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The radial Hamiltonian operator H = -d*/dx’ -I/x’ is considered on IO, co). 
While no boundary condition is needed at co in order to make H self-adjoint, one is 
indeed needed at 0. This article describes in elementary terms how such conditions 
may be found. The resulting eigenvalue problem is then discussed and its relation to 
previous’ work is explained. Other potentials with singularities at 0 are also 
mentioned. 

INTRODUCTION 

In 1950 Case [3] discussed the boundary value problem generated by the 
Hamiltonian operator 

constrained by the boundary condition ~(0) = 0, also requiring that solutions 
be in L*(O, co). Since he was only interested in eigenvalues and eigen- 
functions, he only considered the equation 

with p = --t* ( 0. He arrived at a formula for eigenvalues with contained an 
unexplained parameter B, undetermined since the boundary condition 
~(0) = 0 was inappropriate. 

Case also discussed the problem generated by the Hamiltonian operator 

A l(l+ 1) H’-$-X,+--g- 

with the same kind of result. 
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Realizing that the boundary value problem was not correctly formulated, 
Burnap ef al. [2] followed an approach based on deficiency space theory, 
where the parameter determining the boundary condition at 0 is introduced 
through solutions of the equations Hv = fiyl. A formula for the (negative) 
eigenvalues was found, but the resulting description of the self-adjoint 
extensions generated by the minimal operator H,,, associated with H, is 
difficult to understand, largely because, although they did not require 
w(O) = 0, they did not find a satisfactory substitute for it. 

In both papers the possibility of spectrum in the range ~12 0 was ignored 
because, as it turns out, there are no positive eigenvalues. 

The problem had actually been “solved” earlier, however, by Meetz [ 13 ] 
in 1964, who found the negative eigenvalues as well as the formula for the 
spectral density function by using deficiency index theory and a formulation 
of limit circle boundary conditions at 0 based on solutions of the equation 
HI,v= f iv. 

Further, Kodaira also considered the problem in [9]. Unfortunately when 
this work was republished in English, the problem in question was not 
included. Titchmarsh [ 161 and others [4, 1 l] have described what goes on 
theoretically, but a practical application of those results is not well known. 
References [4], [5], [ll] and [16] d o not provide much help in describing 
what such a constraint should be. 

Recently, however, Fulton [6] has given a formulation of limit circle 
boundary conditions, which is applicable to an arbitrary limit circle end 
point, and makes use of limits of Wronskian combinations with a fixed pair 
of solutions for ,D = 0. The purpose of the present paper is to demonstrate the 
utility of Fulton’s approach by applying it straightforwardly to obtain the 
negative eigenvalue formula, previously obtained by Meetz ] 13 1, Burnap et 
al. [ 21 and Kodaira 191, as well as the entire spectral resolution. The method 
employed represents a significant simplification over the methods used by the 
above authors, ail of whom ran into considerable computational problems. 

An interesting question arises as a result of Fulton’s method: Are there 
any physical grounds for choosing the boundary value parameter introduced 
by the method? 

The problem we ultimately define has a limit circle boundary condition at 
0. The spectrum of the operator H, thus generated consists of point 
spectrum (eigenvalues) when p < 0 and continuous spectrum when p > 0. 
The resulting spectral resolution of H, strongly resembles the operator 
considered by Naimark [ 151: 

Ly = -y” + qy, 

where ],” eoX Iq(x)l dx < co, subject to the constraint y(0) - hy’(0) = 0. It 
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contains a continuous integral in ,U from 0 to co, and then a sum due to 
isolated eigenvalues when ,D < 0. 

SOLUTIONS 

We consider the equation 

d*y A 
---;;I-v/=w dx2 

in the interests of simplicity. Results for the other potentials, which are 
similar, are reserved for the last section. 

Let us first consider solutions near 0. If P= 0, the differential equation is 
an Euler equation with two exact solutions given by 

and 

v/IO =x l’* cos(1’ In x)/c 

w20 = x “* sin@’ In *)/fl, 

where I’ = m > 0. When p # 0, the method of Frobenius [S] shows 
that there exist two solutions will and w2,, with behavior 

Wlp = v,o(l + O(l)), 

W2r = w*o(l + O(1)) 

as x approaches 0. In each case both solutions are square integrable toward 
0. The point x = 0 is in the “limit circle” case, and a boundary condition of 
some sort is required there in order to properly define a boundary value 
problem. 

As x approaches 03, the approach is a bit different. Following Naimark 
[ 15 1, we let & = s = u + ir, 7 > 0. With a little “welding,” we find there are 
two linearly independent solutions w, and v/Z which are continuous for x > 0, 
7 2 0 and which are holomorphic in s when 7 > 0. They have the asymptotic 
properties 

v,(x, s) = eisx( 1 + O(l)), 

IJI;(X, s) = eisx(is + O(l)), 

v/*(x, s) = ecisx( 1 + O(l)), 

i&(x, x) = e-isx(-is + 0( 1)) 



BOUNDARYVALUES 131 

uniformly as x approaches 00. W[ w, , w2] = -2is. As s approaches co, 

w,(x, s) = ey 1 + O( l/S)), 

w;(x, s) = isP( 1 + 0( l/s)), 

w,(x, s) = emisx( 1 t 0( l/s)), 

yqx, s) = -i&y 1 + O( I/s)). 

For r > 0 only w, is square integrable toward co. The point co is in the limit 
point case, and no boundary conditions is required there is order to properly 
defined a boundary value problem. 

We note in passing that when s = is, y,(x, ir) = ~X”‘Ki~,(~X) (see 

[ 14, p. 13231). 

GREEN'S FORMULA,BOUNDARY CONDITIONS 

We denote by D those elements f which satisfy the following. 

(a) f is in L2(0, co). 
(b) f’ exists and is absolutely continuous on every finite subinterval 

of (0, co). 
(c) Hf is in L2(0, co). 

Then an elementary computation shows that forf, g in D 

irn IWM - f@i)l dx = w1.L iw. 
-0 

The integral is finite, so the limits ‘on the right exist. Further, since the limit 
point case holds at co, the limit at co is 0: 

Note that the limit on the right is finite, although it is not necessarily 0, for 
allf; g in D. It is in the proper exploitation of this expression that is the key 
to all that follows. We note in particular that for p= s = 0, lim,,, W[f, wlo] 
and lim,,, Wf; ~1~~1 exist and are finite. These are the building blocks in the 
expansion of W[f, 81. 

Let Q be any number 0 < ct < 2~. Then define 

B,(f) = tz wf, WI019 

B2W = ti wf, w2019 
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A(f)=B,(f)sina+B,(f)cosa, 

B(f) = -B,(f) sin a $ B,(f) cos a. 

THEOREM. Letf, g be in D. Then 

ro” [tHf)g-ftHg)ldx=Adf)B(g)--Bdf)A. 

= lim 
x-0 

= lim 
x-0 

ff 
e g’ I I WSO WiO 

-wzo -YlO I I 

cos a -sin a 
sin a cos a 

f f’ 
Id i( 

Vi0 WlO 

I( 

cos a -sin a 
--I 
g --wzo ---WI0 sin a cos a )I 

fv;, - f ‘wzo 

(- 
fvlo - f ‘wlo cos a -sin a 

gw;o - ~‘ylzo &;o - i?w,o )( sin a cos a )I 

= B,(f)cosa+B,(f)sina -B2df) sin a + B,(J) cos a 
B,(g) cos a + B,(g) sin a -B,(g) sin a + B,(g) cos a 

We note that each of these expressions is finite separately. By 
appropriately choosing a, A(f) can generate an arbitrary boundary 
condition at 0. B(g) is the complementary boundary condition [4]. 

We denote by D, those elements of which satisfy the following. 

(a) f is in D. 

tb) A(f) = 0. 

For f in D, we define H, by setting H, f = HJ 

THEOREM. H, is self-adjoint. 

Proof. It is apparent that D, is dense in L’(O, co) (see [ 15, p. 1051). so 
H,* exists. 



BOUNDARY VALUES 133 

Let f be in D, n C&O, co), and suppose that f s 0 when 0 < x < a. Then 
for g in the domain of H,*, 

KL s> = (f, H,*g), 

where (., -) denotes the inner product in L*(O, co). This is the same as 

Jb” (-f” - -$ f ) g dx = J.y f(m) dx. 

Putting the terms with f together and integrating by parts twice yields 

@g/z * + (H,* g)) dz dy 1 * dx = 0. 

Since such f “3 are dense in L*(O, co), 

g + I” 1’ @g/z* + (H,xg)) dz dy = 0. 
-(I a 

Two differentiations then reveal that 

Thus H,* has the same form as H,. 
If, now, f is any element in D,, then Green’s formula shows 

0 = (HA 8) - v; Kg) 

=A(f)m)--(f)A(d 

= -B(f )A(g), 

since A(f) = 0. Further, since B(f) is arbitrary, A(g) = 0 as well. Hence the 
domain of H,* is in D,. The converse inclusion is trivial, and so H, is self- 
adjoint. 

THE SPECTRUM OF H, 

When ,U > 0 the asymptotic formulas show that ] w, I* and ] w2 I2 both 
approach 1 as x approaches co, so neither can be an eigenfunction. Likewise, 
Naimark [ 15, p. 1261 shows that no linear combination can be square 
integrable either, so there are no eigenvalues on the positive p axis. 

On the other hand Naimark’s arguments [ 15, p. 1351 show that the 
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positive ,u axis is contained in the spectrum since the resolvent is only 
densely defined. 

THEOREM. Each point of the positive p axis, p > 0, is in the continuous 
spectrum of H,. 

ProoJ Since H, is self-adjoint a(H,) = a,(H,) U a,(H,). When 
,U = -r* < 0, however, there is a solution (see [ 14; p. 13231) 

y,(x, ir) = fi x”*K,,,(tx), 

which is square integrable toward co, and, thus, is an eigenfunction (with 
eigenvalue -r’) provided A(w,) = 0. In order to see when that occurs some 
approximating is necessary. 

In 

P+f 
w” + x2 - yl= t’ly, 

set w = x”*y and rx = t to find that y satisfies 

2 d*y 
t dt2-dt dy-(t*-L”)y=o. 

The solution we seek is 

y = K, c(t) = 2 siTi~,rr (z-i*4t) - ziA’(t)h 

where (see [ 11) 

z,(t) = F (t/2)“+ *In 

,yo m!T(m+u+ 1)’ 

Near t = 0, Z,(t) z (t/2)“/r(v + l), so 

K 
KiAr(zx) z 2 sin i~‘n 

[ 

@x/2)-iA’ (tx/2)iA’ 
r(-il/ + 1) - T(U + 1) I ’ 

and so w, satisfies near x = 0, 

XX’/* 
wl(x9 ir)z 2 sin i~‘n 

[ 

@x/2)-“’ (TX/2)iA’ 
r(-iAf + 1) - r(U’ + 1) I ’ 
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Now if ,u = 0, there are two solutions 

y+(x) = x”2xiA’, 

y-(x) = x”2x-i*’ 

to yl” + (A” + a)/x’)v = 0. Therefore w10 = [w, + w-]/2& and wzO = 
[l/l+ - w-]/q/F. I n order for v/, to be an eigenfunction, u/, must be propor- 
tional to sin a wr,, + cos a~~,, in order to satisfy A(I,u,) = 0. That is, 

-iv+ ia 
w’ 2@7 

iv- -ia 

“N-e l e 
'z ix"' ( xiA'eia + x-iA’e-iu). 

2& 

Matching coefficients between these two expressions for w, we find 

where A is real. Taking arguments and solving for r, we find 

5 = 2 exp[(a + arg QU + l))/A’] exp(klr/A’), 

where k is an integer. This formula reestablishes formulas 25 of 12 1 as well 
as making precise the results of [ 3 1. 

THEOREM. The negative ,u axus, ,u < 0, contains only isolated eigenvalues 
,u = -r2, where r is given by 

r = 2 exp[ (a + arg QU’ + l))/A’] exp(krr/A’), 

k = 0, f 1, *2,..., with corresponding eigenfunction fl x’/‘K, ‘(rx). The 
eigenvalues .u = - r2 have points of accumulation only at 0 and -a~. Other 
values of p < 0 are in the resolvent of H,. 

THE SPECIAL RESOLUTION OF H, 

There are at least two approaches to deriving the spectral resolution of 
Ha* Titchmarsh [ 161 uses contour integration, while Coddington and 
Lcvinson [4] achieve the same results via the Helley selection theorems. 
Since this ground has been well worked over, we illustrate only the high 
spots. 
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The Green’s function of H, is given by G(si, x, <) = G,(si, x, k) + 
G,(si, x, 0, where 

W&x,5)=-~ w,K so) w*(x, SOL r > x9 
0 

and 
1 Gz(s:,xd)=- A (w2k so>> 

2iso A(Vl(XV so)) Vl(A so) w,Gfv so) 
whenever p = si is not in the spectrum of H,. The resolvent of H, is then 
given by 

v(x) = jr G(si 3 x9 0 J-(t) dt. 
That is, ly satisfies (H, - p)w = J 

Through contour integration [ 11, 15, 161, G(si, x, <) can be expanded to 
yield 

THEOREM. 

1 .a2 
J 

@(x, s) IJ(t, s) ds -- 
27l 0 (s2 - ~~>4y/,MW*) ’ 

where (s,J* = (it,)* =,u: are the eigenualues of Ha and $(x, s) = 
A(W*) Vlk s) --A(WJ w*(x9 s>. 

We note that if A(vr) = 0 on the real ‘s axis, then A(vJ = 0 as well, since 
they are complex conjugates. At such points 1+7 also vanishes and so these 
“singularities” of G are removable. 

This expansion of the Green’s function then paves the way for the 
expansion of elements in L*(O, 00): 

THEOREM. 

-&I” a(s)(W sM~(w,N ds, 
0 
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where 

‘k = jr f(t) w,(‘tv sk) & 

/( 
jb” ‘/‘,(t, Sk)* d5) “* 

a(s) = J r f(SMC WW,>l) ds. 
Convergence is valid in the mean sense if f is in L*(O, co) [4], in the 

pointwise sense under stronger conditions on f [ 151. 

OTHER POTENTIALS 

The results for 

d2ty A 

A* Hv=-dX2-- x” WV 

d2v I(1 + 1) B. Hyr---$+- 
dx2 X2 

are virtually unchanged in form from those just presented. Example A, 
discussed by Case [3], is in the limit circle case at 0 with solutions to 
Hy = 0 given by 

xn’4 cos (& (--$)‘l’) and x”14 sin (A (--$) I’*), 

Example B, discussed in [2], is algebraically more of a nuisance, but is also 
in the limit circle case at 0 with solutions near zero given in terms of Hankel 
functions [ 12, 171. 

Remarks. Another form of the spectral resolution can be obtained by 
following a Titchmarsh-type approach recently given by Fulton [7]. By using 
solutions t?,# of Hy/ = ,uw, p complex, satisfying 

(I:$)= (Iz)? (3:I:;)= (-I:,“)~ 

and defining m@) be requiring 19 + rn# to be in L’(O, co), the spectral 
measure p can be found by setting 

p(u) = lim -!- 
J 
.’ 

&LO R 
- Im m(u + ia) dp. 

0 



138 ALLAN M.KRALL 

This gives a result equivalent to that of Meetz [ 131, although considerable 
labor is required to make the connection. 
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