}{2}-1}$, and a similar calculation leads to

$$
c_{\frac{d}{2}-1}=\frac{-n}{d-2}\left\{\text { coeff. of } y^{d-4} \text { in }: \frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}-2 d+5}\left(1-y^{2}\right)^{d-2}}\right\}
$$

We have obviously

$$
c_{\frac{d}{2}-1}=\frac{-n}{d-2}\left\{\text { coeff. of } y^{d-4} \text { in }: \frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}-3 d+7}\left(1-y^{4}\right)^{d-2}}\right\} .
$$

It is worth noticing that, because of the known bounds for $d$ (see [25]), $\frac{n}{2}-2 d+5$ is always positive, while $\frac{n}{2}-3 d+7$ may be negative. Taking account of the bounds in
[25], one easily sees that $\frac{n}{2}-3 d+7=0$ can only happen when $n=24 m+22$ and $d=4 m+6$. If $\frac{n}{2}-3 d+7<0$, the coefficients in the development of $\frac{1}{\left(1+y^{2}\right)^{\frac{n}{2}-3 d+7}\left(1-y^{4}\right)^{d-2}}$ are all positive numbers. If $\frac{n}{2}-3 d+7>0$, we have

$$
\begin{aligned}
c_{\frac{d}{2}-1} & =\frac{-n}{d-2} \sum_{\substack{j, k \in \mathbb{N} \\
j+2 k=\frac{d}{2}-2}}(-1)^{j}\binom{\frac{n}{2}-3 d+6+j}{j}\binom{d+k-1}{k} \\
& =\frac{-n}{d-2}(-1)^{\frac{d}{2}} \sum_{\substack{j, k \in \mathbb{N} \\
j+2 k=\frac{d}{2}-2}}\binom{\frac{n}{2}-3 d+6+j}{j}\binom{d+k-1}{k}
\end{aligned}
$$

which shows that $c_{\frac{d}{2}-1}$ and hence $b_{t}$ cannot be zero.
In the case $n=24 m+22$ and $d=4 m+6$, we have $b_{t}=0$, and a similar calculation shows that $b_{t+4}>0$. More precisely, we calculate $b_{t+4}=-2^{5} c_{2 m+1}$, and

$$
c_{2 m+1}=-\frac{12 m+11}{2 m+1} \sum_{i+2 k=2 m}\binom{5+i}{i}\binom{4 m+k+1}{k}
$$

## 3. Designs in $s$-extremal codes

In this section, we study the designs contained in the set of words of fixed weight in an $s$-extremal code and in its shadow. Therefore, we make use of the harmonic weight enumerators $W_{C, f}$ introduced in [2]. We recall that, if $f$ is harmonic of degree $k$, and if $C$ is self-dual, the polynomial $W_{C, f}$ is divisible by $(x y)^{k}$, and, if $Z_{C, f}:=(x y)^{-k} W_{C, f}, \quad$ one has: if $k \equiv 0 \bmod 2, \quad Z_{C, f} \in \mathbb{C}\left[x^{2}+y^{2}, x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right]$ (respectively if $k \equiv 1 \bmod 2, \quad Z_{C, f} \in Q_{8} \mathbb{C}\left[x^{2}+y^{2}, x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right]$, where $Q_{8}=$ $x y\left(x^{6}-7 x^{4} y^{2}+7 x^{2} y^{4}-y^{6}\right)$ ).

Theorem 3.1. Let $C$ be an s-extremal code. Let $W_{i}$, respectively $S_{i}$ denote the set of words of weight $i$ in $C$, respectively $S$.
(1) For all $i, W_{i}$ and $S_{i}$ hold a 1-design.
(2) If $d=\frac{n+8}{6}$, for all $i \equiv d+2 \bmod 4, W_{i}$ holds a 2-design.
(3) If $d=\frac{n+8}{6}$, and $d \equiv 2 \bmod 4$, for all $i, W_{i} \cup S_{i}$ holds a 2 -design.

Proof. We recall that, from the very definition of the harmonic functions, $W_{i}$ is a $t$ design if and only if the coefficient of $x^{n-i} y^{i}$ equal 0 in $W_{C, f}$, for all harmonic function $f$ of degree $k$ with $1 \leqslant k \leqslant t$. One can define analogously the polynomials $W_{S, f}$. The following transformation formula, where again $Z_{S, f}:=(x y)^{-k} W_{S, f}$, is proved in [20]

$$
\begin{equation*}
Z_{S, f}(x, y)=(-i)^{k} Z_{C, f}\left(\frac{x+y}{\sqrt{2}}, i \frac{x-y}{\sqrt{2}}\right) \tag{6}
\end{equation*}
$$

One calculates $Q_{8}\left(\frac{x+y}{\sqrt{2}}, i \frac{x-y}{\sqrt{2}}\right)=i\left(x^{8}-y^{8}\right)$. Altogether, we obtain an expression similar to (1) for $Z_{C, f}$ and $Z_{S, f}$.

We assume $k=1$. There exists coefficients $d_{i}$, such that

$$
\left\{\begin{array}{l}
Z_{C, f}(x, y)=Q_{8} \sum_{i=0}^{\left[\frac{n-10}{8}\right]} d_{i}\left(x^{2}+y^{2}\right)^{\frac{n}{2}-5-4 i}\left\{x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right\}^{i},  \tag{7}\\
Z_{S, f}(x, y)=\left(x^{8}-y^{8}\right) \sum_{i=0}^{\left[\frac{n-10}{8}\right]} d_{i}(-1)^{i} 2^{\frac{n}{2}-5-6 i}(x y)^{\frac{n}{2}-5-4 i}\left(x^{4}-y^{4}\right)^{2 i} .
\end{array}\right.
$$

Clearly, since the minimum weight of $C$ is $d, d_{i}=0$ for $0 \leqslant i \leqslant \frac{d}{2}-2$, and since the minimum weight of $S$ is $s=\frac{n}{2}-4 s^{\prime}, d_{i}=0$ for $i \geqslant s^{\prime}$. Now the hypothesis on the $s$ extremality of the code $C$ implies that all the $d_{i}$ are equal to 0 and hence that $Z_{C, f}=Z_{S, f}=0$.

In the case $k=2$, a similar argument shows that all the coefficients but one are equal to zero. More precisely, and for later use, we have

If $k=2$ :

$$
\left\{\begin{array}{l}
Z_{C, f}(x, y)=d_{\frac{d}{2}-1}\left(x^{2}+y^{2}\right)^{\frac{n}{2}+2-2 d}\left\{x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}\right\}^{\frac{d}{2}-1}  \tag{8}\\
Z_{S, f}(x, y)=d_{\frac{d}{2}-1}(-1)^{\frac{d}{2} 2^{\frac{n}{2}+4-3 d}(x y)^{\frac{n}{2}+2-2 d}\left(x^{4}-y^{4}\right)^{d-2}}
\end{array}\right.
$$

In the case $d=\frac{n+8}{6}$, the powers of $\left(x^{2}+y^{2}\right)$ and $\left(x^{2}-y^{2}\right)$ are identical in $Z_{C, f}$. Hence, the polynomial $Z_{C, f}$ equals up to a multiplicative constant $(x y)^{d-2}\left(x^{4}-\right.$ $\left.y^{4}\right)^{d-2}$, and the codewords of weight $\equiv d+2 \bmod 4$ hold a 2 -design. Moreover, we have $Z_{S, f}=(-1)^{\frac{d}{2}} Z_{C, f}$. Hence, if $d \equiv 2 \bmod 4, Z_{S, f}+Z_{C, f}=0$ and the sets $W_{i} \cup S_{i}$ hold 2-designs.

Remark 3.2. A similar argument shows that, in the exceptional case of the extremal codes of length $n \equiv 22 \bmod 24$ and distance $d=4[n / 24]+6$, the sets $W_{i}$ and $S_{i}$ hold 3 -designs (see [20]).

Let $C$ be a singly even self-dual code, with doubly even subcode $C_{0}$, then $C_{0}^{\perp}=$ $C_{0} \cup C_{1} \cup C_{2} \cup C_{3}$, where $C_{i}$ for $i=0,1,2,3$ are the cosets of $C_{0}$ in $C_{0}^{\perp}$. We fix for instance $C=C_{0} \cup C_{2}$; then the shadow $S$ of $C$ is $S=C_{1} \cup C_{3}$. In the case where $C$ is $s$-extremal, the preceding theorem states that $C$ and $S$ hold 1-designs; in the following proposition we point out some stronger properties of these designs for particular $s$-extremal codes.

Proposition 3.3. With the preceding notations, let C be a s-extremal $[24 \mu+8 m, 12 \mu+$ $4 m, 4 \mu+2$ ] code for $m=1$ or 2 , then the set of words of given weight in the cosets $C_{0}, C_{1}, C_{2}$ and $C_{3}$, independently, hold 1-designs.

Proof. From Theorem 3.1, the codewords of given weight of $C=C_{0} \cup C_{2}$ hold 1designs, and therefore since the weight of the codewords of $C_{0}$ are congruent to 0
modulo 4 and those of $C_{2}$ are congruent to $2 \bmod 4$, the codewords of given weight of $C_{0}$ and $C_{2}$ independently hold 1-designs. Now since the length $n$ is congruent to 0 modulo 8 and $C$ is $s$-extremal, the words of $S$ have weights congruent to 0 modulo 4 and the two doubly even neighbors of $C$, namely $C_{0} \cup C_{1}$ and $C_{0} \cup C_{3}$, are extremal of minimum weight $4 \mu+4$. By the Assmus-Mattson theorem, these two codes hold at least 1-designs, and since $C_{0}$ holds 1-designs, $C_{1}$ and $C_{3}$ themselves also hold 1-designs.

Remark 3.4. In the case of lengths $24 \mu+16$, the preceding proposition is partly related to Theorem 2 of [17].

## 4. Codes with long shadows

In [12], the codes with shadows of minimum weight equal to $n / 2$ and $n / 2-4$ are classified. In this section, we consider the case of minimum weight $n / 2-8$. Such codes are $s$-extremal if their minimum weight equals 6 . The corresponding problem for lattices is handled in [21]. We prove here the following theorem:

Theorem 4.1. Let $C$ be a s-extremal code of length $n$ and minimum distance $d=6$. Then $22 \leqslant n \leqslant 44$.

In the following, we freely identify a word $x$ of $\mathbb{F}_{2}^{n}$ and its support, and we denote by $\bar{x}$ the complement of $x$ over $\mathbb{F}_{2}^{n}$. From now on, we assume that $C$ is a code of length $n$, distance $d=6$ and of shadow $S$ with minimum weight $s=n / 2-8$. A direct computation of the coefficients in (3) leads to: $c_{1}=-n / 2, c_{2}=n(n-22) / 8$,

$$
\begin{aligned}
W_{S}= & 2^{n / 2-15} n(n-22) x^{n / 2+8} y^{n / 2-8}+2^{n / 2-13} n(86-n) x^{n / 2+4} y^{n / 2-4} \\
& +2^{n / 2-14}\left(3 n^{2}-322 n+2^{14}\right) x^{n / 2} y^{n / 2},
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{6}=n\left(n^{2}-66 n+1136\right) / 48 \\
& a_{8}=n\left(n^{3}-92 n^{2}+2684 n-23248\right) / 128
\end{aligned}
$$

Remark 4.2. The expression of $W_{S}$ shows already that $n \leqslant 86$. On the other hand, the bound announced in the theorem $n \leqslant 44$ is optimal since the code of length 44 which is the direct sum of two copies of the $[22,11,6]$ code is $s$-extremal.

For any $y \in \mathbb{F}_{2}^{n}$, let

$$
N_{i, j}(y):=\left\{x: x \in C_{i}| | x \cap y \mid=j\right\}
$$

and

$$
n_{i, j}(y):=\left|N_{i, j}(y)\right| .
$$

Since the sets $C_{i}$ are 1-designs, the numbers $n_{i, j}(y)$ satisfy a linear equation (see Theorem 3 of [20])

$$
\begin{equation*}
\sum_{j} j n_{i, j}(y)=\frac{i a_{i} w t(y)}{n} . \tag{9}
\end{equation*}
$$

Let $y$ be a word of $W_{6}$. Then, for all $x \in W_{6},|x \cap y|=0,2,6$, and Eq. (9) leads to

$$
m_{2}:=n_{6,2}(y)=3\left(n^{2}-66 n+1128\right) / 8 .
$$

Now we assume that $w t(y)=8$. Again, for $x \in W_{6}$, we have $|x \cap y|=0,2,4$; but (9) is not enough to calculate the values of $n_{6, j}(y)$. From now on, we set $N_{j}(y):=N_{6, j}(y)$ and $n_{j}(y):=n_{6, j}(y)$. Counting in two ways the number of elements of the set

$$
\left\{(x, y): x \in W_{6}, y \in W_{8}| | x \cap y \mid=4\right\}
$$

leads to the calculation of the mean value $m v$ of $n_{4}(y)$ :

$$
\begin{equation*}
m v=\frac{1}{a_{8}} \sum_{y \in W_{8}} n_{4}(y)=\frac{a_{6}}{a_{8}} m_{2}=\frac{\left(n^{2}-66 n+1136\right)\left(n^{2}-66 n+1128\right)}{n^{3}-92 n^{2}+2684 n-23248} . \tag{10}
\end{equation*}
$$

One notices that, if $x \in N_{4}(y)$, also $x+y \in N_{4}(y)$, so $n_{4}(y)$ is even of size say $2 k$ with

$$
N_{4}(y)=\left\{x_{1}, \ldots, x_{k}\right\} \cup\left\{y+x_{1}, \ldots, y+x_{k}\right\} .
$$

In order to prove the theorem, we first prove two lemmas.

Lemma 4.3. Let $x_{i}$ and $x_{j}$ be elements of $N_{4}(y)$ with $i \neq j$ then $x_{i}$ and $x_{j}$ do not intersect on $\bar{y}$.

Proof. First $x_{i}$ and $x_{j}$ cannot intersect in their two positions on $\bar{y}$ else $x_{i}+y$ and $x_{j}$ or $x_{i}$ and $x_{j}$ would intersect in at least four positions. Now if $x_{i}$ and $x_{j}$ intersect in one position on $\bar{y}$ then $x_{i}$ and $x_{j}$ but also $x_{i}+y$ and $x_{j}$ must intersect only in one position on $y$ which is not possible.

Lemma 4.4. The set $N_{4}(y)$ is, up to a permutation of the coordinates, contained in the set $S_{4}=\left\{t_{1}, \ldots, t_{7}\right\} \cup\left\{t_{1}+y, \ldots, t_{7}+y\right\}:$

| $y$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0, |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $t_{1}$ | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0, |
| $t_{2}$ | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0, |
| $t_{3}$ | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0, |
| $t_{4}$ | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0, |
| $t_{5}$ | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0, |
| $t_{6}$ | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0, |
| $t_{7}$ | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1. |

In particular, $n_{4}(y) \leqslant 14$. Moreover, if $n_{4}(y)=10,12$ or 14 , the set $N_{4}(y)$ is unique up to a permutation of the coordinates leaving $y$ invariant.

Proof. The set $A:=\left\{x \cap y \mid x \in N_{4}(y)\right\}$ is a set of elements of $\mathbb{F}_{2}^{8}$ satisfying the conditions:

- For all $a \in A, w t(a)=4$.
- For all $a \in A, \bar{a} \in A$.
- For all $a, b \in A,|a \cap b|=0,2$,
where the last condition is a consequence of Lemma 4.3.
It is well-known (and easy to check) that, under these conditions, $A$ is a subset of the set of codewords of weight 4 of the extended Hamming code (which has 14 elements). More precisely, a direct computation shows that, if the cardinality of $A$ equals $2,4,10,12$ and of course 14 , the set $A$ is unique up to permutation, while there are two possibilities for the cardinality 6 and 8 .

We now prove the theorem
Proof of Theorem 4.1. First, by the classification of self-dual codes, we have $n \geqslant 22$ because $d \geqslant 6$. Suppose $n \geqslant 46$. Then, $a_{8}>0$, so let $y \in W_{8}$. Then, from Lemma 4.4, $n_{4}(y) \leqslant 14$, which gives $m v \leqslant 14$. But, from (10),

$$
m v-14=\frac{(n-22)(n-44)\left(n^{2}-80 n+1660\right)}{\left(n^{3}-92 n^{2}+2684 n-23248\right)}
$$

is positive for $n \geqslant 46$, a contradiction.

## 5. Classification results

We now prove some results on the classification of the $s$-extremal codes of minimum distance $d=6$; we assume that the length $n$ is at least equal to 34 . We introduce a few more definitions:

Definition 5.1. Let $C$ be an $s$-extremal code of minimum distance 6. Let $n_{4}^{\max }$ denote the maximal value of $n_{4}(y)$ when $y$ runs over the set of codewords of weight 8 , and let $N_{4}^{\max }:=\left\{y: y \in W_{8} \mid n_{4}(y)=n_{4}^{\max }\right\}$.

Let $y \in W_{8}$. We denote $D(y)$ the code generated by $y$ and $N_{4}(y)$, after deletion of the zero coordinates (hence the length of $D(y)$ is at most equal to 22). We denote $E(y)$ the code generated by $y, N_{4}(y)$, and $N_{2}(y)$, again after deletion of the zero coordinates. We denote $E_{D}(y)$ the code obtained from $E(y)$ by restriction to the support of $D(y)$. Obviously we have $D(y) \subset E_{D}(y) \subset D(y)^{\perp}$.

We have already seen (Lemma 4.4) that $n_{4}^{\max } \leqslant 14$. It turns out that a high value of this number is a strong constraint on the code. We shall completely classify the codes with $n_{4}^{\max }=10,12,14$. All the codes are given in Appendix B.

## Theorem 5.2.

- Assume $n_{4}^{\max }=14$. Then, $n=36,38,44$, and in each case there is a unique code up to equivalence. In the case $n=44$, it is the orthogonal sum of two copies of the shorter Golay code with parameters $[22,11,6]$.
- Assume $n_{4}^{\max }=12$. Then, $n=34,36,40,42$, and in each case there is a unique code up to equivalence.
- Assume $n_{4}^{\max }=10$. Then, $n=34,36,38$, there are up to equivalence 3 codes of length 34 , and a unique code of length respectively 36 and 38.
Generating matrices are explicitly given for all these codes in Appendix B.
Before giving a proof of this theorem, we derive from it a classification of the $s$ extremal codes of minimum weight 6 , for the lengths $40,42,44$.

Corollary 5.3. There is up to equivalence a unique s-extremal code of minimum weight 6 at length 44 , respectively 42 and 40.

Proof. We give in Table 1 the value of $m v$ computed from (10) for $d=6$ and $22 \leqslant n \leqslant 44$.

If the length of $C$ equals $40,42,44$, we have $n_{4}^{\max } \geqslant 10$. Hence Theorem 5.2 exhausts all the possibilities.

Proof of Theorem 5.2. Case $n_{4}^{\max }=14$ : The following lemma is easily proved by a direct computation.

Lemma 5.4. Let $D_{8}$ denote the $[22,8,6]$ code generated by the words $\left\{y, t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}, t_{7}\right\}$ given in Lemma 4.4. Up to the action of the permutation group of $D_{8}$, for each dimension $k=9,10,11$, there is a unique code $D_{k}$ such that $D_{8} \subset D_{k} \subset D_{k}^{\perp} \subset D_{8}^{\perp}$ and $d\left(D_{k}\right)=6$. Moreover, the cardinality of the set $\left\{x: x \in D_{k} \mid w t(x)=6\right.$ and $\left.|x \cap y|=2\right\}$ equals respectively $0,8,24,56$ for $k=$ $8,9,10,11$. The code $D_{11}$ is equivalent to the shorter Golay code.

Now let $C$ be an $s$-extremal code of distance 6 and length $n$, with $n_{4}^{\max }=14$. Let $y \in N_{4}^{\max }$. Then, $D(y)$ is equivalent to $D_{8}$. Let $x \in N_{2}(y)$, and let $I:=x \cap y$. We have

Table 1
The value of $m v$ for $d=6$

| $n$ | $m v$ | $n$ | $m v$ |
| :--- | :--- | :--- | :--- |
| 22 | 14 | 34 | 2 |
| 24 | 7.68 | 36 | 3.36 |
| 26 | 4.40 | 38 | 6 |
| 28 | 2.67 | 40 | 9.26 |
| 30 | 1.82 | 42 | 12 |
| 32 | 1.60 | 44 | 14 |

$I \cap t=(10)$ or (01) for exactly 4 of the 14 elements of $N_{4}(y)$. Thus, $x$ must intersect these $t$ outside of $y$; since the $t \cap \bar{y}$ are pairwise disjoint weight 2 words, we can conclude that $x$ is contained in the support of $D(y)$. So, $E(y)=E_{D}(y)$ is a code satisfying the conditions of Lemma 5.4.

But Eq. (9) calculates $n_{2}(y)=\left(n^{2}-66 n+1136\right) / 2-2 n_{4}(y)$; we find $n_{2}(y)=$ $-4,0,8,20,36,56$ respectively for $n=34,36,38,40,42,44$. Hence, from Lemma 5.4 we can conclude that the only possible values for $n$ are $n=36$, in which case $E(y) \simeq D_{8}, n=38$ and $E(y) \simeq D_{9}$, and $n=44$ and $E(y) \simeq D_{11}$. Since $D_{11}$ is the only self-dual code of length 22 and minimum weight 6 , clearly in the case $n=44$ the code $C$ can only be the orthogonal sum of two copies of this code.

We recall a lemma on the structure of self-dual codes, which we shall apply several times. We refer to [23] for a proof.

Lemma 5.5. Let $C$ be a binary self-dual code of length $n=a+b$. Let $A$ (respectively $B)$ be the code generated by the words of $C$ which supports lie under the a first coordinates (respectively the $b$ last coordinates). Then, $2(\operatorname{dim}(A)-\operatorname{dim}(B))=a-b$, and $C$ has a generating matrix of the form

$$
\left(\begin{array}{cc}
A & 0 \\
0 & B \\
D & E
\end{array}\right)
$$

where $A^{\perp}=A+D$ and $B^{\perp}=B+E$.
In Section 6 and Table 2 we give the classification of maximal self-orthogonal codes of minimum distance 6 and lengths $10 \leqslant n \leqslant 21$. We will refer to this classification in the rest of the section.

If $n=36$, we have $A=D_{8}$ and $B$ has length 14 , dimension 4, and distance at least 6. Moreover, since $C$ and $D_{8}$ both contain the all-one word, so does $B$. One shows that these conditions leave only one possibility for $B$ (cf. Table 2). This code $B$ has the following property: under the action of $\operatorname{Aut}(B)$, the quotient $B^{\perp} / B$ has two nontrivial orbits, one consists of the classes of weight 2 and the other consists of the classes of weight 4 . The code $D_{8}^{\perp}$ contains 7 words of weight 2 , which are transitively permuted by its permutation group. We can choose such a word for the first line of $D$; then it must be extended by a word of weight 4 of $B^{\perp}$ in order to ensure that the minimum weight of $C$ is 6 . Hence $C$ contains a subcode $F$ of length 36 and dimension 13, obtained from $D_{8}, B$ and one of the equivalent words of weight 6 built up as described before. The final step consists in the exhaustive consideration of the maximal totally isotropic subspaces of the 10 -dimensional symplectic space $F^{\perp} / F$. The number of such subspaces is exactly 75735 , so we could actually list them (in fact up to the action of the group of $F$ ). It is worth noticing that the next dimension 12 gives 4922775 maximal isotropic subspaces which is too big to be exhausted.

If $n=38$, we have $A=D_{9}$ and $B$ has length 16 , dimension 6, and distance at least 6 , which leaves only one possibility. If $F:=A \perp B$, since the space $F^{\perp} / F$ has

Table 2
Maximal self-orthogonal codes with $d=6$

| Code | $n$ | $k$ | $\mid$ Aut $(C) \mid$ | Weight enumerator |
| :--- | :--- | :---: | :---: | :--- |
| $C_{10}$ | 10 | 2 | 2304 | $1+2 y^{6}+y^{8}$ |
| $C_{11}$ | 11 | 2 | 2304 | $1+2 y^{6}+y^{8}$ |
| $C_{12}$ | 12 | 3 | 1536 | $1+4 y^{6}+3 y^{8}$ |
| $C_{13,1}$ | 13 | 3 | 1296 | $1+3 y^{6}+3 y^{8}+y^{10}$ |
| $C_{13,2}$ | 13 | 3 | 1536 | $1+4 y^{6}+3 y^{8}$ |
| $C_{14,1}$ | 14 | 4 | 384 | $1+6 y^{6}+7 y^{8}+2 y^{10}$ |
| $C_{14,2}$ | 14 | 4 | 21504 | $1+7 y^{6}+7 y^{8}+y^{14}$ |
| $C_{15}$ | 15 | 5 | 720 | $1+10 y^{6}+15 y^{8}+6 y^{10}$ |
| $C_{16}$ | 16 | 6 | 11520 | $1+16 y^{6}+30 y^{8}+16 y^{10}+y^{16}$ |
| $C_{17,1}$ | 17 | 6 | 96 | $1+13 y^{6}+25 y^{8}+18 y^{10}+6 y^{12}+y^{14}$ |
| $C_{17,2}$ | 17 | 6 | 120 | $1+12 y^{6}+25 y^{8}+20 y^{10}+6 y^{12}$ |
| $C_{17,3}$ | 17 | 6 | 11520 | $1+16 y^{6}+30 y^{8}+16 y^{10}+y^{16}$ |
| $C_{18,1}$ | 18 | 7 | 1536 | $1+20 y^{6}+46 y^{8}+40 y^{10}+16 y^{12}+4 y^{14}+y^{16}$ |
| $C_{18,2}$ | 18 | 7 | 144 | $1+19 y^{6}+45 y^{8}+42 y^{10}+18 y^{12}+3 y^{14}$ |
| $C_{18,3}$ | 18 | 7 | 2160 | $1+18 y^{6}+45 y^{8}+45 y^{10}+18 y^{12}+y^{18}$ |
| $C_{19}$ | 19 | 8 | 576 | $1+28 y^{6}+78 y^{8}+88 y^{10}+48 y^{12}+12 y^{14}+y^{16}$ |
| $C_{20}$ | 20 | 9 | 3840 | $1+40 y^{6}+130 y^{8}+176 y^{10}+120 y^{12}+40 y^{14}+5 y^{16}$ |
| $C_{21}$ | 21 | 10 | 40320 | $1+56 y^{6}+210 y^{8}+336 y^{10}+280 y^{12}+120 y^{14}+21 y^{16}$ |

dimension 8 , we can directly look at the 2295 maximal totally isotropic subspaces and find a unique code up to equivalence.

Case $n_{4}^{\max }=12$ : We select again $y \in N_{4}^{\max }$. Then, from the proof of Lemma 4.4, $D(y)$ is equivalent to the code with parameters $[20,7,6]$ generated by $y$ and $t_{i}$ for $1 \leqslant i \leqslant 6$, that we shall denote $D_{7}$. It has the property that any 2 -subset $I$ of $y$ satisfies $I \cap t=(10)$ or (01) for either 3 or 4 of the 12 elements of $N_{4}(y)$. So a word $x \in N_{2}(y)$ has at most one coordinate outside of the support of $D_{7}$. Let us denote $d+7:=$ $\operatorname{dim}(E(y))=\operatorname{dim}\left(E_{D}(y)\right)$. Hence, the length of $E(y)$ cannot exceed $20+d$. Also, from Eq. (9), we have $n_{2}(y)=0,4,12,24,40$ respectively for $n=34,36,38,40,42$.

We proceed to the classification with the following steps:
(1) List the possibilities for $E_{D}(y)$, up to the action of $\operatorname{Aut}\left(D_{7}\right)$, and using the properties $D_{7} \subset E_{D}(y) \subset D_{7}^{\perp}$ and $w t\left(E_{D}(y)\right) \geqslant 6-d$. We find 32 possible codes.
(2) For each candidate $E_{D}(y)$, we fix a set of $d$ codewords which constitute a basis together with a basis of $D_{7}$, and we explore the possible extensions of them to words of length $20+d$, such that the resulting code $E$ is contained in its dual and has minimum weight 6 .
(3) Among these codes $E$, we select those who satisfy:

- $\left.\operatorname{card}\left\{x: x \in E_{6}| | x \cap y \mid=2\right\} \in\{0,4,12,24,40\}\right\}$,
- For all $z \in E_{8}, \operatorname{card}\left\{x: x \in E_{6}| | x \cap z \mid=4\right\} \leqslant 12$.

We find, up to equivalence, nine codes $E$ which are candidates for $E(y)$, with the following parameters, and corresponding $n$ (which is uniquely determined by the value of $\left.n_{2}(y)\right)$ :
(a) $[20,7]$ and $n=34$,
(b) $[21,8]$ and $n=36$,
(c) $[23,10]$ and $n=38$,
(d) $[20,9],[23,10],[22,10],[24,11]$ and $n=40$,
(e) $[21,10],[24,11]$ and $n=42$.
(4) Apply Lemma 5.5 with $A=E(y)$ for each of the nine possibilities found above. We obtain the parameters of the putative complementary codes $B$. Note that we are not sure that $E(y)$ is not strictly contained in $A$ but this would increase the dimension of $B$. The putative codes are codes contained in their duals, of minimum weight greater or equal to 6 , with parameters: $[14,4],[15,5],[15,6]$, $[20,9],[17,7],[18,8],[16,7],[21,10]$. The classification of Section 6 shows that there are no such codes with parameters $[15,6],[17,7],[18,8],[16,7]$, that a unique code exists with parameters respectively $[21,10,6],[20,9,6]$ and $[15,5,6]$, and that there are two codes with parameters $[14,4,6]$.
(5) In the case $n=34, A=D_{7}$, which does not contain the all-one word. So $B$ must be equivalent to the $[14,4]$ which does not either. The self-dual code $C$ contains as a subcode the 12 -dimensional code $F$ generated by the orthogonal sum of $A$ and $B$, and the all-one word. Since $\operatorname{dim}\left(F^{\perp} / F\right)=10$, we can look at all the possibilities. In the other cases, $B$ is uniquely determined and $F:=A \perp B$ satisfies $\operatorname{dim}\left(F^{\perp} / F\right) \leqslant 10$.

Case $n_{4}^{\max }=10$ : Let $y \in N_{4}^{\max }$. Then, $D(y)$ is equivalent to the code with parameters $[18,6,6]$ generated by $y$ and $t_{i}$ for $1 \leqslant i \leqslant 5$, denoted $D_{6}$. Any 2-subset $I$ of $y$ satisfies $I \cap t=(10)$ or (01) for either 2,3 or 4 of the 5 elements of $\left\{t_{1}, t_{2}, t_{3}, t_{4}, t_{5}\right\}$. So a word $x \in N_{2}(y)$ has at most two bits outside of the support of $D_{6}$. Therefore, the algorithmic procedure described in the case $n_{4}^{\max }=12$ cannot be directly applied here because at Step 2, each basis vector added to $D_{6}$ may increase the size of the support by 2 , so too many cases occur. We have to look at the situation more closely.

For $i=0,1,2$ we denote $I_{i}$ the set of 2-subsets of $y$ on which $4-i$ elements of $N_{4}(y)$ equal (10) or (01). We have $\operatorname{card}\left(I_{0}\right)=4, \operatorname{card}\left(I_{1}\right)=16, \operatorname{card}\left(I_{2}\right)=8$, and Aut $\left(D_{6}\right)$ permutes transitively the elements of each $I_{i}$. We denote $N_{2}^{i}:=\{x$ : $\left.x \in N_{2}(y) \mid x \cap y \in I_{i}\right\}$. Let $x \in N_{2}^{i}$. Then $x$ has $i$ bits outside of the support of $D_{6}$. We again denote $D_{6}$ the subcode of the same length as $E(y)$, obtained by extending the words of $D_{6}$ with enough zeroes. An easy calculation shows that: card $\left(\left(D_{6}+\right.\right.$ $\left.x) \cap N_{2}(y)\right)$ equals 8 if $x \in N_{2}^{0}, 4$ if $x \in N_{2}^{1}$, and 2 if $x \in N_{2}^{2}$. Also, not more than two elements of $N_{2}(y)$ can coincide on $y$ (otherwise two of them would have three common bits). Moreover, one checks easily that, if two elements $x, x^{\prime}$ of $N_{2}^{1}$ coincide on $y$, then the code generated by $D_{6}, x$ and $x^{\prime}$, which is unique up to $\operatorname{Aut}\left(D_{6}\right)$, satisfies $N_{4}(y)=12$, so this situation can be excluded. We can partition the classes of $E(y)$ modulo $D_{6}$ into $s_{0}$ (respectively $s_{1}, s_{2}$ ) classes containing elements of $N_{2}^{0}$ (respectively $N_{2}^{1}, N_{2}^{2}$ ), plus $s_{-1}$ classes containing no elements of $N_{2}(y)$. From the previous discussion, we have: $8 s_{0}+4 s_{1}+2 s_{2}=n_{2}(y), 0 \leqslant s_{0} \leqslant 1,0 \leqslant s_{1} \leqslant 4,0 \leqslant s_{2} \leqslant 8$. On the other hand, we have, from Eq. (1), $n_{2}(y)=4,8,16,28$ respectively for $n=34,36,38,40$.

We are now in the position to calculate all the possibilities for the code $E(y)$. Therefore, we start with $D_{6}$, and we add one by one words belonging to $N_{2}(y)$. At each step, we increase the dimension by one, and calculate $n_{2}(y)$ until we obtain one of the values $4,8,16,28$.

If $s_{0}=1$, we start with $x \in N_{2}^{0}$ and there is only one choice up to equivalence. The resulting code has $n_{2}(y)=8$, so it is one possibility for $E(y)$ (it is equivalent to the maximal code $C_{18,1}$ ). Then, we can either add a word in $N_{2}^{1}$, else the remaining words belong to $N_{2}^{2}$. In the first case, we obtain a single code with parameters $[19,8]$ and $n_{2}(y)=16$, equivalent to the maximal code $C_{19}$, which is not extendable; the second case does not lead to any code.

In the case $s_{0}=0$, we calculate that at most three independent words in $N_{2}^{1}$ can be added and at most six independent words in $N_{2}^{2}$ can be added.

Finally we find, up to equivalence, 19 codes $E$ which are candidates for $E(y)$, with the following parameters, and corresponding $n$ (which is uniquely determined by the value of $\left.n_{2}(y)\right)$ :

$$
\begin{equation*}
[19,7],[21,8],[22,8](3 \text { codes }) \text { and } n=34, \tag{1}
\end{equation*}
$$

(2) $[18,7],[20,8],[22,9],[23,9](3$ codes), $[26,10],[25,10],[24,10]$ and $n=36$,
(3) $[19,8],[21,9],[25,11],[26,12]$ and $n=38$,
(4) $[25,12]$ and $n=40$.

Then, we proceed like in the steps 4 and 5 of the case $n_{4}^{\max }=12$. The codes leading to a self-dual code of length 34 have parameters [19, 7], [22, 8] (two codes). The selfdual code of length 36 is obtained from $A=C_{18,1}$ and $B=C_{18,2}$. The self-dual code of length 38 is obtained from $A=B=C_{19}$.

Remark 5.6. As pointed out by A. Munemasa: the doubly even [40, 20, 8] code with covering radius 7 of [17], is equivalent to the two equivalent doubly even neighbors of the unique $s$-extremal $[40,20,6]$ code. Analogously, the $s$-extremal $[34,17,6]$ codes for $n_{4}^{\max }=10,12$, have each, two equivalent isodual $[34,17,8]$ neighbors with covering radius 6; the $s$-extremal $[36,18,6]$ code for $n_{4}^{\max }=14$ has two equivalent self-dual $[36,18,8]$ neighbors with covering radius 6 ; the two $s$-extremal $[38,19,6]$ codes for $n_{4}^{\max }=12,14$ have each two equivalent isodual $[38,19,8]$ neighbors with covering radius 7 ; the $s$-extremal $[42,21,6]$ code for $n_{4}^{\max }=10$ has two equivalent isodual $[42,21,8]$ neighbors with covering radius 6 and the unique $s$-extremal $[44,22,6]$ code has two equivalent self-dual $[44,22,8]$ neighbors with covering radius 7 .

Remark 5.7. The unique $[40,20,6]$ code also leads to a 40 -dimensional unimodular lattice of norm 3 with a long shadow in the sense of [21]. The construction is the standard Construction A followed by a neighboring procedure using the all-one vector.

## 6. The classification of maximal self-orthogonal codes of distance 6 and length up to 21

In this section we classify maximal (in term of dimension) self-orthogonal codes of minimum distance exactly 6 and length up to 21 . Unlike self-dual codes, there is no
mass formula for these codes and we proceed by induction on the dimension. Let us denote by $X C$ the extension of a code $C$.

We first give a general algorithm to construct, for not too high parameters, all the self-orthogonal $[n, k, d]$ codes. Let $S_{i}$ be the set of inequivalent self-orthogonal $[n-k+i, i, d]$ codes. The set $S_{i+1}$ of the $[n-k+i+1, i+1, d]$ codes can be obtained from $S_{i}$ by the following algorithm : let $C$ be a code of $S_{i}$. Then one considers all the inequivalent codes of minimum weight $d$ obtained by addition to $X C$ of a representant $x$ of the different orbits of the quotient $(X C)^{\perp} / X C$. All the codes of $S_{i+1}$ are obtained this way since for any $C$ of $S_{i+1}$, the shortened code of $C$ in a column for which there exists a word of weight $d$ with a zero coordinate on this column, is in $S_{i}$.

Hence all the self-orthogonal $[n, k, d]$ codes are obtained starting from a $[n-k+$ $1,1, d]$ code.

Note that by construction the codes have a codeword of weight $d$.
To complete the classification one applies the preceding algorithm with different trials on the possible dimensions. We present in Table 2 the results obtained for $d=6$, lengths $10 \leqslant n \leqslant 21$ and maximal dimension $k$. Note that for lengths $6 \leqslant n \leqslant 9$ only the trivial code of dimension 1 exists. The codes obtained for lengths 19,20 and 21 correspond to shortened codes of the self-dual [22, 11, 6] shorter Golay code. Note that we also used the algorithm to prove that no codes exist with the same length and dimension with a higher minimum distance. The generator matrices are given in the appendix.

## 7. Number and examples of $s$-extremal codes

We now consider examples of $s$-extremal codes. The $s$-extremal codes with $d=4$ have been classified in [12]. We now list the known $s$-extremal codes corresponding to a given $d$. First note that from Theorem 3.1 the unique singly even $[16,8,4]$ holds 2-designs.

- $d=6$ :

For this minimum distance, from Section 4, codes are known to exist for the lengths $22 \leqslant n \leqslant 44$. The two codes of length 28 hold 2 -designs. Existing codes are given in the following table:

| $n$ | Num | Ref | $n$ | Num | Ref |
| :--- | :---: | :---: | :--- | :--- | :--- |
| 22 | 1 | $[22]$ | 34 | $\geqslant 2$ | $[9$, Section 5] |
| 24 | 1 | $[24]$ | 36 | $\geqslant 3$ | $[9$, Section 5] |
| 26 | 1 | $[8]$ | 38 | $\geqslant 2$ | $[9$, Section 5] |
| 28 | 2 | $[8]$ | 40 | 1 | $[9$, Section 5] |
| 30 | 9 | $[8]$ | 42 | 1 | $[9$, Section 5] |
| 32 | 19 | $[3]$ | 44 | 1 | $[9$, Section 5] |

- $d=8$ :

In that case it is not known for up to which length $s$-extremal codes do exist. The codes of length 40 hold 2 -designs. We list known codes for $d=8$ :

| $n$ | Num | Ref |
| :--- | :--- | :--- |
| 32 | 3 | $[9]$ |
| 36 | $\geqslant 3$ | $[16,19]$ |
| 38 | $\geqslant 8$ | $[16,19]$ |
| 40 | $\geqslant 4$ | $[7,9]$ |
| 42 | $\geqslant 17$ | $[6,9]$ |
| 44 | $\geqslant 1$ | $[9]$ |

- $d=10$ :

The codes of length 52 hold 2-designs. The code $\operatorname{sub}\left(X Q_{47}\right)$ is the code obtained by subtraction of the (11) trivial code from the extended quadratic residue code of length 47. Codes are only known for the following lengths:

| $n$ | Num | Ref |
| :--- | :--- | :--- |
| 46 | $\geqslant 1$ | $\operatorname{sub}\left(X Q_{47}\right)$ |
| 50 | $\geqslant 1$ | $[9]$ |
| 52 | $\geqslant 460$ | $[18]$ |
| 54 | $\geqslant 166$ | $[26$, Section 3] |
| 58 | $\geqslant 1$ | $[9]$ |

- $d=12$ :

In that case it is not known whether a $s$-extremal $[64,32,12]$ code exists, such a code would hold 2-designs. For length 68, although many codes are known, none of them is $s$-extremal. The only known codes are:

| $n$ | Num | Ref |
| :--- | :--- | :--- |
| 60 | $\geqslant 3$ | $[10,27]$ |
| 62 | $\geqslant 8$ | $[10]$ |
| 66 | $\geqslant 2$ | $[9,15]$ |

- $d \geqslant 14$ :

For $d=14$, two codes are known for length $76[1,13]$, which contain 2 -designs, and more than 50 codes are known for length 78 from $[1,14]$. For $d=16$ only one $s$ extremal code is known for length 86 from [11] and for $d=18$ one code is obtained for length 102 from the extended quadratic residue code of length 104 and Lemma 2.4.

## Appendix A

Maximal self-orthogonal codes of weight 6 and lengths $10 \leqslant n \leqslant 21$

$$
C_{10}=\left[\begin{array}{l}
1000011111 \\
0111101111
\end{array}\right], \quad C_{11}=\left[\begin{array}{l}
11000011101 \\
00111111101
\end{array}\right], \quad C_{12}=\left[\begin{array}{l}
110000111010 \\
001001100111 \\
000110011101
\end{array}\right],
$$

$$
\begin{aligned}
& C_{13,1}=\left[\begin{array}{l}
1000101111110 \\
0101110111001 \\
0010101000111
\end{array}\right], \quad C_{13,2}=\left[\begin{array}{l}
1010001100110 \\
0101000111010 \\
0000111011100
\end{array}\right], \\
& C_{14,1}=\left[\begin{array}{l}
10001011111100 \\
01001001100101 \\
00101010001110 \\
00010100010111
\end{array}\right],
\end{aligned}
$$

$$
C_{14,2}=\left[\begin{array}{l}
10100000110011 \\
01010001110100 \\
00001101000111 \\
00000011111111
\end{array}\right], \quad C_{15}=\left[\begin{array}{l}
100001110100111 \\
010001010010101 \\
001001101000011 \\
000101000101110 \\
000011001011111
\end{array}\right],
$$

$$
C_{16}=\left[\begin{array}{c}
1000010010110001 \\
0100010100101010 \\
0010010101111001 \\
0001010001011100 \\
0000110010111110 \\
0000001111111111
\end{array}\right],
$$

$$
C_{17,1}=\left[\begin{array}{l}
10000101000101010 \\
01000101001000101 \\
00110000011110110 \\
00001100010011001 \\
00000011011110000 \\
00000000101011110
\end{array}\right], \quad C_{17,2}=\left[\begin{array}{c}
10000101101110100 \\
01000100100110001 \\
00100100111001110 \\
00010100001100110 \\
00001101111101101 \\
00000011011110000
\end{array}\right],
$$

$$
C_{17,3}=\left[\begin{array}{c}
10000101011011010 \\
01000101010000110 \\
00100100111100110 \\
00010100001110010 \\
00001100111001000 \\
0000001111111110
\end{array}\right],
$$

$C_{18,1}=\left[\begin{array}{l}100001010001010100 \\ 010001010010001010 \\ 001100000010100011 \\ 000011000001111101 \\ 000000110010101111 \\ 000000001010111100 \\ 000000000101001111\end{array}\right], \quad C_{18,2}=\left[\begin{array}{l}100001010001010100 \\ 010001010010001010 \\ 001001000010111011 \\ 000101000101010111 \\ 000011000100110010 \\ 000000110111100000 \\ 000000001010111100\end{array}\right]$,
$C_{18,3}=\left[\begin{array}{l}100001010011110111 \\ 010001000001111101 \\ 001001000110000011 \\ 000101000011001100 \\ 000011010111000101 \\ 000000110111100000 \\ 000000001000011111\end{array}\right], \quad C_{19}=\left[\begin{array}{l}1000010100010101000 \\ 0100010100100010100 \\ 0010010000101110101 \\ 0001010000000110011 \\ 0000110000011111010 \\ 0000001100101011110 \\ 0000000010101111000 \\ 0000000001010011110\end{array}\right]$,
$C_{20}=\left[\begin{array}{l}10000100001101000111 \\ 01000100000000111111 \\ 00100100001011101010 \\ 00010100000001100110 \\ 00001100000111110100 \\ 00000010000010101011 \\ 00000001001000010111 \\ 00000000101011110000 \\ 00000000010100111100\end{array}\right], \quad C_{21}=\left[\begin{array}{l}100001000000000011011 \\ 010001000000001111110 \\ 001001000001101000001 \\ 000101000000011001100 \\ 000011000001111101000 \\ 000000100000101010110 \\ 000000010001010111011 \\ 000000001001101110101 \\ 000000000101001111000 \\ 000000000011010010101\end{array}\right]$.

## Appendix B

In this appendix we give all the codes mentioned in Theorem 5.2. To save space, we consider the codes in the form $(I A)$ and we list only the matrices $A$ as sequences of their rows written in hexadecimal: $1=0001,2=0010, \ldots, F=1111$. Note that depending on the length $n$, the first $4-\left(\frac{n}{2}(\bmod 4)\right)$ columns of ' 0 ' have to be deleted

## - $n_{4}^{\max }=14$ :

C36_14: 3B29E; 38C0F; 36718; 358D4; 2EA9D; 2D774; 23CB4; 1015D; 08378; 04225; 023AF; 0118A; 00AF2; 004D7; 0026F; 0016C; 000E3; 0001F.

C38_14: 77833; 7143C; 6DF14; 6A800; 5D291; 5BF27; 476AD; 21B1B; 101B9; 09AA2; 0431B; 039B9; 006A2; 003BF; 003D5; 00265; 00159; 000D6; 0007F.

C44_14: 293000; 3DA000; 1ED000; 3EB800; 366800; 1B3800; 3C4000; 06C800; 1B8000; 152800; 127000; 000526; 0007B4; 0003DA; 0007D7; 0006CD; 000367; 000788; 0000D9; 000370; 0002A5; 00024E.

- $n_{4}^{\max }=12$ :

C34_12: 1DA49; 1C653; 1B33B; 1AEB9; 174CF; 16A63; 11F34; 08198; 042B6; 0232E; 01289; 009A7; 00711; 002CF; 00136; 001C5; 001FC.

C36_12: 3B454; 38AB1; 36061; 35B30; 2EB1B; 2D42B; 23A84; 105B4; 081D5; 04461; 025AA; 011CB; 0081E; 00159; 000C7; 0026C; 0038A; 003F8.

C40_12: E6FE7; F97E7; D47E7; CBF17; ED8F0; EA000; 87800; 5C8F0; 428F0; 59800; 380F0; 004AA; 00495; 004CF; 003AB; 00354; 0020F; 001C9; 001F5; 00133.

C42_12: 1D887F; 1C107F; 1B0800; 1A587F; 17D87F; 16B07F; 11A07F; 08C87F; 04F000; 02387F; 01F87F; 00074E; 00077D; 0006A1; 0006F4; 0005C4; 0005E9; 00044B; 000266; 00011E; 0000F8.

- $n_{4}^{\max }=10$ :

C34_10a: 1DC61; 1C330; 1B5D5; 1A99F; 1704A; 1687F; 11B2E; 0831B; 04764; 0247F; 012D0; 00EAF; 00159; 000C7; 0026C; 0038A; 003F8.

C34_10b: 1DB90; 1C0E8; 1B376; 1AF5A; 173A1; 16E29; 11ADC; 08754; 046F0; 021A4; 0119B; 0083F; 004D7; 0034C; 0013A; 00067; 0009D.

C34_10c: 1DB65; 1C231; 1B373; 1AEC1; 172F5; 16FAA; 119B9; 084E6; 0440B; 020ED; 0135A; 00BB7; 00586; 00354; 0013A; 00067; 0009D.

C36_10: 3A800; 39B18; 3794E; 350D3; 2FA56; 2D368; 233BB; 11A85; 09A26; 040A3; 038A3; 00654; 0068A; 004BB; 00557; 00532; 003E0; 000BC.

C38_10: 430E2; 4FBE9; 59147; 59800; 4C24C; 2ABE9; 262AE; 1F947; 3E24C; 23947; 3124C; 006A8; 00714; 00575; 00433; 004FA; 0035E; 00178; 0009E.

## References

[1] A. Baartmans, V. Yorgov, Some new extremal codes of length 76 and 78, Proceedings of the Seventh International Workshop on Algebra and Combinatorics, Coding Theory, 18-24 June, Bulgaria, 2000, pp. 51-54.
[2] C. Bachoc, On harmonic weight enumerators of binary codes, Des. Codes Cryptogr. 18 (1999) 11-28.
[3] R.T. Bilous, G.H.J. van Rees, An enumeration of self-dual codes of length 32, Des. Codes Cryptogr. 26 (2002) 61-86.
[4] W. Bosma, J. Cannon, Handbook of Magma Functions, University of Sydney, Sydney, 1995.
[5] R.A. Brualdi, V.S. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37 (1991) 1222-1225.
[6] S. Buyuklieva, New extremal self-dual codes of length 42 and 44, IEEE Trans. Inform. Theory 43 (1997) 1607-1612.
[7] S. Buyuklieva, V. Yorgov, Singly-even self-dual codes of length 40, Des. Codes Cryptogr. 9 (1996) 131-141.
[8] J.H. Conway, V.S. Pless, On the enumeration of self-dual codes, J. Combin. Theory Ser. A 28 (1980) 26-53.
[9] J.H. Conway, N.J.A. Sloane, A new upper bound on the minimum distance of self-dual codes, IEEE Trans. Inform. Theory 36 (1990) 1319-1333.
[10] R. Dontcheva, M. Harada, New extremal self-dual codes of length 62 and related extremal self-dual codes, IEEE Trans. Inform. Theory 48 (2002) 2060-2064.
[11] S.T. Dougherty, T.A. Gulliver, M. Harada, Extremal binary self-dual codes, IEEE Trans. Inform. Theory 43 (1997) 2036-2047.
[12] N. Elkies, Lattices and codes with long shadows, Math. Res. Lett. 2 (5) (1995) 643-651.
[13] P. Gaborit, A. Otmani, Experimental constructions of self-dual codes, Finite Fields Appl. 9 (2003) 372-394.
[14] T.A. Gulliver, M. Harada, J.-L. Kim, Construction of new extremal self-dual codes, Discrete Math. 263 (2003) 81-91.
[15] M. Harada, Classification of extremal double circulant codes of lengths 64 to 72, Des. Codes Cryptogr. 13 (3) (1998) 257-269.
[16] M. Harada, New extremal self-dual codes of lengths 36 and 38, IEEE Trans. Inform. Theory 45 (1999) 2541-2543.
[17] M. Harada, M. Ozeki, Extremal self-dual codes with the smallest covering radius, Discrete Math. 215 (2000) 271-281.
[18] W.C. Huffman, V.D. Tonchev, The [52,26,10] binary self-dual codes with an automorphism of order 7, Finite Fields Appl. 7 (2001) 341-349.
[19] J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (4) (2001) 1575-1580.
[20] M. Lalaude-Labayle, On binary linear codes supporting $t$-designs, IEEE Trans. Inform. Theory 47 (6) (2001) 2249-2255.
[21] G. Nebe, B. Venkov, Unimodular lattices with long shadow, J. Number Theory 99 (2003) 307-317.
[22] V. Pless, A classification of self-orthogonal codes over $G F(2)$, Discrete Math. 3 (1972) 209-246.
[23] V. Pless, Introduction to the Theory of Error Correcting Codes, 3rd Edition, Wiley, New York, 1998.
[24] V. Pless, N.J.A. Sloane, On the classification and enumeration of self-dual codes, J. Combin. Theory Ser. A A18 (1975) 313-335.
[25] E. Rains, Shadow bounds for self-dual codes, IEEE Trans. Inform. Theory 44 (1) (1998) 134-139.
[26] E.M. Rains, N.J.A. Sloane, Self-dual codes, in: V.S. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam, 1998, pp. 177-294.
[27] H.-P. Tsai, Y.J. Yiang, Some new extremal self-dual [58,29,10] codes, IEEE Trans. Inform. Theory 44 (1998) 813-814.


[^0]:    ${ }^{*}$ Corresponding author.
    E-mail addresses: bachoc@math.u-bordeaux.fr (C. Bachoc), gaborit@unilim.fr (P. Gaborit).

