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Abstract

Given a finite Coxeter system (W,S) and a Coxeter element c, or equivalently an orientation of the Cox-
eter graph of W , we construct a simple polytope whose outer normal fan is N. Reading’s Cambrian fan Fc,
settling a conjecture of Reading that this is possible. We call this polytope the c-generalized associahedron.
Our approach generalizes Loday’s realization of the associahedron (a type A c-generalized associahedron
whose outer normal fan is not the cluster fan but a coarsening of the Coxeter fan arising from the Tamari
lattice) to any finite Coxeter group. A crucial role in the construction is played by the c-singleton cones, the
cones in the c-Cambrian fan which consist of a single maximal cone from the Coxeter fan.

Moreover, if W is a Weyl group and the vertices of the permutahedron are chosen in a lattice associated
to W , then we show that our realizations have integer coordinates in this lattice.
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1. Introduction

Cluster fans were introduced by S. Fomin and A. Zelevinsky in their work on cluster alge-
bras [6]. To each Weyl group there corresponds a cluster fan which encodes important algebraic
information including the exchange graph of the corresponding cluster algebra. One very natural
problem is to find realizations of these fans as (outer) normal fans of simple polytopes. This was
first accomplished by F. Chapoton, S. Fomin, and A. Zelevinsky in [4]: for each Weyl group W ,
they construct a simple convex polytope whose normal fan is the cluster fan. Such a polytope is
called a generalized associahedron of type W .

A related family of fans was introduced by N. Reading. For every finite Coxeter group W ,
and every choice of Coxeter element c, he defined a fan, called the c-Cambrian fan [18] and
denoted Fc. N. Reading conjectured that every Cambrian fan is the normal fan of a polytope [18,
Conjecture 1.1]. In [21], N. Reading and D. Speyer showed that all Cambrian fans for a given
Coxeter group are combinatorially isomorphic to the corresponding cluster fan. However, since
Cambrian fans are typically not linearly isomorphic to cluster fans, the polytopes of [4] do
not suffice to resolve N. Reading’s conjecture. We call a polytope whose normal fan is the
c-Cambrian fan, a c-generalized associahedron. Our goal in this paper is to prove N. Read-
ing’s conjecture, by constructing a c-generalized associahedron for all finite Coxeter groups W

and Coxeter elements c.
Subsequently, a third construction of a fan associated to a cluster algebra was introduced by

S. Fomin and A. Zelevinsky [7], the g-vector fan. The definition of the g-vectors associated to
a cluster algebra is less elementary than the definition of the denominator vectors of the clus-
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ter algebra (which define the rays of the cluster fan) but in some respects, the g-vectors are
better-behaved. In [21], N. Reading and D. Speyer conjectured that Cambrian fans are linearly
isomorphic to g-vector fans of finite type cluster algebras with respect to an acyclic initial seed.
They proved this conjecture modulo the assumption of a conjecture of [7]. The conjecture of
N. Reading and D. Speyer was later proved by different methods by S.-W. Yang and A. Zelevin-
sky [29]. Thus, in studying Cambrian fans, we are also studying g-vector fans for cluster algebras
of finite type with respect to an acyclic initial seed.

We now discuss further our approach to constructing polytopes having a Cambrian fan as
normal fan. In order to do this, we have to go further back into the past. For symmetric groups,
that is for Coxeter groups of type A, the generalized associahedron is combinatorially isomorphic
to the classical associahedron Asso(Sn), whose combinatorial structure was first described by
J. Stasheff in 1963 [27]. Numerous realizations of the associahedron have been given, see [4,13]
and the references therein.

We will be particularly interested in a realization of Asso(Sn) which is closely related to the
permutahedron, whose definition we now recall. Let (W,S) be a finite Coxeter system acting
by reflections on an R-Euclidean space. Let a be a point in the complement of the hyperplanes
corresponding to the reflections in W . The convex hull of the W -orbit of a is a simple convex
polytope known as a permutahedron, and denoted Perma(W). The normal fan of Perma(W) is
the Coxeter fan F .

An elegant and simple realization of Asso(Sn) defined by a subset of the inequalities defining
the permutahedron Perm(Sn), is due to S. Shnider and S. Sternberg [24] (for a corrected version
consider J. Stasheff and S. Shnider [28, Appendix B]). This polytopal realization of the associa-
hedron from the permutahedron has also been studied by J.-L. Loday [13], and is often referred
to as Loday’s realization. It is this construction which we generalize here, for any finite Coxeter
group.

For Coxeter groups of types A and B , the first two authors recently gave a Loday-type real-
ization of any c-generalized associahedron [8], and they showed that Loday’s realization of the
associahedron is a c-generalized associahedron for a particular c. For hyperoctahedral groups,
that is Coxeter groups of type B , the generalized associahedron is called a cyclohedron. It was
first described by R. Bott and C. Taubes in 1994 [3] in connection with knot theory, and redis-
covered independently by R. Simion [25]. See also [4,14,16,22,25]; none of these realizations is
similar to Loday’s (type A) realization.

Our construction of the c-generalized associahedron is very straightforward. Start from
Perma(W) and its H-representation as a non-redundant intersection of half spaces. Those half
spaces correspond bijectively to rays of the Coxeter fan. The rays of the c-Cambrian fan Fc are a
subset of those rays, and therefore determine a subset of the half spaces defining Perma(W). The
intersection of this subset of the half spaces is a polytope whose normal fan is the c-Cambrian
fan (Theorem 4.4), and thus is by definition a c-generalized associahedron, which we denote
by Assoa

c (W).
We give another description of the half spaces whose intersection defines Assoa

c (W), as fol-
lows. The maximal cones of the Coxeter fan are naturally identified with the elements of W .
Each maximal cone of the c-Cambrian fan Fc is the union of one or more maximal cones of the
Coxeter fan. The elements of W corresponding to cones of the Coxeter fan which are also cones
of Fc are called c-singletons. A half space H of the H-representation of Perma(W) is called
c-admissible iff its boundary contains a vertex of Perma(W) that corresponds to a c-singleton. It
is exactly the c-admissible half spaces whose intersection defines Assoa(W). Note that this de-
c
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Fig. 1. Obtaining the associahedron from the permutahedron for the Coxeter group S4 and Coxeter element c = s1s2s3.
The left picture shows the permutahedron with the facets contained in the boundary of c-admissible half spaces translu-
cent and the facets contained in the boundary of non-c-admissible half spaces shaded. The picture to the right shows the
associahedron obtained from the permutahedron after removal of all non-c-admissible half spaces.

Fig. 2. Obtaining the associahedron from the permutahedron for the Coxeter group S4 and Coxeter element c = s2s1s3.
The left picture shows the permutahedron with the facets contained in the boundary of c-admissible half spaces translu-
cent and the facets contained in the boundary of non-c-admissible half spaces shaded. The picture to the right shows the
associahedron obtained from the permutahedron after removal of all non-c-admissible half spaces.

scription of the half spaces used to define Assoa
c (W) is not needed for the proof of Theorem 4.4.

However, it is crucial in the concrete combinatorial description of the c-generalized associahedra.
See Figs. 1 and 2 for illustrations of the contruction of c-generalized associahedra by inter-

secting the c-admissible half spaces while ignoring the non-c-admissible half spaces.
Additionally, if W is a Weyl group and the vertices of the permutahedron Perma(W) are

chosen in a suitable lattice associated to W , then we show that Assoa
c (W) has integer coordinates

in this lattice (Theorem 4.16).
Another interesting aspect of this construction is that we are able to recover the c-cluster com-

plex: relating cluster fans to quiver theory, R. Marsh, M. Reineke and A. Zelevinsky introduce
in [15] what N. Reading and D. Speyer call the c-cluster fan in [21], and its associated simpli-
cial complex the c-cluster complex. A c-cluster fan is a generalization of the cluster fan to any
finite Coxeter group W and Coxeter element c ∈ W (c bipartite is then the traditional case); its
applications in quiver representations are most natural for W of types A, D and E.

By replacing the natural labeling of the maximal faces of Assoa
c (W) by a labeling that uses

almost positive roots only, we obtain the c-cluster complex. This replacement is determined by an
easy combinatorial rule determined by c-singletons as stated in Theorem 3.6. This suggests that
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these constructions will play an important role in the study of c-cluster complexes and related
structures.

This paper is organized as follows. In Section 2, we recall some facts about finite Coxeter
groups, Coxeter sortable elements, and Cambrian lattices. Additionally, the important notion of a
c-singleton is defined and fundamental properties are proven. In Section 3, we recall some facts
about fans, in particular Coxeter and Cambrian fans, and give a precise combinatorial description
of the set of rays of Cambrian fans based on c-singletons. In Section 4, we state and prove
our main result (Theorem 4.4). Finally, in Section 5 we study some specific examples of finite
reflection groups. We work out the dihedral case explicitly to show that the vertex barycenters of
the permutahedra and associahedra coincide and we explain how the realizations given in [8] for
type A and B are particular instances of the construction described in this paper.

In a sequel [1], we describe the isometry classes of these realizations.
The construction presented in this article has been implemented as the set of functions

CAMBRIAN to be used with the library CHEVIE for GAP3 [23,5] and can be found on the first
author’s web page [9].

2. Coxeter-singletons and Cambrian lattices

Let (W,S) be a finite Coxeter system. We denote by e the identity of W and by � :W → N

the length function on W . Let n = |S| be the rank of W . Denote by w0 the unique element of
maximal length in W .

The (right) weak order � on W can be defined by u � v if and only if there is a v′ ∈ W such
that v = uv′ and �(v) = �(u)+ �(v′). The descent set D(w) of w ∈ W is {s ∈ S | �(ws) < �(w)}.
A cover of w ∈ W is an element ws such that s /∈ D(w).

The subgroup WI generated by I ⊆ S is a (standard) parabolic subgroup of W and the set of
minimal length (left) coset representatives of W/WI is given by

WI = {
x ∈ W

∣∣ �(xs) > �(x), ∀s ∈ I
} = {

x ∈ W
∣∣ D(x) ⊆ S \ I

}
.

Each w ∈ W has a unique decomposition w = wIwI where wI ∈ WI and wI ∈ WI . Moreover,
�(w) = �(wI ) + �(wI ), see [10, §5.12]. The pair (wI ,wI ) is often called the parabolic compo-
nents of w along I . For s ∈ S we follow N. Reading’s notation and set 〈s〉 := S \ {s}.

Let c be a Coxeter element of W , that is, the product of the simple reflections of W taken in
some order, and fix a reduced expression for c.

2.1. c-sortable elements

For I ⊂ S, we denote by c(I) the subword of c obtained by considering only simple reflections
in I . Obviously, c(I) is a Coxeter element of WI . For instance, let W = S5 and S = {si | 1 � i � 4}
where si denotes the simple transposition (i, i + 1). If c = s1s3s4s2 and I = {s2, s3} then
c(I) = s3s2. Consider the possible ways to write w ∈ W as a reduced subword of the infinite
word c∞ = cccccc · · · . In [19, §2], N. Reading defines the c-sorting word of w ∈ W as the
reduced subword of c∞ for w which is lexicographically first as a sequence of positions. The
c-sorting word of w can be written as c(K1)c(K2) · · · c(Kp) where p is minimal for the property:

w = c(K1)c(K2) · · · c(Kp) and �(w) =
p∑

|Ki |.

i=1
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Fig. 3. c = s1s2s3.

The sequence c(K1), . . . , c(Kp) associated to the c-sorting word for w is called c-factorization
of w. The c-factorization of w is independent of the chosen reduced word for c but depends on the
Coxeter element c. In general the c-factorization does not yield a nested sequence K1, . . . ,Kp of
subsets of S. An element w ∈ W is called c-sortable if and only if K1 ⊇ K2 ⊇ · · · ⊇ Kp . It is clear
that for any chosen Coxeter element c, the identity e is c-sortable, and Reading proves in [19]
that the longest element w0 ∈ W is c-sortable as well. The c-factorization of w0 is of particular
importance for us and is denoted by w0. To illustrate these notions, consider W = S4 with gener-
ators S = {s1, s2, s3}. The weak order of S4 with elements represented by their c-factorization is
shown in Fig. 3 for c = s1s2s3 and Fig. 4 for c = s2s1s3 (the delimiter ‘|’ indicates the end of Ki

and the beginning of Ki+1). Moreover, the background color carries additional information: The
background of w is white if and only if w is c-sortable.

2.2. c-Cambrian lattice

N. Reading shows that the c-sortable elements constitute a sublattice of the weak order of W

which is called the c-Cambrian lattice [18,20]. A Cambrian lattice is also a lattice quotient of
the weak order on W . In particular, there is a downward projection πc↓ from W to the c-sortable
elements of W which maps w to the maximal c-sortable element below w. Hence, w is c-sortable
if and only if πc↓(w) = w [20, Proposition 3.2]. It is easy to recover πc↓ in Figs. 3 and 4.
A c-sortable element w (white background) is projected to itself; an element w which is not
c-sortable (colored background) is projected to the (maximal) boxed c-sortable element below
the colored component containing w. For instance in Fig. 4, we consider c = s2s1s3 and have
πc↓(s2s3s2) = s2s3s2 and πc↓(s3s2s1) = πc↓(s3s2) = πc↓(s3) = s3.

We say that w ∈ W is c-antisortable if ww0 is c−1-sortable. We therefore have a projection π
↑
c

from W to the set of c-antisortable elements of W which takes w to the minimal c-antisortable



614 C. Hohlweg et al. / Advances in Mathematics 226 (2011) 608–640
Fig. 4. c = s2s1s3.

element above w. For example we have π
↑
c (s1s3) = s1s3s2s1s3 in Fig. 4. The maps πc↓ and π

↑
c

have the same fibers, that is, (
πc↓

)−1
πc↓(w) = (

π↑
c

)−1
π↑

c (w).

These fibers are intervals in the weak order as shown by N. Reading [20, Theorem 1.1] and the
fiber that contains w is [πc↓(w),π

↑
c (w)].

2.3. c-singletons

We now introduce an important subclass of c-sortable elements: an element w ∈ W is a
c-singleton if and only if (πc↓)−1(w) is a singleton. It is easy to read off c-singletons in Figs. 3
and 4: An element is a c-singleton if and only if its background color is white and it is not boxed,
so, for example, s2s1s3 in Fig. 4 is a c-singleton while neither s1s3s2 nor s2s3s2 are c-singletons.

We now prove some useful properties of c-singletons.

Proposition 2.1. Let w ∈ W . The following propositions are equivalent.

(i) w is a c-singleton;
(ii) w is c-sortable and ws is c-sortable for all s /∈ D(w);

(iii) w is c-sortable and c-antisortable.

Proof. ‘(i) is equivalent to (iii)’ and ‘(i) is equivalent to (ii)’ follow from the fact that the fiber
containing w is [πc(w),π

↑
c (w)] and that the map πc is order preserving. �
↓ ↓
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It follows that w0 and e are c-singletons.
The word property, see [2, Theorem 3.3.1], says that any pair of reduced expressions for

w ∈ W can be linked by a sequence of braid relation transformations. In particular, the set

S(w) := {si ∈ S | si appears in a reduced expression for w} =
⋂
I⊂S

w∈WI

I

is independent of the chosen reduced expression for w. It is clear that w ∈ WS(w) and that
S(w) = K1 if w is c-sortable with c-factorization c(K1)c(K2) · · · c(Kp).

Two reduced expressions for w ∈ W are equivalent up to commutations if they are linked by
a sequence of braid relations of order 2, that is, by commutations. Let u, w be reduced expres-
sions for u,w ∈ W . Then u is a prefix of w up to commutations if u is the prefix of a reduced
expression w′ and w′ is equivalent to w up to commutations. We now state the main result of this
section. Its proof is deferred until after Proposition 2.7.

Theorem 2.2. Let w be in W . Then w is a c-singleton if and only if w is a prefix of w0 up to
commutations.

Remark 2.3. For computational purposes, it would be interesting to find a nice combinatorial
description of w0.

Example 2.4. Let W = S4 with generators S = {si | 1 � i � 3} and Coxeter element c = s2s1s3.
The c-singletons of W are

e, s2s3, s2s1s3s2s1,

s2, s2s1s3, s2s1s3s2s3,

s2s1, s2s1s3s2, w0 = s2s1s3s2s1s3.

We see here that s2s3 is not a prefix of s2s1s3s2s1s3, but it does appear as a prefix after commu-
tation of the commuting simple reflections s1 and s3.

Proposition 2.5. The c-singletons constitute a distributive sublattice of the (right) weak order
on W .

Examples of these distributive lattices for W = S4 are given in Fig. 5.

Proof. Let L be the set of subsets P ⊂ {1, . . . , �(w0)} with the property that the reflections at
positions i ∈ P of w0 can be moved by commutations to form a prefix wP of w0. This prefix wP

represents wP ∈ W . Note that �(wP ) = |P | because wP is a prefix up to commutation of a
reduced word for w0. The set L is partially ordered by inclusion and forms a distributive lattice
with P1 ∨ P2 = P1 ∪ P2 and P1 ∧ P2 = P1 ∩ P2 according to [26, Exercise 3.48]. (In particular,
P1 ∪ P2,P1 ∩ P2 ∈ L if P1,P2 ∈ L.)

We claim that P �→ wP is an injective lattice homomorphism.
First we check injectivity. Suppose wP = wQ for P �= Q. Since wP and wQ are reduced

expressions, we have |P | = |Q| = r . Let P = {p1, . . . , pr} and Q = {q1, . . . , qr} with pi < pi+1
and qi < qi+1. Without loss of generality, let the smallest element in (P ∪ Q) \ (P ∩ Q) be pi .
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Fig. 5. There are four Coxeter elements in S4. Each yields a distributive lattice of c-singletons.

Let s ∈ S be the reflection at position pi of w0, then s also appears at some qj with qj > pi .
When moving the reflections in Q to the front of w0, the s that started at qj must pass the s at pi ,
but this implies that the expression for w0 would not be reduced at this step, which is contrary to
our assumption. Thus the map is injective.

We show that P �→ wP respects the lattice structures of L and W . Let P,Q ∈ L and set
R := P ∩ Q. Since R ∈ L, wR is a prefix of w0 up to commutations. In particular, it is also a pre-
fix of wP and wQ up to commutations. Hence we have wR � wP and wR � wQ. We obtain wP \R
and wQ\R from wP and wQ by deletion of all reflections that correspond to an element of R and
conclude wP = wRwP \R and wQ = wRwQ\R . We have S(wP \R) ∩ S(wQ\R) = ∅ since w0 is
reduced; the proof is by contradiction and is similar to the proof of injectivity. Therefore, no
element of W is above wR and below wP and wQ. We have shown wR = wP ∧ wQ with respect
to the weak order on W . A similar argument proves wT = wP ∨ wQ with respect to the weak
order on W where T = P ∪ Q: S(wT \P ) ∩ S(wT \Q) = ∅ implies that no w ∈ W below wR and
above wP and wQ exists. �

The following lemma characterizes the elements that cover a c-singleton.

Lemma 2.6. Let c(K1) · · · c(Kp) be the c-factorization of the c-singleton w ∈ W and
s /∈ D(w). Then the c-factorization of the cover ws of w is either c(K1) · · · c(Kp)c(s) or
c(K1) · · · c(Ki∪{s}) · · · c(Kp).

If ws = c(K1) · · · c(Ki∪{s}) · · · c(Kp) then i is uniquely determined and s commutes with ev-
ery r ∈ Ki+1 ∪ L where L satisfies c(Ki∪{s}) = c(Ki\L)sc(L).

Proof. If s ∈ Kp then c(K1) · · · c(Kp)c(s) is obviously the c-factorization for ws. So we as-
sume s /∈ Kp . As w is a c-singleton, ws is c-sortable with c-factorization c(L1) · · · c(Lq) where
L1 ⊇ · · · ⊇ Lq . As s ∈ D(ws), there is a unique 1 � i � q and r ∈ Li such that

w = (ws)s = c(L1) · · · c(Li\{r}) · · · c(Lq)

by the exchange condition.
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Case 1: Suppose i = 1, i.e. i = 1 is the unique index such that

w = (ws)s = c(L1\{r})c(L2) · · · c(Lq). (1)

Case 1.1: r /∈ K1. Then r /∈ S(w) and s = r because r ∈ S(ws) = S(w) ∪ {s}. Since any
two reduced expressions of ws are linked by braid relations according to Tits’ Theorem [2,
Theorem 3.3.1] and since s /∈ S(w), we conclude that we have to move s from the rightmost
position to the left by commutation. In other words, s commutes with K2 ∪ L.

Case 1.2: r ∈ K1 = S(w). As c(L1\{r})c(L2) · · · c(Lq) is reduced and L2 ⊇ · · · ⊇ Lq is nested,
we have r ∈ L2. Hence

K1 = S(w) = (
L1 \ {r}) ∪ L2 = L1 ∪ L2 = L1.

Thus c(L2) · · · c(Lq) and c(K2) · · · c(Kp)s are reduced expressions for some ŵ ∈ W and s ∈ D(ŵ).
The exchange condition implies the existence of a unique index 2 � j � q and t ∈ Lj such that

ŵs = c(L2) · · · c(Lj \{t}) · · · c(Lq).

In other words

w = c(L1)ŵ = c(L1)c(L2) · · · c(Lj \{t}) · · · c(Lq)

is reduced. But this contradicts the uniqueness of i = 1 in Eq. (1). So r /∈ K1 and we have finished
the first case.

Case 2: Suppose i > 1, then K1 = S(w) = L1. Set ν := min(p, i − 1) and iterate the argument
for c−1

(L1)
w, c−1

(L2)
c−1
(L1)

w, . . . to conclude Lj = Kj for 1 � j � ν. If ν = p then i = q = p + 1
and Li \ {r} = ∅. So Li = {s} ⊆ Li−1 = Kp which contradicts s /∈ Kp . Thus ν = i − 1 for some
i � p and Lj = Kj for 1 � j � i − 1. We may assume i = 1 and are done by Case 1. �
Proposition 2.7. Let w be a c-singleton and w its c-sorting word. Any prefix of w up to commu-
tations is a c-singleton.

Proof. Let c(K1) · · · c(Kp) denote the c-factorization of w. It is sufficient to show that the prefix w′
up to commutations of length �(w) − 1 is a c-singleton. There is 1 � i � p and r ∈ Kp such
that w′ = c(K1) · · · c(Ki\{r}) · · · c(Kp) is the c-factorization of w′. It remains to show that w′s is
c-sortable for s /∈ D(w′).
Case 1: Suppose s ∈ D(w). Recall the definition of the Bruhat order �B on W : u �B v in W if
an expression for u can be obtained as a subword of a reduced expression of v, see [2, Chapter 2].
The lifting property of the Bruhat order, see [2, Proposition 2.2.7], implies w′s �B w. Moreover
�(w′s) = �(w′) + 1 = �(w). Thus w = w′s and s = r . In particular w′s = w is c-sortable.

Case 2: Suppose s /∈ D(w), in particular s �= r . So ws is c-sortable and by Lemma 2.6
there are two cases to distinguish: either c(K1) · · · c(Kp)c(s) or c(K1) · · · c(Kj ∪{s}) · · · c(Kp) is the
c-factorization of ws.

Case 2.1: Suppose c(K1) · · · c(Kp)c(s) is the c-factorization of ws. Then s ∈ Kp and the
c-factorization of w′s is c(K1) · · · c(Ki\{r}) · · · c(Kp)c(s). In particular, the sequence

K1 ⊇ · · · ⊇ Ki \ {r} ⊇ · · · ⊇ Kp ⊇ {s}
is nested and w′s is c-sortable.
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Case 2.2: If c(K1) · · · c(Kj ∪{s}) · · · c(Kp) is the c-factorization of ws then either s and r com-
mute or not.

Suppose first that s and r do not commute. Then j = i and r appears before s in the chosen
reduced expression of c, since s commutes with all simple reflections to the right of the rightmost
copy of s in the c-factorization of ws by Lemma 2.6. Then w′s = c(K1) · · · c(Ki\{r}∪{s}) · · · c(Kp)

is c-sortable.
Suppose now that s and r commute. If j � i then

w′s = wrs = wsr = c(K1) · · · c(Kj ∪{s}) · · · c(Ki\{r}) · · · c(Kp)

is the c-factorization of w′s. As K1 ⊇ · · · ⊇ Kj ∪ {s} ⊇ · · · ⊇ Ki \ {r} ⊇ · · · ⊇ Kp is nested,
w′s is c-sortable. The case j > i is proved similarly.

We conclude that w′s is c-sortable for any s /∈ D(w′), so w′ is a c-singleton. �
Proof of Theorem 2.2. We know by Proposition 2.1 that w is a c-singleton if and only if w is
c-sortable and ww0 is c−1-sortable.

Suppose w is a c-singleton. Let s be the rightmost simple reflection appearing in the
c−1-factorization for ww0, so ww0 = us for some c−1-sortable element u.

We have su−1w = w0 and therefore u−1w = sw0. Since S = w0Sw0, we conclude that
t := w0sw0 is a simple reflection. Now u−1wt = w0 implies �(wt) > �(w) and wt is c-sortable
by Proposition 2.1. But wt is also c-antisortable since wtw0 = u is c−1-sortable. Hence, wt is a
c-singleton that covers w in the weak order.

Repeating this process, we show that every c-singleton is on an unrefinable chain of
c-singletons leading up to w0. By downwards induction, every element of that chain is a pre-
fix of w0 up to commutations. This is clearly true for w0. As we went up each step, though, we
added a simple reflection which commuted with every reflection to its right (or was added at
the rightmost end), by Lemma 2.6. Thus, when we want to remove the element we added at the
last step, we can rewrite w0 using only commutations such that this simple reflection is on the
right. �
3. Coxeter fans, permutahedra, and Cambrian fans

In this section, we describe the geometry of Coxeter fans and c-Cambrian fans. We first recall
some facts about the geometric representation of W . We use the notation of [10] for Coxeter
groups and root systems. Let W act by reflections on an R-Euclidean space (V , 〈·,·〉).

Let Φ be a root system corresponding to W with simple roots � = {αs | s ∈ S}, positive
roots Φ+ = Φ ∩ R>0[�] and negative roots Φ− = −Φ+. Without loss of generality, we as-
sume that the action of W is essential relative to V , that is, � is a basis of V . The set Φ+
parametrizes the set of reflections in W : to each reflection t ∈ W there corresponds a unique pos-
itive root αt ∈ Φ+ such that t maps αt to −αt and fixes the hyperplane Ht = {v ∈ V | 〈v,αt 〉 = 0}.

The Coxeter arrangement A for W is the collection of all reflecting hyperplanes for W . The
complement V \ (

⋃
A) of A consists of open cones. Their closures are called chambers. The

chambers are in canonical bijective correspondence with the elements of W . The fundamental
chamber D := ⋂

s∈S{v ∈ V | 〈v,αs〉 � 0} corresponds to the identity e ∈ W and the cham-
ber w(D) corresponds to w ∈ W .

A subset U of V is below a hyperplane H ∈ A if every point in U is on H or on the same side
of H as D. The subset U is strictly below H ∈ A if U is below H and U ∩ H = ∅. Similarly,
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U is above or strictly above a hyperplane H ∈ A. The inversions of w ∈ W are the reflections
that correspond to the hyperplanes H that w(D) is above.

For a simple reflection s ∈ S, we have �(sw) < �(w) if and only if s � w in the weak order
if and only if w(D) is above Hs . To decide whether w(D) is above or below Hs is therefore a
weak order comparison. These notions will be handy in Section 4.

A fan G is a family of non-empty closed polyhedral (convex) cones in V such that

(i) every face of a cone in G is in G , and
(ii) the intersection of any two cones in G is a face of both.

A fan G is complete if the union of all its cones is V , essential (or pointed) if the intersection of
all non-empty cones of G is the origin, and simplicial if every cone is simplicial, that is, spanned
by linearly independent vectors. A 1-dimensional cone is called a ray and a ray is extremal if it
is a face of some cone. The set of k-dimensional cones of G is denoted by G(k) and two cones
in G(k) are adjacent if they have a common face in G(k−1). A fan G coarsens a fan G′ if every
cone of G is the union of cones of G′ and

⋃
C∈G C = ⋃

C∈G′ C. We refer to [30, Lecture 7] for
more details and examples.

The chambers of a Coxeter arrangement A and all their faces define the Coxeter fan F . The
Coxeter fan F is known to be complete, essential, and simplicial [10, Sections 1.12–1.15]. The
fundamental chamber D ∈ F is a (maximal) cone spanned by the (extremal) rays {ρs | s ∈ S},
where ρs is the intersection of D with the subspace orthogonal to the hyperplane spanned by
{αt | t ∈ 〈s〉}.

Recall that the set of rays of F is partitioned into n orbits under the action of W where n = |S|
is the rank of W . Moreover, each orbit contains exactly one ρs , s ∈ S. Thus, any ray ρ ∈ F (1)

is w(ρs) for some w ∈ W where s ∈ S is uniquely determined by ρ but w is not unique. In fact,
w(ρs) = g(ρs) if and only if w ∈ gW〈s〉.

3.1. Permutahedra

We illustrate Coxeter fans by means of permutahedra, that is, polytopes that have a Coxeter
fan as outer normal fan.

Take a point a of the complement V \ (
⋃

A) of the Coxeter arrangement A, and consider its
W -orbit. The convex hull of this W -orbit is a W -permutahedron denoted by Perma(W). There
is a bijection between the set of rays of F and the facets of Perma(W): there is a half space
associated to each ray ρ ∈ F such that its supporting hyperplane is perpendicular to ρ and such
that the permutahedron is the intersection of these half spaces. Let us be more precise.

Let �∗ := {vs ∈ V | s ∈ S} be the fundamental weights of �, that is, �∗ is the dual basis of �

with respect to 〈·,·〉. The fundamental chamber D is spanned by the fundamental weights, that is,
D = R�0[�∗]. Hence, the rays of F are easily expressed in terms of �∗: We have ρs = R�0[vs]
and therefore w(ρs) = R�0[w(vs)] for any w ∈ W and s ∈ S.

Without loss of generality, we choose a = ∑
s∈S asvs in the interior of D, that is as > 0 for

s ∈ S. All points w(a) are distinct and the convex hull of {w(a) | w ∈ W } yields a realization of
the W -permutahedron Perma(W). It is not difficult to describe this polytope as an intersection
of half spaces.

For each ρ = w(ρs) ∈ F (1), we define the closed half space

H a
ρ := {

v ∈ V
∣∣ 〈

v,w(vs)
〉
� 〈a, vs〉

}
.
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Fig. 6. The permutahedron Perm(S3) obtained as the convex hull of the S3-orbit of a or as the intersection of the half
spaces H a

(x,s)
.

This definition does not depend on the choice of w ∈ W such that ρ = w(ρs), but only on the
coset W/W〈s〉. The open half space H a,+

ρ and the hyperplane H a
ρ are defined in a similar man-

ner, using strict inequality and equality, respectively. Now, the permutahedron Perma(W) is given
by

Perma(W) =
⋂

ρ∈F (1)

H a
ρ .

We also write H a
(w,s)

, H a,+
(w,s)

, or H a
(w,s)

instead of H a
ρ , H a,+

ρ , or H a
ρ where we implicitly

assume ρ = w(ρs). As for the rays of the Coxeter fan, w and s are not necessarily uniquely de-
termined, but we have H a

ρ = H a
(w,s) = H a

(w′,s) if and only if ρ = w(ρs) = w′(ρs) and w ∈ w′W〈s〉.
Moreover, w(a) ∈ H a

(w′,s) if and only if H a
(w′,s) = H a

(w,s). A simple description of the vertex w(a)

of the permutahedron follows:

w(a) =
⋂
s∈S

H a
(w,s).

Example 3.1 (Realization of Perm(S3)). We consider the Coxeter group W = S3 of type A2 act-
ing on R

2. The reflections s1 and s2 generate W and the simple roots that correspond to s1 and s2
are α1 and α2. They are normal to the reflecting hyperplanes Hs1 and Hs2 . The fundamental
weight vectors that correspond to the simple roots are the vectors v1 and v2. Let a = a1v1 + a2v2
be a point of the interior of D. Then a1, a2 > 0. We obtain the permutahedron Perm(S3) as the
convex hull of the W -orbit of a. Alternatively, the permutahedron is described as the intersection
of the half spaces H a

(x,s) with bounding hyperplanes H a
(x,s) for x ∈ W and s ∈ S. All objects are

indicated in Fig. 6.
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3.2. Cambrian fans

A lattice congruence Θ on a lattice L is an equivalence relation on the elements of L which re-
spects the join and meet operations in L, that is, a1Θa2 and b1Θb2 implies (a1 ∧ b1)Θ(a2 ∧ b2)

and (a1 ∨ b1)Θ(a2 ∨ b2). For any lattice congruence Θ of the weak order on W , N. Reading
constructs a complete fan FΘ that coarsens the Coxeter fan F [17]. A maximal cone Cϑ ∈ FΘ

corresponds to a congruence class ϑ of Θ and Cϑ is the union of the chambers of A that cor-
respond to the elements of ϑ . In [17, Section 5] N. Reading proves that these unions are indeed
convex cones and that the collection FΘ of these cones and their faces is a complete fan.

The c-Cambrian fan Fc of W is obtained by this construction if we consider the lat-
tice congruence with congruence classes [πc↓(w),π

↑
c (w)] for w ∈ W and chosen Coxeter el-

ement c. The n-dimensional cone that corresponds to the c-sortable element w is denoted
by C(w). It is the union of the maximal cones of F that correspond to the elements of
(πc↓)−1πc↓(w) = [πc↓(w),π

↑
c (w)]. In particular, C(w) is a maximal cone of Fc and of F if and

only if w is a c-singleton.
In [21], N. Reading and D. Speyer define a bijection between the set of rays of Fc and the

set of almost positive roots Φ�−1 := Φ+ ∪ (−�). To describe this labeling of the rays, we first
define a set of almost positive roots for any c-sortable w. For s ∈ S(w), let 1 � js � �(w) be
the unique integer such that sjs is the rightmost occurrence of s in the c-sorting word s1 · · · s�(w)

of w and define

Lrs(w) :=
{

s1 · · · sjs−1(αs) if s ∈ S(w)

−αs if s /∈ S(w),
and clc(w) :=

⋃
s∈S

Lrs(w).

Example 3.2. To illustrate these maps, we consider the Coxeter group W = S3 with genera-
tors S = {s1, s2} as shown in Fig. 6. Choose c = s1s2 as Coxeter element. It is easy to check
that w ∈ W \ {s2s1} is c-sortable and that w ∈ W \ {s2, s2s1} is a c-singleton. From the above
definition it follows that

Lrs1(e) = Lrs1(s2) = −α1, Lrs2(e) = Lrs2(s1) = −α2,

Lrs1(s1) = Lrs1(s1s2) = α1, Lrs2(s1s2s1) = Lrs2(s1s2) = α1 + α2,

Lrs1(s1s2s1) = α2, Lrs2(s2) = α2,

and therefore

clc(e) = {−α1,−α2}, clc(s1s2) = {α1, α1 + α2},
clc(s1) = {α1,−α2}, clc(s1s2s1) = {α2, α1 + α2},
clc(s2) = {−α1, α2}.

N. Reading and D. Speyer use the cluster map clc to prove that c-Cambrian fans and cluster
fans have the same combinatorics: the maximal cone C(w) of the c-Cambrian fan represented
by the c-sortable element w is mapped to the set clc(w) of almost positive roots. The cardinality
of clc(w) matches the number of extremal rays of C(w) and clc induces a bijection fc between
the set of rays of Fc and the almost positive roots by extending clc to intersections of cones:
clc(C1 ∩C2) := clc(C1)∩clc(C2). To put it slightly differently, N. Reading and D. Speyer showed
the following theorem.
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Theorem 3.3. (See Reading and Speyer [21, Theorem 7.1].) There is a bijective labeling
fc : F (1)

c → Φ�−1 of the rays of the c-Cambrian fan Fc by almost positive roots such that the
extremal rays of C(w) are labeled by clc(w).

We now aim for an explicit description of fc that relates nicely to c-singletons, but first we
need the following two lemmas.

Lemma 3.4. For β ∈ Φ�−1, there exists a c-singleton w and a simple reflection s such that
Lrs(w) = β .

Proof. The identity e is a c-singleton and clc(e) = Φ�−1 \Φ+, so we are done if β is a negative
simple root. Suppose that β ∈ Φ+ and consider the longest element w0 with c-sorting word
w0 = sj1sj2 · · · sjN

. Since w0(D) is above all reflecting hyperplanes,

Φ+ = {
sj1sj2 · · · sjp−1(αsjp

)
∣∣ 1 � p � N

}
and β = sj1 · · · sji−1(αsji

) for some 1 � i � N . Since w = sj1 · · · sji
is a prefix of w0, it is a

c-singleton and Lrsji (w) = β . �
Lemma 3.5. Let ρ ∈ F (1)

c . There is a c-singleton w such that ρ is an extremal ray of C(w).

Proof. Pick ρ ∈ F (1)
c . According to Theorem 3.3, fc(ρ) = β for some almost positive root β .

By Lemma 3.4, there is a c-singleton w and a simple reflection s ∈ S such that Lrs(w) = β . This
implies that ρ is an extremal ray of C(w). �

If w is a c-singleton, then C(w) ∈ F (n)
c is the maximal cone w(D) which is spanned by the

set of rays {w(ρs) | s ∈ S}. The main result of this section is

Theorem 3.6. Let ρ ∈ F (1)
c . There is a unique simple reflection s ∈ S and there is a c-singleton w

such that ρ = w(ρs) and fc(w(ρs)) = Lrs(w).

Proof. The uniqueness of s ∈ S follows from the fact that any ray of the Coxeter fan is of the
form w(ρs) where s ∈ S is uniquely determined (but w is not!).

The first claim follows directly from Lemma 3.5. We proceed by induction on the length of w.
If �(w) = 0 then w = e. In particular, e is a c-singleton and s = es is c-sortable for any s ∈ S. Fix
some s ∈ S. Since clc(e) = −� = {−αt | t ∈ S} and clc(s) = {−αt | t ∈ 〈s〉} ∪ {αs}, we conclude
fc(e(ρs)) = −αs as s(D) ⊂ C(s) and the set of rays of F in s(D) ∩ D are {ρt | t ∈ 〈s〉}.

Suppose that �(w) > 0 and let t ∈ S be the last simple reflection of the c-sorting word of w. By
Proposition 2.7, wt is a c-singleton with �(wt) < �(w). By induction, fc(wt(ρs)) = Lrs(wt) for
some s ∈ S. If s �= t then t ∈ W〈s〉 and we conclude that wt(ρs) = w(ρs) and Lrs(wt) = Lrs(w).
Now suppose s = t . We have C(w) ∩ C(ws) = w(D) ∩ ws(D). The extremal rays of this cone
are {w(ρt ) | t ∈ 〈s〉}, and their image under fc is

clc(w) ∩ clc(ws) = {
Lrt (w)

∣∣ t ∈ 〈s〉} = clc(w) \ {
Lrs(w)

}
.

So fc(w(ρs)) = Lrs(w). �
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4. Realizing generalized associahedra

4.1. A general result

A fan has to satisfy some obvious conditions in order to be the normal fan of a full-dimensional
polytope. In particular, the fan has to be pointed and complete. These conditions are far from
sufficient and in general it is quite hard to decide whether a given fan is the normal fan of a
polytope or not. To illustrate this, we give an example of a family of pointed and complete fans
none of which is the normal fan of any polytope.

First, we recall the notion of the face fan of a polytope. Let P be a full-dimensional polytope
containing the origin in its relative interior. The face fan of P is the set of cones spanned by all
proper faces of P . As is true of the normal fan, the face fan is always pointed and complete. There
is a family of simplicial fans none of which is the face fan of any polytope, see [30, Example 7.5].
Equivalently, no fan of this family is the normal fan of any polytope, since the face fan of P

equals the normal fan of the polar polytope of P (and vice versa), see [30, Exercise 7.1].
We now aim for a sufficient criterion to decide whether a given fan is the normal fan of a

polytope. Our notation is inspired by Section 3.
Consider a pointed, complete, and simplicial fan G ⊆ R

n with d-dimensional cones G(d). To
ρ ∈ G(1) we associate a vector vρ such that ρ = R�0[vρ]. Suppose that we are given a collection
of positive real numbers λρ , one for each ρ ∈ G(1). We then define a hyperplane

Hρ = {
x ∈ R

n
∣∣ 〈x, vρ〉 = λρ

}
and a half space

Hρ := {
x ∈ R

n
∣∣ 〈x, vρ〉 � λρ

}
.

We write H +
ρ if the inequality is strict. Since G is simplicial, we have for every maximal

cone C ∈ G(n) a point x(C) defined by {x(C)} := ⋂
ρ∈C(1) Hρ . Then

P := ConvexHull
{
x(C)

∣∣ C ∈ G(n)
}

and P̃ :=
⋂

ρ∈G(1)

Hρ

are well-defined polytopes of dimension at most n.
For example, the W -permutahedron constructed from the Coxeter fan F as explained in Sec-

tion 3.1 fits nicely in this context: x(w(D)) is by definition w(a) and the half spaces Hρ are
precisely the half spaces H a

ρ , for ρ ∈ F (1). In this case the two polytopes P and P̃ coincide.

Let C ∈ G(n) and let f ∈ C(n−1) be an (n − 1)-dimensional face of C. An outer normal of C

relative to f is a vector v normal to f , that is, normal to the hyperplane spanned by f , and such
that C ⊆ {x ∈ R

n | 〈x, v〉 � 0}.
Let Ci,Cj ∈ G(n) be two adjacent maximal cones in G , that is, Ci ∩ Cj ∈ G(n−1). A vector u

is said to be pointing to Ci from Cj if there is an outer normal v of Cj relative to Ci ∩ Cj such
that 〈u,v〉 > 0. In particular, observe that:

(i) Any outer normal of Cj relative to Ci ∩ Cj is pointing to Ci from Cj ;
(ii) If xi ∈ Ci and xj ∈ Cj are points in the interior of these cones, then the vector xi − xj is

pointing to Ci from Cj ;
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(iii) Any vector not contained in the span of Ci ∩Cj is either pointing to Ci from Cj or pointing
to Cj from Ci .

Notice that the vector x(Ci) − x(Cj ) is a normal vector to Ci ∩ Cj , but not necessarily pointing
to Ci from Cj , since x(Ci) is not necessarily a point in Ci .

Theorem 4.1. Use the notation as above and suppose that x(Ci) − x(Cj ) points to Ci from Cj

whenever Ci,Cj ∈ G(n) with Ci ∩ Cj ∈ G(n−1). Then P = P̃ has (outer) normal fan N (P ) = G
and is of dimension n.

Remark 4.2. The hypothesis of Theorem 4.1 is satisfied in (at least) three cases.
First, the case of W -permutahedra constructed from the Coxeter fan F . Indeed, the point w(a)

is strictly inside the cone w(D). So w(a) − w′(a) points to w(D) from w′(D) whenever w(D)

and w′(D) are adjacent cones.
Second, the case of the parallelepiped constructed from the fan G which is the skew coordinate

hyperplane arrangement obtained from the hyperplanes which bound the fundamental chamber in
the Coxeter arrangement. (Note that this fan corresponds to the usual construction of the Boolean
lattice as a quotient of weak order, via the descent map, see [12].)

Third, as we shall show, the case of Cambrian fans described on the two next sections.

Remark 4.3. A similar theorem, which includes the assumption that G should be a coarsening of
a Coxeter fan, appears as [11, Theorem A.3]. That theorem would suffice for our purposes, but
we prefer to give the following independent proof of the more general theorem.

Proof of Theorem 4.1. Let us prove first that P ⊆ P̃ . It suffices to prove 〈x(C), vρ〉 < λρ

for C ∈ G(n) and ρ ∈ G(1) \ C(1).
Let C ∈ G(n) and ρ ∈ G(1) \ C(1). We will show that there is a finite sequence

C0 := C, . . . ,Ck = C′

of maximal cones of G such that ρ ⊆ C′, Ci ∩Ci+1 ∈ G(n−1) and vρ is pointing to Ci+1 from Ci ,
for 0 � i < k.

For x in C, we write x + ρ for the half line {x + λvρ | λ � 0} parallel to ρ and starting at x.
Write Cρ for the union of all maximal cones of G that contain ρ. Since G is a pointed complete
fan, Cρ contains n-dimensional balls of arbitrary diameter centered at points of ρ. In particu-
lar, Cρ contains such a ball of diameter d , where d is the distance between the lines containing ρ

and x +ρ. So (x +ρ)∩Cρ �= ∅ for any point x ∈ C. Hence there is a maximal cone C′ of G such
that ρ is an extremal ray of C′ and (x +ρ)∩C′ �= ∅ for any point x ∈ C. For any x ∈ C, the line
segment between C and C′ on x + ρ determines a sequence of cones C0 = C,C1, . . . ,Cp = C′
of G of arbitrary dimension, namely, the cones that x + ρ meets between C and C′ in the natural
order on the Ci induced by the order of points of x + ρ given by the parametrization of this half
line. We would like this sequence to be of the form C = C0,C0,1,C1,C1,2, . . . ,Ck−1,k,Ck = C′
such that Ci is a maximal cone and Ci,i+1 = Ci ∩ Ci+1 is a cone of codimension 1. Since the
number of cones in G is finite, the number of cones met by all possible half lines x +ρ for x ∈ C

is finite. Since C is a full-dimensional cone, we may move x in C and then may assume that x +ρ

does not intersect any cone of G of codimension larger than 1. In other words, there is a finite se-
quence C0 = C,C1, . . . ,Ck = C′ of maximal cones of G such that Ci,i+1 = Ci ∩ Ci+1 ∈ G(n−1)

and (x + ρ) ∩ Ci �= ∅. Pick yi in the interior of Ci and in x + ρ. So yi+1 − yi points to Ci+1
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from Ci . Since the cones C0, . . . ,Ck have the same order as the points on x + ρ, the dis-
tance from x to yi is strictly smaller than the distance from x to yi+1. This means the vector
yi+1 − yi = κvρ with κ > 0. Hence vρ points to Ci+1 from Ci .

Now, consider the piecewise linear path from x(C0) to x(Ck) that traverses from x(Ci)

to x(Ci+1). Since x(Ci+1) − x(Ci) points to Ci+1 from Ci , the vector x(Ci+1) − x(Ci) is an
outer normal to Ci relative to Ci ∩ Ci+1, and since vρ points to Ci+1 from Ci for 0 � i < k, we
conclude that 〈x(Ci+1) − x(Ci), vρ〉 > 0. Hence〈

x(C0), vρ

〉
< · · · < 〈

x(Ck), vρ

〉 = λρ.

This proves P ⊆ P̃ .
Fix a cone C ∈ G(n). Define Q = ⋂

ρ∈C(1) Hρ . This is a convex cone pointed at x(C). Since
the hyperplanes Hρ for ρ ∈ C(1) are facet-supporting for P̃ , we know that Q ⊇ P̃ . It follows that
x(C) is an extremal point of both P̃ and P , and thus it is a vertex of each.

We next show that, near x(C), the three regions P , P̃ , and Q all agree. Let D ∈ G(n) be
adjacent to C. Since D(1) and C(1) have all but one element in common, x(D) lies along one of
the extremal rays of Q from x(C). Bear in mind that x(D) ∈ P . Each of the n maximal cones
of G adjacent to C yields a point in P along one of the rays of Q; thus, near x(C), we have that P

and Q coincide, and therefore so does P ′.
Thus, we have established that the facets of P and of P ′ that intersect x(C) are exactly those

supported by Hρ with ρ ∈ C(1). By definition, the outer normals to these facets are C(1), and the
outer normal cone to for both P and P ′ at x(C) is therefore exactly C. Thus, the outer normal
fan to P is exactly G .

We still want to check that P = P̃ . It suffices to check that they have the same set of vertices.
We know that all the vertices of P are also vertices of P̃ , but we have not yet ruled out the
possibility that P̃ could have some extra vertices, that is to say, vertices not of the form x(C).
However, since the outer normal cones of P̃ at the vertices of the form x(C) are known to be
exactly the maximal cones of G , and thus to cover all of R

n, it is impossible for P̃ to have any
additional vertices, so P = P̃ .

The claim that dim(P ) = n follows from the fact that λρ > 0 for all ρ ∈ G(1): a neighborhood
of 0 is contained in P . �
4.2. Realizations of generalized associahedra

We apply Theorem 4.1 to show how c-Cambrian fans Fc and associahedra Assoa
c (W) relate.

The associahedron is described as the intersection of certain facet-supporting half spaces H a
ρ of

the permutahedron Perma(W) determined by the set of rays of Fc, and the common vertices of
Assoa

c (W) and Perma(W) are characterized in terms of c-singletons. The proof of Theorem 4.4
is deferred to Section 4.3.

Theorem 4.4. Let c be a Coxeter element of W and choose a point a in the interior of the
fundamental chamber D, to fix a realization of the permutahedron Perma(W).

(i) The polyhedron

Assoa
c (W) =

⋂
ρ∈F (1)

c

H a
ρ

is a simple polytope of dimension n with c-Cambrian fan Fc as normal fan.
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Fig. 7. An unfolding of the associahedron Assoa
c (S4) with c = s1s2s3. The 2-faces are labelled by ρi ∈ F 1

c for the
facet-defining hyperplane Ha

ρi
.

(ii) The vertex sets V (Assoa
c (W)) and V (Perma(W)) satisfy

V
(
Assoa

c (W)
) ∩ V

(
Perma(W)

) = {
w(a)

∣∣ w is a c-singleton
}
.

The first statement implies that every facet-supporting half space of the associahedron is also
a facet-supporting half space of the permutahedron. We mentioned this in the introduction in
the context of c-admissible half spaces. A facet-supporting half space H a

ρ of the permutahe-
dron Perma(W) is c-admissible if w(a) ∈ H a

ρ for some c-singleton w. We rephrase the first
statement as follows:

Corollary 4.5. The associahedron Assoa
c (W) is the intersection of all c-admissible half spaces

of Perma(W).

We illustrate these results with a basic example.

Example 4.6. The first statement of Theorem 4.4 claims that the intersection of a subset of
the half spaces H a

ρ of Perma(W) yields a generalized associahedron Assoa
c (W) if we restrict

to half spaces such that ρ is a ray of the c-Cambrian fan Fc . Figs. 7 and 8 illustrate this for
W = S4 generated by S = {s1, s2, s3}. We use the following conventions: The point a used to fix
a realization of Perma(W) is labeled A. A facet of the associahedron Assoa

c (W) is labeled by the
ray ρj ∈ Fc that is perpendicular to that facet. Recall that each ray ρ can be written as w(ρsi )

for some (non-unique) c-singleton w and some (unique) simple reflection si by Lemma 3.5. In
Fig. 7 we chose the Coxeter element c = s1s2s3 and can express the ray ρi ∈ Fc that corresponds
to the (c-admissible) half space H a as follows:
ρi
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Fig. 8. An unfolding of the associahedron Assoa
c (S4) with c = s2s1s3. The 2-faces are labeled by ρ = (w, s) ∈ F 1

c for
the facet-defining hyperplane Ha

ρ .

ρ1 = e(ρs1),

ρ2 = e(ρs3) = s1(ρs3) = s1s2(ρs3) = s1s2s1(ρs3),

ρ3 = e(ρs2) = s1(ρs2),

ρ4 = s1s2(ρs2) = s1s2s3(ρs2) = s1s2s1(ρs2) = s1s2s3s1(ρs2),

ρ5 = s1(ρs1) = s1s2(ρs1) = s1s2s3(ρs1),

ρ6 = s1s2s3s1s2s1(ρs1),

ρ7 = s1s2s3s1s2(ρs2) = s1s2s3s1s2s1(ρs2),

ρ8 = s1s2s3(ρs3) = s1s2s3s1(ρs3) = s1s2s3s1s2(ρs3) = s1s2s3s1s2s1(ρs3), and

ρ9 = s1s2s1(ρs1) = s1s2s3s1(ρs1) = s1s2s3s1s2(ρs1).

The claim of the second statement of Theorem 4.4 is that the common vertices of Perma(W)

and Assoa
c (W) are the points w(a) for w a c-singleton. It is straightforward to verify this claim

directly if c = s1s2s3 in Fig. 7: The common vertices of Assoa
c (W) and Perma(W) are labeled A

through H and we have

A = a, B = s1(a), C = s1s2(a),

D = s1s2s1(a), E = s1s2s3(a), F = s1s2s3s1(a),

G = s1s2s3s1s2(a), H = s1s2s3s1s2s1(a).

If the Coxeter element is c = s2s1s3 (Fig. 8) then we have the following list of expressions
for ρi ∈ Fc (we do not list all possible expressions for ρi ):
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ρ1 = e(ρs3), ρ2 = s2(ρs2), ρ3 = e(ρs1),

ρ4 = e(ρs2), ρ5 = s2s1s3s2s3(ρs3), ρ6 = s2s1s3s2s1s3(ρs2),

ρ7 = s2s1(ρs1), ρ8 = s2s3(ρs3), ρ9 = s2s1s3s2s1(ρs1).

The common vertices of the permutahedron and associahedron are labeled A through I and we
have

A = a, B = s2(a), C = s2s1(a),

D = s2s3(a), E = s2s1s3(a), F = s2s1s3s2(a),

G = s2s1s3s2s3(a), H = s2s1s3s2s1(a), I = s2s1s3s2s1s3(a).

4.3. Proof of Theorem 4.4

The proof of Theorem 4.4 is based on Theorem 4.1. Let c ∈ W be a Coxeter element and let
a be in the interior of D. We use the following notation. Set

R := {
w(vs)

∣∣ w ∈ W, s ∈ S
}

so that the set of rays of the Coxeter fan is

R�0 R := {λv
∣∣ λ � 0, v ∈ R}.

For v = w(vs) ∈ R, we write λ(v) := 〈a, vs〉 = 〈w(a), v〉 > 0 which depends only on s. Let ρ be
a ray of the Cambrian fan Fc . By Theorem 3.6, there is a c-singleton w and a unique s ∈ S such
that ρ = w(ρs) = R�0[w(vs)]. With these notations, the equations of the hyperplane H a

ρ and the
half space H a

ρ attached to ρ can be rewritten as

H a
ρ = {

x ∈ R
n

∣∣ 〈
x,w(vs)

〉 = λ(vs)
}

and H a
ρ = {

x ∈ R
n

∣∣ 〈
x,w(vs)

〉
� λ(vs)

}
.

We use the same notations as in Section 4.1 applied to the c-Cambrian fan Fc and denote by x(C)

the intersection point of the hyperplanes H a
ρ for ρ the extremal rays of a maximal cone C of Fc .

(It is convenient here, if ρ = R�0[v], to use the notation λ(v) instead of using the notation λρ as
in Section 4.1.)

Let w and w′ be distinct c-sortable elements such that the associated maximal cones
C := C(w) and C′ := C(w′) of the Cambrian fan Fc intersect in a cone of codimension 1. So
either w is a cover of w′ or w′ is a cover of w in the lattice of c-sortable elements. Without loss
of generality, we may assume that w is a cover of w′. To meet the requirements of Theorem 4.1,
we have to prove that the vector x(C) − x(C′) points to C from C′.

Remark 4.7. We saw in Section 3 that C(w) is a maximal cone of the Cambrian fan Fc and
of the Coxeter fan F if and only if w is a c-singleton. Therefore, if we meet the requirement
of Theorem 4.1, then x(C(w)) is a vertex of Assoa

c (W) and of Perma(W) if and only if w is a
c-singleton, which will prove the second part of Theorem 4.4.

The intersection C ∩ C′ is contained in a hyperplane Ht for some reflection t ∈ W since Fc is
a coarsening of the Coxeter fan F . We now show which of the two roots associated to Ht is an
outer normal to C′ relative to C′ ∩ C.
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Lemma 4.8. Let w,w′ ∈ W be c-sortable elements such that w is a cover of w′ in the lattice of
c-sortable elements. Suppose the (n − 1)-dimensional cone C(w) ∩ C(w′) of Fc lies on Ht for
some reflection t ∈ W . Let β be a root for W that is perpendicular to Ht . If β is an outer normal
to C′ relative to C′ ∩ C, then β is a negative root.

Proof. Let w̃ ∈ (πc↓)−1(w′) such that w is a cover of w̃ in the right weak order. Then

w(D) ∩ w̃(D) ⊂ Ht

is an (n − 1)-dimensional cone of the Coxeter fan F . Since β is an outer normal for C(w′)
relative to C(w) ∩ C(w′), it is an outer normal for w̃(D) with respect to w̃(D) ∩ w(D).

Case 1: Suppose that w′ = w̃ = e. Then w = s for some s ∈ S. The hyperplane dividing w(D)

from D is Hs , perpendicular to αs . D lies on the side of Hs having positive inner product with αs .
Thus the outer normal β = −αs is a negative root.

Case 2: Suppose w̃ �= e. Then w̃−1w = s ∈ S since w covers w̃ in right weak order. By the pre-
vious case, w̃(−αs) is an outer normal. Since �(w) = �(w̃s) > �(w̃), we have that β = w̃(−αs)

is a negative root, as desired. �
We have that C ∩ R�0 R = {ρu1, . . . , ρup } and since Fc is simplicial, we may assume that the

extremal rays of C are the first n := |S| rays. Similarly, we may assume {ρu′
1
, ρu2, . . . , ρun} are

the extremal rays of C′. Hence, Ht is spanned by {u2, . . . , un}. As we have x(C) := ⋂n
i=1 H a

ρui

and x(C) − x(C′) ∈ ⋂n
i=2 H a

ρui
, we are able to conclude x(C) − x(C′) = μβ for some

μ ∈ R and β a negative root. Thus, x(C) − x(C′) is pointing to C from C′ if and only if
x(C) − x(C′) = μβ with μ > 0.

Lemma 4.9. Let w,w′ ∈ W be c-sortable elements such that w covers w′ in the lattice of
c-sortable elements and C(w) ∩ C(w′) ⊂ Ht is an (n − 1)-dimensional cone of Fc for a re-
flection t . Let the extremal rays of C := C(w) and C′ := C(w′) be generated by {u1, . . . , un}
and {u′

1, u2, . . . , un} and suppose u1 + u′
1 = ∑n

i=2 biui ∈ Ht with bi ∈ R. Then the following
statements are equivalent:

(i) x(C) − x(C′) is pointing to C from C′;
(ii) x(C) − x(C′) = μβ with β ∈ Φ− and μ > 0;

(iii) 〈x(C) − x(C′), u1〉 > 0;
(iv) λ(u1) + λ(u′

1) >
∑n

i=2 biλ(ui).

Proof. The first equivalence follows from Lemma 4.8 and the preceding discussion.
As u1 ∈ C and C is spanned by the vectors in C ∩ C′ together with u1, we have 〈β,u1〉 > 0 if

and only if β is an outer normal of C′ relative to C ∩ C′. This shows the second equivalence.
The last equivalence follows from

〈
x(C) − x

(
C′), u1

〉 = λ(u1) −
〈
x
(
C′),−u′

1 +
n∑

i=2

biui

〉
= λ(u1) + λ

(
u′

1

) −
n∑

i=2

biλ(ui). �
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We apply Theorem 4.1 to conclude:

If one of the equivalent conditions in Lemma 4.9 is achieved for all pairs of adjacent cones
in Fc, then Fc is the outer normal fan of Assoa

c (W), which proves Theorem 4.4.

The final step of the proof of Theorem 4.4 consists of showing that each pair of adjacent cones
in Fc satisfies the equivalent conditions of Lemma 4.9, which we do in Lemma 4.14 below.

We first consider the special case that e is covered by s ∈ S and there is a reduced expression
for c that starts with s, that is, s is initial in c.

Lemma 4.10. Let s ∈ S be initial in c. Then C(e) ∩ C(s) ⊆ Hs , u′
1 = vs , u1 = s(vs), and

u′
1 + u1 =

∑
r �=s

brur ∈ Hs

with br = −2 〈αs,αr 〉
〈αs,αs 〉 � 0. Moreover, λ(u′

1) + λ(u1) >
∑

r �=s brλ(ur).

Proof. Without loss of generality, assume S = {s1, . . . , sn} and s = s1. Since s ∈ S is initial,
s is a c-singleton. The maximal cones C(e) and C(s) of Fc are therefore maximal cones of
the Coxeter fan with extremal rays generated by {vs1, . . . , vsn} and {s(vs1), vs2, . . . , vsn}. Since
αr = ∑n

i=1 〈αr,αi〉vi , we have

s1(vs1) = vs1 − 2
〈αs1, vs1〉
〈αs1, αs1〉

αs1 = −vs1 +
n∑

i=2

(
−2

〈αs1, αsi 〉
〈αs1, αs1〉

)
vsi .

In particular, s(vs1) + vs1 ∈ Hs1 and 〈αs1, αsi 〉 � 0 for s1 �= si . As a is a vertex of Perma(W), we
conclude

λ
(
s1(u1)

) = 〈a, vs1〉 >
〈
a, s1(vs1)

〉 = −λ
(
s1(vs1)

) +
n∑

i=2

biλ(si). �

Some terminology and results due to N. Reading and D. Speyer are needed to prove
Lemma 4.14 (and therefore to finish the proof of Theorem 4.4). To distinguish objects related
to a Cambrian fan with respect to different Coxeter elements, we use the Coxeter element as an
index. For example, if we use the Coxeter element scs instead of c, then Cscs(w) denotes the
maximal cone that corresponds to the scs-sortable element w. If s ∈ S is initial in c then Fsc is
the sc-Cambrian fan for the Coxeter element sc of W〈s〉.

Lemma 4.11. (See [21, Lemmas 4.1, 4.2].) Let c be a Coxeter element and s initial in c.

(i) Let w ∈ W such that �(sw) < �(w). Then w is c-sortable if and only if sw is scs-sortable.
(ii) Let w ∈ W such that �(sw) > �(w). Then w is c-sortable if and only if w ∈ W〈s〉 and w is

sc-sortable.

Note that �(sw) < �(w) if and only if the chamber w(D) of the Coxeter arrangement corre-
sponding to w lies above Hs . In this case, the maximal cone C(w) of Fc is above the hyper-
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plane Hs because w is minimal in its fiber (πc↓)−1πc↓(w) = [πc↓(w),π
↑
c (w)] for the c-Cambrian

congruence. On the other hand, if �(sw) > �(w), then w(D) is below Hs in the Coxeter arrange-
ment. In this case, we know that the maximum element of the fiber [πc↓(w),π

↑
c (w)] for w, and

thus all of C(w), is below Hs , by [21, Lemma 4.11]. It follows that the hyperplane Hs separates
the cones of Fc into two families and it never intersects a maximal cone of Fc in its interior.
For ρ ∈ F (1)

c we define

ζs(ρ) :=
{

s(ρ) if ρ �= ρs,

−ρs otherwise.

We abuse notation and consider ζs also as a map on the set of vectors generating the set of
rays F (1)

c . The following lemma is a consequence of [21, Lemma 6.5] and [21, Theorem 1.1].
Compare also the comments after [21, Corollary 7.3], from which the last statement is taken.

Lemma 4.12. (See [21].) Let s ∈ S be initial in the Coxeter element c. If ρ1, . . . , ρn are the
extremal rays of the maximal cone C(w) ∈ Fc then ζs(ρ1), . . . , ζs(ρn) are the extremal rays of
a maximal cone of Fscs . If �(sw) < �(w), then these extremal rays are the extremal rays of the
maximal cone C(sw) that corresponds to the scs-sortable element sw.

Before we finish the proof of Theorem 4.4 with Lemma 4.14 we make an observation that will
be useful also in Section 4.4.

Lemma 4.13. Let c be a Coxeter element, s ∈ S initial in c, and w ∈ W〈s〉 sc-sortable. Then the
maximal cone C(w) ∈ Fc is spanned by Csc(w) ∈ Fsc and the ray ρs ∈ Fc.

Proof. The ray ρs is the unique ray of Fc that is strictly below Hs by [21, Lemma 6.3]. From
Lemma 4.11 it follows that C(w) is below Hs and has ρs as an extremal ray. Hence C(w) is
spanned by ρs and a maximal cone E(w) := C(w) ∩ Hs ∈ A〈s〉.

Now consider all inversions t of w, that is, all hyperplanes Ht ∈ A such that C(w) is above Ht .
Since w ∈ W〈s〉 we conclude t ∈ W〈s〉. Hence, the inversions of E(w) and Csc(w) coincide
and E(w) = Csc(w). �
Lemma 4.14. Let w,w′ ∈ W be c-sortable elements such that w covers w′ in the lattice of
c-sortable elements and C(w) ∩ C(w′) ⊂ Ht is an (n − 1)-dimensional cone of Fc for a reflec-
tion t . Let the extremal rays of C := C(w) and C′ := C(w′) be generated by {u1, . . . , un} and
{u′

1, u2, . . . , un}.
Then u′

1 + u1 = ∑n
i=2 biui with bi ∈ R and λ(u′

1) + λ(u1) >
∑n

i=2 biλ(ui).

Proof. The proof is an induction on the rank n = |S| and the length �(w).
If |S| = 1 then the result is clear, so assume that S = {s1, . . . , sn} with n > 1 and �(w) = 1.

Assume without loss of generality that w = s1, and since w covers w′, w′ = e. If w is initial for c

then we are done by Lemma 4.10. So assume that w is not initial for c. For 2 � i � n we have
ui = vsi . Moreover, we have u′

1 = vs1 and u1 = u for some u ∈ R. Thus the maximal cones C(e)

and C(w) are generated by {vs1, vs2, . . . , vsn} and {u,vs2, . . . , vsn}. For the sake of definiteness,
suppose s = s2 is initial in c. Then C(e) and C(w) are both below Hs . By Lemma 4.13, we
have maximal cones Csc(e) = C(e) ∩ Hs and Csc(w) = C(w) ∩ Hs in the sc-Cambrian fan Fsc
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of W〈s〉 and these cones are generated by {vs1, vs3, . . . , vsn} and {u,vs3, . . . , vsn}. So by induction
on the rank of |S|, we obtain the claim with b2 = 0.

For the induction, we assume that the claim is true whenever w̃ is c̃-sortable for a Coxeter
group generated by S̃ with |S̃| < |S| or w̃ is a c-sortable element satisfying �(w̃) < �(w).

Assume w,w′ ∈ W are c-sortable with �(w) > 1 and w covers w′ in the lattice of c-sortable
elements. Let s ∈ S be initial in c. We split into cases based on the positions of C(w) and C(w′)
relative to Hs . Note that it is impossible for C(w) to lie below Hs and C(w′) to lie above Hs

simultaneously, since w covers w′ in the c-Cambrian lattice.

Case 1: Suppose C(w) and C(w′) are above Hs . The ray ρs is strictly below Hs by [21,
Lemma 6.3], so vs /∈ {u′

1, u1, . . . , un}. Moreover, we conclude from Lemma 4.12 that the
maximal cones Cscs(sw) and Cscs(sw

′) in Fscs are generated by {s(u1), . . . , s(un)} and
{s(u′

1), s(u2), . . . , s(un)} since �(sw) < �(w), �(sw′) < �(w′) and w,w′ > s in the right weak
order. We have Cscs(sw) ∩ Cscs(sw

′) ⊂ Hsts because C(w) ∩ C(w′) ⊂ Ht . By induction on the
length, we have

s(u1) + s
(
u′

1

) =
n∑

i=2

bis(ui) and λ
(
s(u1)

) + λ
(
s
(
u′

1

))
>

n∑
i=2

biλ
(
s(ui)

)
with bi ∈ R.

Applying s to these (in)equalities yields

u1 + u′
1 =

n∑
i=2

biui ∈ Ht and λ(u1) + λ
(
u′

1

)
>

n∑
i=2

biλ(ui) with bi ∈ R,

since λ(u) depends only on the orbit of u under the action of W .

Case 2: C(w) and C(w′) are below Hs . Since w is c-sortable and �(sw) > �(w), we have that
w ∈ W〈s〉, and similarly for w′. The ray ρs is the only ray of Fc strictly below Hs by [21,
Lemma 6.3], hence we may assume that u2 = vs . Now {u1, u3, . . . , un} and {u′

1, u3, . . . , un}
generate the extremal rays of maximal cones Csc(w̃),Csc(w̃

′) ⊂ Hs of the sc-Cambrian fan Fsc

with w̃, w̃′ ∈ W〈s〉. The claim follows by induction on the rank |S|.
Case 3: C(w) is above Hs and C(w′) is below Hs . Hence C(w) and C(w′) are separated by Hs ,
so we have s = t . Hence u′

1 = vs (ρs is the only ray of Fc below Hs ) and there is a maximal
cone Cscs(g) for some scs-sortable element g ∈ W which is generated by the extremal rays
ζs(u

′
1), ζs(u2), . . . , ζs(un). Now, observe that

ζs(u1) = s(u1),

ζs

(
u′

1

) = −u′
1 = −vs, and

ζs(ui) = ui for 2 � i � n.

Thus the extremal rays of the maximal cones Cscs(g) and Cscs(sw) are generated by

−vs, u2, . . . , un and s(u1), u2, . . . , un.

Moreover, Cscs(g) ∩ Cscs(sw) ⊆ Hs .
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We first show that g = w. The definition of Cambrian fans implies sw(D) ⊂ Cscs(sw).
From Cscs(sw) ∩ Cscs(g) ⊆ Hs we deduce that w(D) ⊂ Cscs(g). An equivalent statement is
w ∈ (πscs↓ )−1(g). Now g > sw implies h > sw for all h ∈ (πscs↓ )−1(g). But C(w) is above Hs ,

so h < w implies h /∈ (πscs↓ )−1(g). Hence w is the minimal element of [πscs↓ (g),π
↑
scs(g)] and we

have w = g.
Though Cscs(w) ∩ Cscs(sw) ⊆ Hs , it is not possible to apply the induction hypothesis imme-

diately, since the length �(w) has not been reduced, but we claim that for any z ∈ S initial in scs

either Cscs(w) and Cscs(sw) are both above Hz or both below Hz. Indeed, from z ∈ S \ {s} we
conclude that vz ∈ Hs . We know that u2, . . . , un ∈ Hs and u′

1, u1, s(u1) /∈ Hs . So vz ∈ Cscs(w)

if and only if vz ∈ Cscs(sw). Since vz is the only ray of Fscs below the hyperplane Hz, we have
shown that Cscs(w) and Cscs(sw) are on the same side of Hz.

This implies that we are now in Case 1 or Case 2 where w covers sw, both are scs-sortable
and z is initial in scs. Since {ζs(u1), ζs(u2) = u2, . . . , ζs(un) = un} generates Cscs(w) and
{ζs(u

′
1), ζs(u2) = u2, . . . , ζs(un) = un} generates Cscs(w), the argument of the relevant case

yields

ζs(u1) + ζs

(
u′

1

) =
n∑

i=2

b′
iui ∈ Hs with b′

i ∈ R.

We can re-express this quantity

ζs(u1) + ζs

(
u′

1

) = s(u1) − vs = u1 − s(vs) = u1 + u′
1 − (

vs + s(vs)
)

where the second equality follows because Hs is fixed under the action of s, and the third equality
follows from the fact that u′

1 = vs . Since vs + s(vs) ∈ Hs , we conclude that u1 + u′
1 ∈ Hs , and

can therefore be written as
∑n

i=2 biui with bi ∈ R.
It remains to prove λ(u1)+λ(u′

1) >
∑n

i=2 biλ(ui). By Lemma 4.9 it is sufficient to show that
〈x(C(w′)) − x(C(w)),u′

1〉 > 0.
Recall that t = s ∈ S. Pick a maximal chain in the c-Cambrian lattice

y0 � y1 � · · · � yp

with y0 = s and yp = w. Then s � yi for 0 � i � p, so C(yi) is above Hs for 0 � i � p. So
for the pair w̃′ = yi−1 and w̃ = yi we have zi := x(C(yi)) − x(C(yi−1)) = μiβi with μi > 0
and βi ∈ Φ− by Lemma 4.9 and the proof in Case 1 above. Now 〈βi, vs〉 is the coefficient of the
simple root αs in the simple root expansion of βi . Since βi is a negative root, 〈βi, vs〉 � 0. In
particular we have〈

x
(
C(yi−1)

)
, vs

〉
�

〈
x
(
C(yi−1)

)
, vs

〉 + 〈zi, vs〉 = 〈
x
(
C(yi)

)
, vs

〉
for 1 � i � p. Hence〈

x
(
C(e)

)
, vs

〉
>

〈
x
(
C(s)

)
, vs

〉
�

〈
x
(
C(y2)

)
, vs

〉
� · · · � 〈

x
(
C(w)

)
, vs

〉
,

where the first inequality is Lemma 4.10. As u′
1 = vs we have〈

x
(
C(e)

)
, vs

〉 = λ(vs) = λ
(
u′

1

) = 〈
x
(
C

(
w′)), vs

〉
.

Thus 〈x(C(w′)) − x(C(w)),u′
1〉 > 0. �
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4.4. On integer coordinates

Suppose that W is a Weyl group and that the root system Φ for W is crystallographic, that is,
for any two roots α,β ∈ Φ we have sα(β) = β +λα for some λ ∈ Z. The simple roots � span the
lattice L and the fundamental weights vs , s ∈ S, span a lattice L∗ which is dual to L. For β ∈ L

and v ∈ L∗ we have 〈β,v〉 ∈ Z. In fact, β ∈ L if and only if 〈β,v〉 ∈ Z for all v ∈ L∗. For each
ray ρ ∈ Fc, we denote by vρ ∈ L∗ the lattice point on ρ closest to the origin.

Lemma 4.15. Let Φ be a crystallographic root system for the Weyl group W and c be a Coxeter
element of W . The set {vρ | ρ an extremal ray of C} forms a basis of L∗ for each maximal
cone C ∈ Fc.

Proof. Let C = C(w) denote the maximal cone of Fc for some c-sortable w ∈ W . The proof
is by induction on �(w) and the rank of W . Let s be initial in c. To apply Lemma 4.11, we
distinguish the two cases �(sw) < �(w) and �(sw) > �(w).

Suppose that �(sw) < �(w). Then sw is scs-sortable and C(w) = s(Cscs(sw)). Since the
simple reflection s preserves the lattice, the result follows by induction.

Suppose on the other hand that �(sw) > �(w). Then the cone C(w) lies below the hyper-
plane Hs and w ∈ W〈s〉 is sc-sortable. Let C〈s〉(w) denote the maximal cone that corresponds to w

in the Cambrian fan F〈s〉 ⊂ Hs for W〈s〉. Then C〈s〉(w) = C(w)∩Hs by Lemma 4.13. The induc-
tion hypothesis implies that the extremal rays of C〈s〉(w) form a basis for the lattice L∗〈s〉 ⊂ Hs

and ρs is the unique extremal ray of C(w) not contained in Hs by Lemma 4.13. Since the funda-
mental weights vt , t ∈ S, span L∗ it follows that L∗ is spanned by vs and L∗〈s〉 = L∗ ∩Hs . Hence,
the extremal rays of C(w) span L∗. �
Theorem 4.16. Let Φ be a crystallographic root system for the Weyl group W and c be a Coxeter
element of W . Suppose that a ∈ L. Then the vertex sets V (Perma(W)) and V (Assoa

c (W)) are
contained in L.

Proof. The result for the permutahedron is obvious, since by definition the vertices of the per-
mutahedron are the W -orbit of a, which is in L by assumption, and the action of W preserves L.

Let w ∈ W be c-sortable, x(w) be the vertex of Assoa
c (W) contained in the maximal

cone C(w) ∈ Fc, and ρi , 1 � i � n be the extremal rays of C(w). Denote the lattice point on ρi

closest to the origin by yi . The point x(w) satisfies 〈x(w), yi〉 = ci for some integer ci since
a ∈ L. Because {yi}, 1 � i � n, is a basis of L∗, this set of equations for x(w) has an integral
solution. In other words, x(w) ∈ L. �
5. Observations and remarks

5.1. Recovering the c-cluster complex from the c-singletons

It is possible to obtain polytopal realizations of the c-cluster complex from the construction
of generalized associahedra which we have presented, as follows. Suppose that we are given a
W -permutahedron Perma(W), a Coxeter element c, and the c-sorting word w0 of w0. We can
easily compute all c-singletons using the characterization given in Theorem 2.2. The associahe-
dron Assoa

c (W) is now obtained from Perma(W) by keeping all the admissible inequalities, that
is all inequalities 〈v,w(vs)〉 � 〈a, vs〉 for c-singleton w. We label the facet 〈v,w(vs)〉 � 〈a, vs〉
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Fig. 9. An unfolding of the associahedron Assoa
c (S4) with c = s1s2s3, the polar of the c-cluster complex. The 2-faces

are labeled by replacing the labels w(ρs) in Fig. 7 by the almost positive root Lrs (w).

of Assoa
c (W) by the almost positive root Lrs(w) and extend this labeling to the Hasse diagram

of Assoa
c (W) as follows: if a face f is the intersection of facets F1, . . . ,Fk then assign f the

union of the almost positive roots assigned to F1, . . . ,Fk . By Theorem 3.6, this labeling matches
the labeling of the c-Cambrian fan by almost positive roots given by Reading and Speyer. There-
fore, the opposite poset of this labeled Hasse diagram is the face poset of the c-cluster complex
because it is the face poset of the c-Cambrian fan Fc . The polar of Assoa

c (W) is therefore a
polytopal realization of the c-cluster complex. In particular, a set of almost positive roots is
c-compatible (see [19]) if and only if it can be obtained as the intersection of some facets of
Assoa

c by the process described above.
We illustrate the recovery of the c-cluster complex for W = S4. Fig. 9 corresponds to the

Coxeter element c = s1s2s3 and Fig. 10 corresponds to the Coxeter element c = s2s1s3. We use
the polar of the c-cluster complex for the illustration.

First, consider the Coxeter element c = s1s2s3. The facets are labeled by almost positive roots
as indicated. The vertices correspond to clusters as follows:

A = {−αs1,−αs2,−αs3}, B = {αs1,−αs2,−αs3},
C = {αs1, αs1 + αs2,−αs3}, D = {αs2, αs1 + αs2,−αs3},
E = {αs1, αs1 + αs2, αs1 + αs2 + αs3}, F = {αs2, αs1 + αs2, αs1 + αs2 + αs3},
G = {αs2, αs2 + αs3, αs1 + αs2 + αs3}, H = {αs3, αs2 + αs3, αs1 + αs2 + αs3},
1 = {−αs1,−αs2, αs3}, 2 = {αs1,−αs2, αs3},
3 = {αs1, αs1 + αs2 + αs3, αs3}, 4 = {−αs1, αs2 + αs3, αs3},
5 = {−αs1, αs2, αs2 + αs3}, 6 = {−αs1, αs2,−αs3}.

Next, consider the Coxeter element c = s2s1s3. The facets are labeled by almost positive roots as
indicated and the vertices correspond to clusters as follows:
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Fig. 10. An unfolding of the associahedron Assoa
c (S4) with c = s2s1s3, the polar of the c-cluster complex. The 2-faces

are labeled by replacing the labels w(ρs) in Fig. 8 by the almost positive root Lrs (w).

A = {−αs1,−αs2,−αs3}, B = {−αs1, αs2,−αs3},
C = {αs1 + αs2 , αs2,−αs3}, D = {−αs1, αs2, αs2 + αs3},
E = {αs1 + αs2, αs2, αs2 + αs3}, F = {αs1 + αs2, αs1 + αs2 + αs3, αs2 + αs3},
G = {αs1, αs1 + αs2, αs1 + αs2 + αs3}, H = {αs3, αs2 + αs3, αs1 + αs2 + αs3},
I = {αs1, αs1 + αs2 + αs3, αs3}, 1 = {−αs1,−αs2, αs3},
2 = {−αs1, αs2 + αs3, αs3}, 3 = {αs1,−αs2, αs3},
4 = {αs1,−αs2,−αs3}, 5 = {αs1, αs1 + αs2,−αs3}.

5.2. A conjecture about vertex barycenters

J.-L. Loday mentions in [13] that F. Chapoton observed the following: the vertex barycenters
of the permutahedron and associahedron coincide in the case of Loday’s original realization of
the (classical) type A associahedron. The first two authors observed the same phenomenon for
the realizations of type A and B associahedra described in [8]. None of these observations have
been proven so far. Checking numerous examples in GAP [23], we observed that the vertex
barycenter of Perma(W) and Assoa

c (W) coincide for a = ∑
s∈S avs , a > 0. The cases checked

include types An for n � 7, Bn and Dn for n � 5, F4, H3, H4, and dihedral groups I2(m). The
experiments can be summarized in the following conjecture.

Conjecture 5.1. Let W be a Coxeter group and c ∈ W a Coxeter element. Choose a real number
a > 0 and set a = ∑

s∈S avs to fix a realization of the permutahedron Perma(W). Then the vertex
barycenters of Perma(W) and Assoa

c (W) coincide.

It is straightforward to prove this conjecture for a special family, the dihedral groups Gm of
order 2m. We outline the proof.



C. Hohlweg et al. / Advances in Mathematics 226 (2011) 608–640 637
Let m � 2 be an integer. The dihedral group Gm of order 2m is the finite Coxeter group of
type I2(m) generated by the two reflections s and t with st having order m. For any m, the action
of Gm on V = R

2 is essential and we identify R
2 with the complex numbers. If we define

vs := 1 + ei π
m

2
and vt := 1 + e−i π

m

2

then Gm is generated by the reflections with respect to the hyperplanes spanned by vs and vt . We
choose

a := vs + vt

1 + cos( π
m

)
= 1

and follow our earlier notation where w(a) denotes the point obtained by the action of w ∈ Gm

on a. Then

w(a) =
{

ei�(w) π
m if �(sw) < �(w),

e−i�(w) π
m if �(sw) > �(w).

The convex hull of the points w(a), w ∈ Gm, is the permutahedron Perma(Gm) which is a regular
2m-gon. It is easy to verify that the origin is the vertex barycenter of Perma(Gm).

We consider the Coxeter element c = st ; if c = ts, the reasoning is similar. The c-singletons
are e and all w ∈ Gm with �(sw) < �(w). The generator t is the only c-sortable element
which is not a c-singleton. Denote the intersection of the line through a and t (a) and the line
through w0(a) and sw0(a) by P . The associahedron Assoa

c (Gm) is the convex hull of P and the
points w(a) where w ∈ Gm is a c-singleton. A straightforward computation yields

P = i sin( π
m

)

cos( π
m

) − 1
.

It is not hard to verify that

∑
w∈Gm

not c-singleton

w(a) =
m−1∑
k=1

(
e−i π

m
)k = P,

so the vertex barycenters of Perma(Gm) and Assoa
c (Gm) coincide.

5.3. Recovering the realizations of [8] for types A and B

5.3.1. Type A
Let B = {e1, . . . , en} be the canonical basis of R

n. The symmetric group Sn acts naturally
on R

n by permutation of the coordinates. We set

� := {ei+1 − ei | 1 � i � n − 1} and Φ+ := {ej − ei | 1 � i < j � n}.
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Then Φ = Φ+ ∪ (−Φ+) is a root system of type An−1 with simple roots �. Moreover, we recall
that the reflection group Sn acts essentially on

V := R[�] =
{

x = (x1, . . . , xn) ∈ R
n

∣∣ n∑
i=1

xi = 0

}
⊂ R

n.

Let si be the simple reflection that maps the simple root ei+1 − ei to ei − ei+1. The dual
basis �∗ of � is described by

vsi := i − n

n

i∑
k=1

ek + i

n

n∑
k=i+1

ek ∈ V.

We choose a := ∑n−1
i=1 vsi , so a = ∑n

k=1(k − n+1
2 )ek .

There is a bijection between Coxeter elements c ∈ Sn and orientations of the Coxeter graph
of Sn: if si appears before si+1 in a reduced expression of c then the edge between si and si+1 is
oriented from si to si+1. The orientation is from si+1 to si if si appears after si+1 in a reduced
expression of c. Given an oriented Coxeter graph, we can apply the construction described earlier
and obtain a permutahedron Perma(Sn) and an associahedron Assoa

c (Sn).
Consider the affine subspace V ⊂ R

n that is a translate of V by vG = n+1
2

∑n
i=1 ei :

V =
{

x = (x1, . . . , xn) ∈ R
n

∣∣ n∑
i=1

xi = n(n + 1)

2

}
.

Translate Perma(Sn) ⊂ V by vG to obtain Perma(Sn) + vG ⊂ V . The vertices of the translate
Perma(Sn) + vG are the orbit of a + vG = ∑n

i=1 iei under the action of Sn; in other words, we
have

w(a) + vG =
n∑

i=1

w−1(i)ei

for w ∈ Sn. The permutahedron Perma(Sn) + vG was described in [8] but the vertices were
labeled differently.

Proposition 5.2. Consider a Coxeter element c ∈ Sn or equivalently an orientation of the Coxeter
graph and let vG and a be as above. The associahedron Assoa

c (Sn) + vG is the associahedron
Assoc constructed in [8].

Proof. In [8, Proposition 1.3], it was proved that the c-singletons are the common vertices of the
permutahedron and the associahedron and that the normal fan of the latter is Fc . In other words,
the realization of the associahedron in [8] precisely matches the description of Assoa

c (Sn) given
in Corollary 4.5. �
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5.3.2. Type B
Consider the simple root system of type B given by

�′ := {en+1 − en} ∪ {ei+1 − ei + e2n+1−i − e2n−i | 1 � i � n − 1} ⊂ R
2n.

If we set V ′ := R[�′] then V ′ is an n-dimensional subspace of R
2n which is contained in V ,

the span of the type A2n−1 root system as in 5.3.1. Denote the simple reflection that corresponds
to en+1 − en by s0. For 1 � i � n − 1, we denote the simple reflection that corresponds to
(ei+1 − ei) + (e2n+1−i − e2n−i ) by sn−i . The hyperoctahedral group Wn (or Coxeter group of
type Bn) is generated by these reflections. It is easy to see that V ′ = V ∩ ⋂n−1

i=1 V B
i where

V B
i := {

x ∈ R
2n

∣∣ xi + x2n+1−i = 0
}
.

In particular we have a ∈ V ′.
The claim that a is in the open cone spanned by the fundamental weights of �′ follows from

the fact that the scalar product of a with any element of �′ is strictly positive.
A Coxeter element c ∈ Wn is related to an orientation of the Coxeter graph of Wn as in type A:

If si appears before (resp. after) si+1 in a reduced expression of c then the edge between si
and si+1 is oriented from si to si+1 (resp. from si+1 to si ). A Coxeter element or an orientation
of the Coxeter graph therefore yields a permutahedron Perma(Wn) as described in Section 3.1
and an associahedron Assoa

c (Wn). The orientation of the Coxeter graph of Wn determines a
symmetric orientation of the Coxeter graph of S2n, that is, an orientation of the Coxeter graph
of type A2n−1 where the edges {si , si+1} and {s2n−i−1, e2n−i} have opposite orientations. This
orientation determines a Coxeter element c̃ of S2n and we have

Perma(Wn) = Perma(S2n) ∩ V ′ and Assoa
c (Wn) = Assoa

c̃ (S2n) ∩ V ′.

The following proposition is a direct consequence of the construction in [8].

Proposition 5.3. Consider a Coxeter element c ∈ Wn or equivalently an orientation of the Cox-
eter graph of type Bn. Let vG and a be as above for type A. The translated associahedron
Assoa

c (Wn) + vG is the cyclohedron constructed in [8] that corresponds to the orientation of the
Coxeter graph determined by c.

Acknowledgments

The authors thank Nathan Reading and David Speyer for having made their results in [21]
available to us during their work and for their helpful remarks. In particular, we thank David
Speyer for having conjectured Theorem 4.1 while reading an earlier version of this article.

The authors wish to thank the Fields Institute for its hospitality. It turned out to be the focal
point of our work. C.H. was partially supported by an NSERC Discovery Grant and a grant from
FQRNT. C.L. was partially supported by a DFG grant (Forschergruppe 565 Polyhedral Surfaces).
H.T. was partially supported by an NSERC Discovery Grant.

Finally, the authors thank the two anonymous referees who made invaluable comments to
improve the presentation of this article.



640 C. Hohlweg et al. / Advances in Mathematics 226 (2011) 608–640
References

[1] N. Bergeron, C. Hohlweg, C. Lange, H. Thomas, Isometry classes of generalized associahedra, Sém. Lothar. Com-
bin. B61Aa (2009), 13 pp.

[2] A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Springer-Verlag, New York, 2005.
[3] R. Bott, C. Taubes, On the self-linking of knots, J. Math. Phys. 35 (1994) 5247–5287.
[4] F. Chapoton, S. Fomin, A. Zelevinsky, Polytopal realizations of generalized associahedra, Canad. Math. Bull. 45

(2003) 537–566.
[5] M. Geck, G. Hiss, F. Lübeck, G. Malle, G. Pfeiffer, CHEVIE – A system for computing and processing generic char-

acter tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Engrg. Comm. Comput.
7 (1996) 175–210.

[6] S. Fomin, A. Zelevinsky, Y-systems and generalized associahedra, Ann. of Math. 158 (2003) 977–1018.
[7] S. Fomin, A. Zelevinsky, Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007) 112–164.
[8] C. Hohlweg, C. Lange, Realizations of the associahedron and the cyclohedron, Discrete Comput. Geom. 37 (4)

(2007) 517–543.
[9] C. Hohlweg, http://hohlweg.math.uqam.ca/?page_id=25.

[10] J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
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