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1. Introduction

We construct predictive densities for future observables by using observed data. Future observables and data are
possibly dependent and the simultaneous distribution of them is assumed to belong to a submodel of a multinomial
model. Various practically important models such as categorical models and graphical models are included in this class.

Let X and Y be finite sets composed of k and I elements, and let x and y be random variables that take values in X and ),
respectively. Let M = {p(x,y|0)|0 € ®} be a set of probability densities on X x Y. The model M is regarded as a submodel of

the ki-nomial model. The model M is naturally regarded as a subset of the hyperplane {p = (p;)| ZL] Z}-Zl pij=1}in
Euclidean space R¥. In the following, we identify ® with M. Then, the parameter space @ is endowed with the induced
topology as a subset of R¥-",
A predictive density q(y; x) is defined as a function from X x Y to [0,1] satisfying >, q(¥; X) = 1(x € &). The closeness of
q(y; x) to the true conditional probability density p(y|x,0) is evaluated by the average Kullback-Leibler divergence:
PyIx,0)

R(0,q) = YI0)log PYX), 1
©.9) ;p(xm og™ 09 M

where we define c log 0 = —oco (¢ > 0), 0 log 0 =0, 0 log(c/0) = 0 (c > 0). Although the conditional probability p(y|x,0) is not
uniquely defined when p(x|0) = 0, the risk value R(0,q) is uniquely determined because p(x,y|0)log p(y|x,0) = 0 if p(x|0) = 0.
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First, we show that, for every predictive density q(y;x), there exists a limit lim,_, -, pr,(y;X) of Bayesian predictive
densities

[ px10) dma(0)

where {m,}5°_; is a prior sequence, such that R(0,lim,_ « px,(¥; X)) < R(0,q(y;x)) for every 0 € ©. In the terminology of
statistical decision theory, this means that the class of predictive densities that are limits of Bayesian predictive densities is
an essentially complete class.

Next, we investigate latent information priors defined as priors maximizing the conditional mutual information
discussed in Section 3 between y and 0 given x. We obtain a constructing method for a prior sequence {n,};°_; converging
the latent information prior, based on which a minimax predictive density lim,_,~ pr,(¥|X) is obtained. We consider limits
of Bayesian predictive densities to deal with conditional probabilities.

There exist important previous studies on prior construction by using the unconditional mutual information. The
reference prior by Bernardo (1979, 2005) is a prior maximizing the mutual information between 0 and y in the limit of the
amount of information of y goes to infinity. It corresponds to the Jeffreys prior if there are no nuisance parameters; see
Ibragimov and Hasminskii (1973) and Clarke and Barron (1994) for rigorous treatments. In coding theory, the prior
maximizing the mutual information between y and 0 is used for Bayes coding. It was shown that the Bayes codes for finite
alphabet models based on the priors are minimax by Gallager (1979) and Davisson and Leon-Garcia (1980). In our
framework, these settings correspond to prediction of y without x. In statistical applications, x plays an important role
because it corresponds to observed data, although X is an empty set in the reference analysis and the standard framework
of information theory; see also Komaki (2004) for the relation between statistical prediction and Bayes coding.

Geisser (1979), in the discussion of Bernardo (1979), discussed minimax prediction based on the risk function (1) as an
alternative to the reference prior approach.

The latent information priors introduced in the present paper bridge these two approaches. The theorems obtained
below clarify the relation between the conditional mutual information and minimax prediction based on observed data.

For Bayesian prediction of future observables by using observed data, Akaike (1983) discussed priors maximizing the
mutual information between x and y and called them minimum information priors. Kuboki (1998) also proposed priors for
Bayesian prediction based on an information theoretic quantity. These priors are different from latent information priors
investigated in the present paper.

In Section 2, we prove that, for every predictive density q(y;x), there exists a predictive density that is a limit of
Bayesian predictive densities whose performance is not worse than that of g(y; x). In Section 3, we introduce a construction
method for minimax predictive densities as limits of Bayesian predictive densities. The method is based on the conditional
mutual information between y and 6 given x. In Section 4, we give some numerical results and discussions.

Pr, (Y1X) =

2. Limits of Bayesian predictive densities

In this section, we prove that the class of predictive densities that are limits of Bayesian predictive densities is an
essentially complete class.
Throughout this paper, we assume the following conditions:

Assumption 1. @ is compact.
Assumption 2. For every x € X, there exists 0 € @ such that p(x|0) > 0.

These assumptions are not restrictive. For Assumption 1, if @ is not compact, we can regard the closure @ as the
parameter space instead of @ because we consider a submodel of a multinomial model. We do not lose generality by
Assumption 2 because we can adopt X\{xg} instead of X if there exists xq € X such that p(xy|0) =0 for every 0 € 6.

We prepare several preliminary results to prove Theorem 1 below.

Let P be the set of all probability measures on ® endowed with the weak convergence topology and the corresponding
Borel algebra. By the Prohorov theorem and Assumption 1, P is compact.

When x and y are fixed, the function 0 € @ - p(x,y|0) € [0,1] is bounded and continuous. Thus, for every fixed
(x,y) € X x Y, the function

7€ Popaliy) = / p(x.yl0)d(0)

is continuous, because of the definition of weak convergence. Therefore, for every predictive density q(y; x), the function
from P to [0,00] defined by

Px(X.y)

D = (X, y)og —— 7~
a™ Xzy: P08 0y 0pa0

=Y prxYlog pr(xy)=>_ pa@log px@)— Y pexylogay:x— Y paxy)log qy:x)
Xy X

*Y)qy:x) >0 *Y):q(y:x) =0
2

is lower semicontinuous, because the last term in (2) is lower semicontinuous and the other terms are continuous.
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Lemma 1. Let u be a probability measure on @. Then, Py, = {epu+(1—¢)n|w € P} (0<e<1) is a closed subset of P.

Proof. Suppose that 7., € P is the limit of a convergent sequence {m;}y°_ ; in Pgy. Since my € Py,
[ roamor-c [ 50 duo >0

for every nonnegative bounded continuous function f(0) on ©. Thus,
[ 1@ dna0)=Jim [ 160) dm0) = [ 56) dyuo

Hence, 7, —¢&pu is a nonnegative measure. Therefore, 7, € Py, and Py, is a closed set in P. [

Lemma 2. Let f(-) be a continuous function from P to [0,00], and let yp be a probability measure on @ such that p,(x) =
S p(x10) du(0) > 0 for every x € X. Then, there is a probability measure m, in

Pum = {%,u+ (1—%)71‘71 S 73} n=1,2.3,..)

such that f(nn) =infrcp,, f(7). Furthermore, there exists a convergent subsequence {m};7_1 of {ma}_; and the equality
f(nl) =infrcp f(m) holds, where nt =limy_, o 7).

Proof. Note that there exists u € P such that p,(x) = [p(x|0) du(0) > 0 for every x € X by Assumption 2. By Lemma 1, the
sets P, (n1=1,2,3,...) are compact because they are closed subsets of a compact set P. Thus, there is a probability
measure 7, in Py, such that f(my) = infrep,, f(70). There exists a convergent subsequence {7;,}57 _ 1 of {ma};’_ ; because P is
compact.

Since P is compact and f(n) is a continuous function of 7 € P, there exists & € P such that f(#) = infcp f(7). Thus,
f(n) > f(7), where 7, := limp_ o 7},. For every ¢ > 0, there exists ¢ > 0 such that supy; ,, . s f(1) < f()+¢, where d is the
Prohorov metric on P. We put

N 1 n—1,
fin= ﬁ“"'Tn (n= 1,2,3, L)

Then, i, € Pyyn and lim,_ o 7, = 7. Thus, for every 6 > 0, there exists a positive integer N such that d(%,7t;) <6 (n > N). If
n> N, then f(n,,) < f(7,) < f(tn) <f(7)+e. Since ¢ > 0 is arbitrary, we have f(n. ) <f(%). Therefore, f(n. ) =f(7). O

The conditional probability p,(y|x) is not uniquely specified if p,(x) = 0. To resolve the problem, we consider a sequence
of priors {7, };°_ ; that satisfies pr,(x) > 0 for every n and x € X. In the following, lim,_, » pr,(¥Ix) is defined to be a map from
(x,y) € X x Y to the limit of the real number sequence {p,(y|x)};_ . If there exist limits of sequence of real numbers
{Pr, V12)}_ ¢ for all (x,y) € X x Y, we say the limit lim,_ . pr,(v|x) of Bayesian predictive densities exists. Obviously, if the
limit lim,_« pr,(yIx) exists, it is a predictive density because 0<lim,_ pr,(yIx) <1 for every (x,y) e X xY and
> yey liMn_ 0o Pr, (V%) = 1 for every x € X.

Theorem 1.

(1) Let q(y;x) be a predictive density. If there exists &7 e P such that Dg(7t?) = infrcp Dg(7) and p;a(x) > O for every x € X, then
R(0,p;z:1(y1x)) < R(0,q(y; x)) for every 0 € O.

(2) For every predictive density q(y; x), there exists a convergent prior sequence {n}}5_ ; such that Dg(limy_,« 7)) = infzep Dyg
(m), limp_, Pra (V%) exists, and R(0,limy_, Pra (VX)) < R(0,q(y; x)) for every 0 € ©O.

Proof. (1) Let N7 = {(x,y) € X x Y|q(y:x) =0} and 07 := {0 € O[3 ,)cne PKX.y|0)=0}. Let P be the set of all probability
measures on ©Y,

If @7 = ¢, the assertion is obvious, because R(0,q(y; X)) = oo for 0¢@9. We assume that @70 in the following. From (2),
Dy(m) < oo if and only if € PY. Thus, if @0, then Dg(£7) < oo and 7 € PI.

Define

ﬁ:{),u = u5() +(1 —Ll)‘fl’q,

for 0 € ®9 and 0 <u <1, where Jy is the probability measure satisfying dy({0}) = 1. Then 74, € P9, and we have

o . Pr,, (%:Y) fo Pz1(%.y)
aDaow)| = a—u; P, pl0g g s T Zy {a—upm,,u (x,y)'u ) O}logqo,; 0P 0
Pis(x.) Pis(x.)
- yO)log—Pa" Y ylog Lt Y) g
2 POYIOIOB GG~ 2ny P OIIOBG
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Thus, if 0 € 7,

pyIX,
(YIX) B

If 0¢O19, R(0,q(y; X)) = oo because =2 yent P&YI0)log q(y;x) =

Therefore, for every 6 € O, the inequality R(6,p;(yIx)) < R(0,q(y; x)) holds.

(2) Define A%, @9, and P17 as in the proof of (1). Then, @7 and P? are compact subsets of @ and P, respectively.

If ©®% =0, the assertion is obvious, because R(0,q(y; x)) = oo for 0¢@9. We assume that ®7#0 in the following. Let A7 =
{x € X130 € ®% such that p(x|0) > 0} and u9 be a probability measure on @? such that p,(x) == [p(x|0) dud(0) > 0 for every
xe Xl

Because Dgy(n) defined by (2) as a function of = € P9 is continuous, there exists 7, € PZq/n ={1/mul+1A-1/n)n|r € P}
and Dgy(my) = infnepﬁm Dy(m). From Lemma 2, there exists a convergent subsequence {7} _; of {m,}7°_; such that

p(yIx,0)
qy;x)

<D, Pxyl0log =R(0.q(y:%)) < co.

RO.pzyx)=>" p(xy0)log ;
Xy

Dy(,) =inf eps Dg(m), where 7t =limp o 7).

Let n,,, be the integer satisfying =), = m,,,. We can take a subsequence {n},,}5°_ ; such that 0 < np /(nm41—nm) < ¢ for some
positive constant c.

Since

nm ( Nm > Nm
o+ 1— dg = Ty 1- 09 € PI
Mmet Mm41 M1 nm+1 HE /M 1

for every 0 € ©9, we have

~ n
TTm,0u = u{nmnl] T + (1* T >50}+(1 Wy € Pllq/nm+l

for every 0 € ©®% and 0 <u < 1. Thus,

0 . 0 P XY) 0 DPr Y)
—Dq(ftmou)| =z D DPan,Xylog—treo = M- {—pﬁm, e }logL
ou u=o OU S Q0P )| e L0 ! ¥: 0Pz, (%)
*x.y) *)
— X, 10 m+1 X 10 m+1
Tlm+1(x§~qpnm( y) gq(y X)pr, (0 (Xy%wp“ aley) gq(y )P, (X)
My 1—Mm P, (XY)
+— xyl0)log——m 122" 5 0,
M (X,y%,qp( YIOIo8 4y 0ps )
Hence,
P, (X.Y) M g1 *x,y)
> pxyl0)log > N pr (% .wlog%
YN Q:XPr,, (X)) " Mmoq—Tm 2o 70! q:X)pr;, ()
( YY)
——— Z Py, (X, y)log*
nm+1 L qy; X)pn ( )
nm+1 Z i -Y)
= pr, . &, y)logi
Mny1— M qy; X)pn ( )
_m__ {— S pax y)logip o )
Ny 1—Nm (x,y)¢/\/’quN7‘,°° " CI(V X)pnm“( )
- Y pm@Yylogpr, 0+ D Pr,&ylogqy; X)}
XY)ENT=\NT XY)ENT\NT
nm+1 Z P m+1( y)
P, . (x,y)log—
nmﬂ m T qy; X)pr, (%)
M 3 Pr,_, (%Y)
— - P, (X.y)log— + Y. Dpr,ylogqyix) o,
Npmy1—Nm { EPENTUNT= q; X)pnmﬂ( ) )N N
3)
where N™ = {(x,y) € X x Y|Pz, (x,y) = 0}. Here, we have
. pPr . (XY) Pr (XY)
lim = (X,¥)]o LTS A o (xy)]og —=—""- 4
Am, D Pmplogga i — = 2 Prlyler oS @

XYENTUNT +1 (X YENTUN T
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because p,_(x,y) > 0 for every (x,y)¢N ™ and

. o (X,
lim Y prylogqy:x)=0=— > pa. (X.y)logM. (5)
m—eo A o q(y; X)Pr; (X)
(xY)eENTWN (xY)eENT>\N
Therefore, from (3)-(5), and 0 < iy /(N4 1—1m) < ¢, for every 0 € 4,

s Dr, (X.y) Pr, (%)

liminf x,y|0log—n—" __ > o (Xy))og—=—""-_ > 0. 6
iminf " p(x.yl0)log > Pr(xy) 8 4 P (6)

QUXPr,X) e

YN
By taking an appropriate subsequence {mj}i° ; of {m},}7;_;, we can make the sequences of real numbers {p~ (VIX)}i- 1
converge for all (x,y) € X7 x Y because pr, (x) >0 (x € X9) and 0 < pr, (X,y)/Pr;, (¥) < 1.
Then, from (6), if 0 € 9,

. pyIx,0) pyIx,0)
R 09,111‘1’1 " X = X, 910 _—— = X, 910 s ——
( Jim pr (v )) ;p( L o (X%;w P yIOlog o
p(YIx,0) p(y|x,0)
< x,y|0)lo = x,y|0)lo =R(0,q(y;x .
(X';qup( yiOlog= o §ij( YIOlog= = = RO.qW:x) < o0

Note that although limy_, ., pr;(¥Ix) is not uniquely determined for x¢x9, the risk R(0,limy_, o, Py (V1X)) does not depend on
the choice of lim;_, o, Py (V%) for such x, because p(x|0) =0 if 0 € @ and x¢x"1.
If 0201, R(0,q(y; X)) = oo because =2 xyen P&YI0Iog q(y; x) = oco.
Hence, the risk of the predictive density defined by
klim pr (%), xe X!
r(y;X), xg X,

where r(y; x) is an arbitrary predictive density, is not greater than that of q(y; x) for every 0 € ©.
Therefore, by taking a sequence {¢, € (0,1)};°_; that converges rapidly enough to 0, we can construct a predictive density

Jim pr(ylx), x e A1
lim p, g4 epm@IX) =< <7 ’
k_)oope,kqu(l ak)ﬂkO/l ) pﬁ(y|x)_ xg x4 "

as a limit of Bayesian predictive densities based on priors &1t +(1—¢)7y, where [t is a measure on @ such that p;(x) > 0 for
every x e .
Hence, the risk of the predictive density (7) is not greater than that of q(y; x) for every 6 ¢ ©. O

We give two simple examples to clarify the meaning of Theorem 1 and its proof.
Example 1. Suppose that X'={0,1,2}, ¥={0,1}, p(x,y|0) = (2)0*(1-0>*¢"(1-0)'Y, and O =[0,1]. Let q(y;x) = (x/2)"

(1-x/2)37¥, which is the plug-in predictive density with the maximum likelihood estimate @:x/z. Then, N9 =
{(0,1),(2,0)}, ®? ={0,1}, and X7 = {0,2}. The prior defined by 7™ = wdg+(1-w)d; € P? (0 <w < 1) satisfies

Dq(n(w))=ni£1; Dy(m) = 0.

We set p? =z, which satisfies p,a(x) > 0 for x € X%. Then, we can set 7, =™ (n=1,2,3,...) because 7™ ¢ qu/n and
Dg(n™)) =0. Then, lim,_, o Pr,(Y1X) = Prw YIx). Thus, 7, =™ and N> = N1,
The prior 7™ does not specify the conditional density p,w (y|x = 1) because p,w(x=1)=0. We set fi(df) =d6f and
T = %ﬁ+ <1 - }—() W,

Then, limy_ o pr(y=0x=0)= limy_, o prny=1x=2)=1 and limy_ o, P (y=0x=1)= limy_ o pr,y=1x=1)=1/2.
The risk function of the predictive density lim,_, ., P (VIx), which is a limit of the Bayesian predictive densities, is given by

0, 0=0e09
R(H,klim pﬂﬂ(y|x)> ={ o0, 0€(0,1)=6\61,
o 0, 0=1€c0°

and coincides with R(0,q(y; X)).

Example 2. Suppose that X'=(0,1,2}, Y={0,1}, ©={0;,0;}, p((2,0)|0;)=p((2.1)[0:)=0, p((0,0)[01) = p((1,1)|01) =1/3,

p((0,1)161) = p((1,0)161) = 1/6, p((2,0)102) =p((2,1)102) = (1-¢)/2, and p((0,0)|62) = p((0,1)|02) =p((1,0)|62) = p((1,1)|02) =
¢/4, where 0 <e < 1.
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Consider a predictive density defined by q(y=0;x=0=q(y=1;x=1)=2/3, qy=1;x=0)=q(y=0;x=1)=1/3,
qy=0;x=2)=1/3,and q(y =1;x=2)=2/3. Then, V9=, @I =0, P! =P, and A= A.

Then, 7t =y, satisfies Dy(7t) = infrep Dy(m) = 0 because p(y|x,01) = q(y; x) except for the case x=2. Since p(x=2|01) =0,
Pz (Y|x =2) is not uniquely determined. Thus, we consider a limit of Bayesian predictive densities.

Put u=2Jy, /2+3,/2. It can be easily verified that 7, =(1/n)u+(1-1/n)dy, satisfies Dqg(7y) = infrep,, Dg(). Then,
limp_ o Pr, Y1X = 0) = p(y1x = 0,61) = q(y;x = 0), liMy_ o Pr, YIX=1)=pyIx=1,61) = q(y;x = 1), pr,YIX=2)=pylx= 2,6)
#q(y;x =2). By calculation, we have R(01,lim,_, » pr,(¥1x)) = R(01,q(y;X)) = 0 and R(03,limy_, o px,(VIX)) = (¢/2)log(9/8) <
R(0,,9(y; x)) = (1/2)log(9/8). Thus, the performance of lim,_,« pr,(¥IX) is better than that of q(y; x).

3. Latent information priors and minimax prediction

In this section, we construct minimax predictive densities that are limits of Bayesian predictive densities based on prior
sequences converging to latent information priors defined below.
A predictive density q(y; x) is said to be minimax if it satisfies the equality

P(V\ p(yIX, 9)
su § x,y10)lo =inf su E x,y|0lo
eeg p(x.y10) g 1 Hep 2 p(x.y|0)log Tix)

The conditional mutual information between y and 6 given x is defined by

Ipy(m) = / > px.yl0)log p(x.y|0) dm(0)—> " pr(x.y)log pr(X.y)— / > px|0)log p(x|0) A7)+ _ p(x)log pr(x),
b X,y X,y - X X
which is a function of w € P. If p,(x)#0 for all x € &, then

‘ 0
Iy yw(m) = / Zp(x,yl())logp V%O 470).
Xy

=(Y1%)

Here, Iy, () is a quantity averaged over x. This definition of conditional mutual information is widely adopted in
information theory; see, for example, Cover and Thomas (2006, p. 23). Since ulogu (0 <u<1) a bounded continuous
function, Iy x(7) is a bounded continuous function of 7 € P.

We define a latent information prior as a prior 7 that satisfies Iy ,x(7) = Sup,p Ip,x(70). Intuitively speaking, when the
parameter 0 is distributed according to the latent information prior, 0 has the maximum information about the future
observable y under the condition that x is observed. Therefore, 0 has the maximum amount of “latent” information, which
we cannot observe through the data x. Thus, the latent information prior corresponds to the “worst case” and is naturally
related to minimaxity. On the other hand, the minimum information prior discussed by Akaike (1983) is a prior
maximizing the mutual information between the future observable y and the data x. This prior corresponds to the “best
case” and is far from minimaxity.

The priors 7 and 7., in Theorem 2 below are the latent information priors.

Theorem 2.
(1) Let &t € P be a prior maximizing Iy (7). If pz(x) > 0 for all x € X, then p;(y|x) is a minimax predictive density.
(2) There exists a convergent prior sequence {1, }°_ ; such that lim,_, « px,(YIX) is a minimax predictive density and the equality

Ig,yx(Too) = SUDPzep lg yx(T0) holds, where o = limy_, o0 .

Proof. (1) Define 75, := ud;+(1-w# for 0 €O and 0<u<1.Then,

( / Z p(x.y|0)log p(x.y|0) d7z ,(0)— Z Pz (xY)log pz_ (X.y)

0 -
alﬁ,y\x(ﬂ:g'u) .

- / > pi0log p(x|0) dity (0)+ _ Pz (0log pz. (X)>

u=0

= p(x.yl0)log p(x,y|0)— / > p(x.yl0)log p(x.y|0) d7t(6)
Xy X,y

—Z u pnm(x Y| logpz(xy)—Y  p(x|0)log p(x|0)

u=0

' . 8
+ / > _ p(x10)log p(x|0) dn(0)+z @pﬁﬁ'um log p7(x)

=0

) p(X'YI pn( vy)
= E Y101 E M)
. px.yl0)log Pl . px.yl0)log D2 (%)
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pxYyI0) - Pz (%.y)
- y10)] dn(0 (X, ))1 <0.
| 3 poyionogP TR a0+ 3 petytogh T <

Noting that p;(x) > 0 for every x € X and that p(x,y|0)log p(y|x,0) = 0 if p(x|0) =0, we have

_ 0 0
S pxy0iogBXEE < [ pixyioiogBXE do ®
Xy

for every 0 € ©.
On the other hand, we have

/Zp(x,y|6)logp(ylx .0) d#(6) = inf /Zp(x,y\())logp(ylx'g) dr(0)
Xy

Ix) (0729)
<sup 1nf /Z p(x, y|0)logp01|x 0) dn(0) < 1nf sup /Z p(X, y\())logpw‘x .0) dn(0)
neP ) (y
pyIx,0) pyIx,0)
= inf sup > Z P(yIOlog T < sup XZy: P(xyIOlog = 9)

The first equality is because the Bayes risk

. 0) .
[ Rtz a0 = |3 pocyionogPoD o)
Xy >

with respect to 7 € P is minimized when

. Jpxy10) d7(0) |
qy;X) =pz(YIX) = W
see Aitchison (1975).

From (8) and (9), we have

py1x,0) pyIx,0)
a0 e %: PYIONOE, iy
Therefore, the predictive density p;(y|x) is minimax.

(2) Let u be a probability measure on @ such that p,(x) = [p(x|0) du(0) >0 for every x € X, and let 7, € Py =
{u/n+(1-1/mn|w € P} be a prior satisfying Iy . (7tn) = SUPzep,, loy(T). From Lemma 2, there exists a convergent
subsequence {7y, }5y _ 1 of {7n}°_ 1 and Iy (7)) = SUDgcp g yx(70), Where 7T, =limy, o 7T),. Let ny, be the integer satisfying
T, = Tn,,. As in the proof of Theorem 1, we can take a subsequence {n},}5_; such that 0 <ny/(ny,1—nm) <c for some
positive constant c.

Then, for every 0 € O,

. Nm Nm
T - =1U b 1- 05 1-u)m
m,0,u {nm+1 m+( nm+1> 6}"’( ) m+1
belongs to Py, , for 0 <u <1, because (nm/nm 1 1)7, +(1=nm/Nm 1)05 € Py, and 7,1 € Py, -
Thus,

inf su x,y10)lo
n oggxzy:p( y|0)log

@IO.y\x(nmE,u) Y T m,

) R
== ( / ngj px.yl0)log p(x.y|0) dnm,g_u(e)—; Pz - (xYlogpz _ (xY)

- / > pOlog px|0) dit, 5 (0)+>  pz - ®logpz (X)>

Mm

u=0

/ > px.yI0)log p(x.y10) dr;,(6)+ (1 - %) > p(x.y|0)log p(x.y|0)
Xy m Xy

My,

/ Zp(xy\e)logp(x.wé)) (0= 2P, 0 »|

- log Pr, ,(X.y)

m+1

m(0)— (1—m> Xx: p(x|6)log p(x|0)

log pr (%)

u=0

: 2
+ / > p(xi0)log pxI0) dmyy 1 (O)+> = Pz (X)

m,0,u

m+1

p(x.y|0) ( ) L &Y)
E 0)l - —(1- E O)log—met— =~
) p(x,yl0)log D) o p(x.yl )og .,,H()
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p(x.y|0) pxyI0)
(lg) @) [ 3 pydloghId a0

X,y *x,y)
TI 1 m+1 + 7'[ 1 m+1 < 0
Z P (xoylog e ) F—r Z Pr, ., (XY) ogipn o =

Tl
m+1 T 1 m+1

Noting that p,, (x) > 0 for every m and x € X and that p(x,y|0)log p(y|x,0) =0 if p(x|0) =0, we have

p(ylxvg) (y )
(1— ot )Zp(xyl())log . (VIX) — /Zp(x,ym)log P O dr, ()
/ Zp(x,yle)log P (V'X(;)l) 5 M 1) <0.
Hence,

_ pyIx.0) (ylx 0)
Zp(x.yw)log <- nm+1—nm { / > p(x.y|9)10g i )d m(@)

ey, 0 e

> pylO)log p(yix,0) dm,, (0)— / > pxylOlog pr,  (vIx) dnin(())}

xy)ENT> xy)ENT>
nm’i";*_l | X pexyioios p(y'x(fl)) A7} ,1(0)
nm+1—nm { / (Xygm p(x.y|0)log P"(lef (j)) dr,(0)+ / w%ﬂ p(x.y10)log p(y|x,0) dnm(e)}
e [ S piotog oo G O 10)
where N™ = {(x,y) € X x Y|pr_(x,y) = 0}. Here, we have
fim [ poyotog MR o~ [ 50 pouyionog™ 0 a0 an

(YN0 M1 YN

and

lim [ 3" peyiologpyixd) dmy@)= [ 30 pixyiOlog pyx) dr(0)

T e ®Y)eNT
> px.yl0)log PO 6)Pr, (X dn (6) =0, (12)
. pT[’% (va)
(Xy)eNT>

because p(x,y|0)log p(x,y|0) and p(x|0)log p(x|0) are bounded continuous functions of 0 for every fixed (x,y).
From (10)-(12), and 0 < nm/(nm+1—nm) < ¢, we have, for every 0 € O,

pyIx, PYIX,Opr, ) ,
1 1 Jog mL 1Y) .
lmjo‘jPE px.y10) og O’IX)_ / E p(x.y|0)log P %)) dm(0)

By taking an appropriate subsequence {m}7°_; of {m},}5;_, we can make {Pm (VIX)}i_ 1 converges for every (x,y) as k— oo.
Then, for every 0 € O,

3 pY/IX.0) pY/IX.0) ,
;p(&ylf))logm < / Zp(x,yIH)logm dm,(0), (13)

where 7, = 7, = limy o, 7}, because limy , ., Py (V1X) = pry, (vIX) for x with px; (x) > 0.
On the other hand, we have

p(y1x,0) v pyIx0) .,
/Xz'y:p(x,y\@)logm dn’ (0) = mf/Zp(x,yW)log T dn’_(0)

< iLEl]E il;]lf / ZD(X,yIQ)longéllx )) dn(0) < 1nf sup / ;p(x,yW)log

pUyIX, )
q;x

pyIx,0)
x40

p(yIx,0)
<su xy|Olog ———"—~ | 14
Heg;p( o gllmkaoopn,’{’(ylx) a4

= mf sup Z p(x,y|0)log
0cO
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The first equality is because the Bayes risk

[ R:q0:0) a0 =[S pixyionoPir )) dr,(0)
Xy
is minimized when q(y;X) =pz; (y/x); see Aitchison (1975). Although pr, (y|x) is not uniquely determined for x with
Py, (x) =0, the Bayes risk does not depend on the choice of pr, (y|x) for such x.
From (13) and (14), we have

pyIx, p(yIx,0)
mfsu x,y10)lo _su x,y|0log ———"~ .
D 2 PoeyIDNoB g, T 2 Pxylog e = o

Therefore, the predictive density limy_, ., pr/(ylx) is minimax. O
4. Numerical results and discussions

Let p(x|0) = (V)* (10O x=0,1,...,N), py|0) = ('y)ey(l_e)M*y (¥=0,1,...,M), and @ ={0.1klk=0,1,2,...,10} in

which 0 takes a value. Although this example is relatively simple in the sense that x and y are independent given 0, the
behavior of priors is not trivial.

The latent information priors, which maximize Iy (), for 16 sets of values of (N,M) are obtained numerically; see
Fig. 1.

The prior for (N,M) = (0,1000) is almost uniform and is similar to the reference prior because the reference prior is the
latent information prior with N=0 and M — oc. It is widely known the reference prior is uniform when the parameter space
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Fig. 1. Latent information priors for various (N,M) values.
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is a finite set. The latent information prior for (N,M)=(0,100) is similar to the histogram of the Jeffreys prior density
07 12(1-6)"2 /B1 /2,1/2) for the binomial model with the ordinary parameter space ®' =[0,1], which is different from the
parameter space ® = {0.1klk =0,1,2,...,10}, a finite subset of ® =[0,1], adopted here.

When N=0 and M is moderately large (M=100), the latent information prior is similar to the histogram of the Jeffreys
prior density 0’1/2(1—9)”/2/3(1 /2,1/2), which is the reference prior on @' =[0,1]. When N=0 and M is extremely large
(M=1000), the latent information prior on ® becomes almost uniform and is dissimilar from the histogram of the Jeffreys
prior density on ®' =[0,1]. This is because we can distinguish almost completely all the points in the discrete parameter
space @ by using the information of y.

When both of N and M are small the priors assign weights only on a limited number of points in ©. This corresponds to
the phenomenon concerning the k-reference prior studied by Berger et al. (1989). The k-reference prior is the latent
information prior with N=0 and M=k.

When N is large, the priors assign more weights to parameter values close to 0.5. The shapes of priors are quite different
from the uniform density or the histogram of the Jeffreys prior for the binomial model with the ordinary parameter space
®'=[0,1].

These observations show that the latent information priors strongly depend on (N,M). This indicates that we need to
abandon the context invariance (see Dawid, 1983) of priors.

The relation between the conditional mutual information and predictive densities parallels to that between the
unconditional mutual information and Bayes codes in information theory except for the care for the case p,(x) = 0. Many
studies on the unconditional mutual information and minimax prediction and coding have been carried out; see, for
example, Ibragimov and Hasminskii (1973), Gallager (1979), Davisson and Leon-Garcia (1980), Clarke and Barron (1994),
and Haussler (1997). See also Griinwald and Dawid (2004) for discussions in a very general setting. Conditional mutual
information is a fundamental quantity in information theory and naturally appeared in several previous studies in
statistics such as Clarke and Yuan (2004), and Ebrahimi et al. (2010). The conditional mutual information Iy () coincides
with the Bayes risk of the Bayesian predictive density based on 7. Therefore, it is natural that the prior maximizing Iy (1)
corresponds to minimax prediction based on data.

In general, the priors based on the unconditional mutual information and that based on the conditional mutual
information are quite different. Latent information priors maximizing the conditional mutual information could play
important roles in statistical applications. Although we have discussed submodels of multinomial models, essential part of
our discussion seem to hold for more general models such as x and y are continuous random variables under suitable
regularity conditions including compactness of the model as in the theory based on the unconditional mutual information
studied by Haussler (1997).

The explicit forms of latent information priors are usually complex and difficult to obtain unless the parameter space is
finite. For actual applications, it is important to develop approximation methods and asymptotic theory in various settings
other than the situation N=0,M— oo studied in the reference analysis. When Iy (1) is close to I,(7), a prior m is
considered to be close to 7 because I, () is a concave function of 7. These topics require further research and will be
discussed in other places.
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